
Advanced Functional Programming: Assignment 1 (Wed, 03/20/2019)

Topic: Streams, Generators, Selectors, and Combinations thereof

Submission deadline: Wed, 04/03/2019 (3pm) (two weeks!)

Regarding the deadline for the second submission: Please, refer to
”
Hinweise zu Or-

ganisation und Ablauf der Übung“ available at the homepage of the course.

Store all functions to be written for this assignment in a top-level file assignment1.hs
of your group directory. Comment your program meaningfully; use auxiliary functi-
ons and constants, where reasonable.

Important: Do not use self-defined modules! If you want to re-use functions (writ-
ten for earlier assignments), copy these functions to the new submission file. An
import declaration for self-defined modules will fail, since only the submission file
assignmenti.hs, where i, 1 ≤ i ≤ 8 (tentatively), denotes the running number of
the assignment, will be copied for the (semi-automatical) evaluation. No other file
in additon to assignmenti.hs will be copied.

1. Implement the generator and selectors:

- repeat (generator)

- within (selector)

- relative (selector)

of Chapter 1.3 as type-general as possible in Haskell, and test different combi-
nations of them including the examples for approximately

• computing the square roots of positive real numbers

• integrating continuous 1-ary real functions

• differentiating continuous 1-ary real functions.

To this end hide the name repeat defined in the standard prelude using the
hiding clause and additionally implement the functions:

- next

- easyintegrate

- integrate (1st version of integrate of Chap. 1.3)

- integrate eff (Improved 2nd version of integrate of Chap. 1.3)

- easydiff

- differentiate

together with the auxiliary functions they refer to and the generator/selector
combinations:

- sqrt :: InitialApprox -> Epsilon -> SquareArg -> Approx

- relativesqrt :: InitialApprox -> Epsilon -> SquareArg -> Approx

- intgrt :: Map -> Low -> High -> Epsilon -> Area

(Analogue to the generator/selector combination sqrt)

- relativeintgrt :: Map -> Low -> High -> Epsilon -> Area

(Analogue to relativesqrt)

- intgrteff :: Map -> Low -> High -> Epsilon -> Area

(Improved, more efficient variant of intgrt)

- relativeintgrteff :: Map -> Low -> High -> Epsilon -> Area

(Improved, more efficient variant of relativeintgrt)

- diff :: Map -> XCoordinate -> InitialH -> Epsilon -> Slope

(Analogon zu sqrt)

- relativediff :: Map -> XCoordinate -> InitialH -> Epsilon -> Slope

(Analogue to relativesqrt)

where:

type InitialApprox = Double -- Only values > 0

type Epsilon = Double -- Only values > 0

type SquareArg = Double -- Only values > 0

type Approx = Double -- Only values > 0

type Map = Double -> Double

type Low = Double -- Lower interval bound

type High = Double -- Upper interval bound

type Area = Double

type XCoordinate = Double

type InitialH = Double -- Only values > 0

type Slope = Double

Use the standard type [] for both lists and streams, and the type Double as
the implementation of the real numbers. All functions yield the value of the
most recently computed approximation, i.e., the most precise approximation
computed when the computation is stopped.

2. Without submission: The functions integrate, integrate eff, and differentiate

are generators themselves. Unlike differentiate, however, integrate and
integrate eff do not make use of the generator repeat.

How could a generator repeat2 look like allowing to implement integrate and
integrate eff analogously to differentiate (which makes use of repeat),
and being reusable for other tasks in the same way as repeat is?

3. Consider the sequence(s) (xi)i∈IN0 of real numbers, whose elements are compu-
ted according to the rule (for n ≥ 0):

xn+1 = axn (1− xn)

where a is a real valued constant and x0 a real valued initial value with 0 ≤
a ≤ 4 and 0 ≤ x0 ≤ 1.

Write a Haskell function next2 over the type synonyms:

type Value_a = Double -- 0 <= a <= 4

type Value_x0 = Double -- 0 <= x0 <= 1

type Value_xn = Double

type Value_xnplus1 = Double

next2 :: Value_a -> Value_xn -> Value_xnplus1

and by means of the generators and selectors repeat, within, and relative

of part 1 the generator/selector combinations:

- sequence

- relativesequence

analogously to the generator/selector combinations sqrt and relativesqrt.

4. Without submission: Investigate the behavior of convergence of seqence

and relativesequence in dependence of the value of a. To this end, choose
different values of a from the intervals:

• 0 ≤ a < 1

• 1 ≤ a < 3

• 3 ≤ a ≤ 3.449

• 3.449 < a ≤ 4

Combine the generator (expressions) also with selectors like take n for increa-
sing values of n ∈ IN, and derive a hypothesis about the behavior of the elements
of the sequence in dependence of the selected value a from that. Supposed your
hypothesis is valid, are the selectors within and relative meaningful for all
values of a?

5. Let f : IR → IR be a continuous real function. Function f has a change of
sign (Vorzeichenwechsel) in the interval I = [a, b] ⊆ IR, if there is a subinterval
I0 = [a0, b0] ⊆ I with

f(a0)f(b0) < 0

According to the intermediate value theorem (Zwischenwertsatz) for continuous
real functions there is at least one root (Nullstelle) of f in the interval I0 =
[a0, b0], i.e., there is x ∈ IR with a0 ≤ x ≤ b0 and f(x) = 0.

Using an interval nesting approach (Intervallschachtelungsverfahren), we can
approximate such a root as follows:

Let It = [at, bt] be an interval with f(at)f(bt) < 0, and let xt = 1
2
(at + bt) be

the centre (Mittelpunkt) of the interval It.

• If f(xt) = 0, then xt is a root of f , and the computation stops.

• If f(xt) 6= 0 and f(xt)f(bt) < 0, then a new interval It+1 = [at+1, bt+1] is
constructed according to the rule:

at+1 = xt and bt+1 = bt.

• If f(xt) 6= 0, f(xt)f(bt) > 0 and f(at)f(xt) < 0, then a new interval
It+1 = [at+1, bt+1] is constructed according to the rule:

at+1 = at and bt+1 = xt.

Write a Haskell function nextintervall over the type synonyms:

type Interval = (Double,Double)

type InitialInterval = Interval

type Map = Double -> Double -- Only continuous functions

type Epsilon = Double -- Only values > 0

nextinterval :: Map -> Interval -> Interval

and based thereon a generator:

intervalnesting :: Map -> InitialInterval -> [Interval]

computing a stream of intervals following the above approach when applied to
a continuous map f and an initial interval I.

Combine the generator intervalnesting with two modified (possibly type-
adjusted) selectors within2 and relative2 (whose meaning corresponds to
that of the selectors within and relative of part 1) to two generator/selector
combinations:

null :: Map -> InitialInterval -> Epsilon -> Interval

relativenull :: Map -> InitialInterval -> Epsilon -> Interval

which stop the interval nesting approach, when the absolute value (Absolutbe-
trag) of the difference resp. the ratio of two successive intervals coincide or is
lower than a predetermined ε > 0. In both cases, the most recently computed
interval is provided as the result, i.e., the most precise approximation computed
when the computation is stopped.

Important:

• Login data: You should have received your login data for the computer
g0.complang.tuwien.ac.at by 20 March 2019. The login data will have been
sent by email to your generic mail address e<matrikelnummer>@student.tuwien.ac.at.
Once received, please, log in as soon as possible on the computer g0 (e.g., via
ssh) and set your initial password to a new one of your own.

• Submitting assignments: Your programs will be (semi-automatically) eva-
luated on the machine g0 using the Hugs interpreter. If you use a different tool
(such as GHC) or computer for developing your programs, please, double-check
well in time before the submission deadline that your programs behave also on
the computer g0 using Hugs as intended and expected by you.

