Technische Universität Wien Compilers and Languages Prof. J. Knoop A-1040 Wien Argentinierstr. 8 Tel.: 01-58801-18510

10 April 2019

"Analysis and Verification (185.276, VU 2.0, ECTS 3.0)" SS 2019

Exercise 1 : (4+4 Points)

Give a WHILE program π , for which the Hoare assertion

 $\{true\} \ \pi \ \{false\}$

is partially correct, and prove your claim in two ways, by providing

- 1. a tree-like proof
- 2. a linear proof sketch

Exercise 2 : (8 Points)

Prove that the WHILE program computing the product of two numbers of Assignment 3 is also totally correct wrt the precondition $x = n \land y = m \land n > 1$ and the postcondition y = n * m, i.e., prove the validity of the Hoare assertion:

$$[x = n \land y = m \land n > 1]$$
 while $x \neq 1$ y := y + m; x := x - 1 od $[y = n * m]$

Exercise 3 : (10 Points)

Consider the below (pre-) orders given by their Hasse diagrams (resp. Hasse-like diagrams):

Which of these orders are (i) partial orders (dtsch. partielle Ordnungen), which ones are (ii) chain-complete partial orders CCPOs (dtsch. (ketten-) vollständige partielle Ordnungen (KV-POs)), (ii) lattices (dtsch. Verbände), which ones are (iii) complete lattices (dtsch. vollständige Verbändec)? Explain your reasoning (proof or counterexample).

Note: Partial orders and Hasse diagrams are introduced in Appendices A.2.1 and A.2.2, respectively, lattices and complete lattices in Appendix A.4.

Exercise 4 : (4 Points)

Which of the following pairs are i) partial orders, (ii) (chain) complete partial orders, (iii) lattices, (iv) complete lattices? Explain your reasoning (proof or counterexample).

- 1. (ST, \sqsubseteq) with
 - $ST =_{df} [\Sigma \to \Sigma]$ the set of state transformations.
 - $\sqsubseteq \subseteq ST \times ST$ defined by: $\forall g_1, g_2 \in ST. \ g_1 \sqsubseteq g_2 \iff_{df}$ $\forall \sigma \in \Sigma. \ g_1(\sigma) \ defined = \sigma' \Rightarrow \ g_2(\sigma) \ defined = \sigma'$
- 2. $(\mathcal{P}(S), \subseteq)$ with S finite set, \subseteq subset relation, and \mathcal{P} powerset operator, i.e., $\mathcal{P}(S) =_{\mathrm{df}} \{S' \mid S' \subseteq S\}.$
- 3. $(\mathcal{P}(S), \subseteq)$ with S nonfinite set, \subseteq subset relation and \mathcal{P} powerset operator.
- 4. $(\mathcal{P}_{fin}(S), \subseteq)$ with S nonfinite set, \subseteq subset relation and \mathcal{P}_{fin} 'finite' powerset operator, i.e., $\mathcal{P}_{fin}(S) =_{\mathrm{df}} \{S' \mid S' \subseteq S, S' \text{ finite}\}.$

Exercise 5 : (4 Points)

Prove or refute (proof or counterexample):

- 1. Every CCPO (S, \sqsubseteq) is a lattice: $(S, \sqsubseteq) CCPO \Rightarrow (S, \sqsubseteq)$ lattice.
- 2. Every CCPO (S, \sqsubseteq) is a complete lattice: $(S, \sqsubseteq) CCPO \Rightarrow (S, \sqsubseteq)$ complete lattice.
- 3. Every lattice (S, \sqsubseteq) is a CCPO: (S, \sqsubseteq) lattice \Rightarrow (S, \sqsubseteq) CCPO.
- 4. Every complete lattice (S, \sqsubseteq) is a CCPO: (S, \sqsubseteq) complete lattice \Rightarrow (S, \sqsubseteq) CCPO.

Exercise 6: (Without Submission)

Install the KeY-Hoare system (cf. Chapter 4.9 for the system's URL) and conduct correctness proofs for the following three Hoare assertions:

- $\models_{pk} \{true\}$ while true do skip od $\{false\}$
- $\models_{pk} \{x = n \land y = m\}$ while $x \neq 1$ do y := y + m; x := x 1 od $\{y = n * m\}$
- $\models_{tk} [x = n \land y = m \land n > 1]$ while $x \neq 1$ do y := y + m; x := x 1 od [y = n * m]

The proofs shall be (voluntarily) presented "live" on May 15, 2019.

Submission: Wednesday, 15 May 2019, before the lecture.