Technische Universität Wien Compilers and Languages Prof. J. Knoop A-1040 Wien Argentinierstr. 8 Tel.: 01-58801-18510

"Analysis and Verification (185.276, VU 2.0, ECTS 3.0)" SS 2019

Assignment 3

20 March 2019

Exercise 1 : (16 Points)

Consider the below Hoare assertions for partial/total correctness (or: Hoare triples for partial/total correctness; or: partial/total correctness assertions):

- 1. $\models_{pk} \{p_1\} \pi_1 \{false\}$
- 2. $\models_{tk} \{p_2\} \pi_2 \{false\}$
- 3. $\models_{pk} \{p_3\} \pi_3 \{true\}$
- 4. $\models_{tk} \{p_4\} \pi_4 \{true\}$
- 5. $\models_{pk} \{false\} \pi_5 \{q_5\}$
- 6. $\models_{tk} \{false\} \pi_6 \{q_6\}$
- 7. $\models_{pk} \{true\} \pi_7 \{q_7\}$
- 8. $\models_{tk} \{true\} \pi_8 \{q_8\}$
- 9. $\models_{pk} \{true\} \pi_9 \{false\}$
- 10. $\models_{tk} \{true\} \pi_{10} \{false\}$
- 11. $\models_{pk} \{ false \} \pi_{11} \{ false \}$
- 12. $\models_{tk} \{false\} \pi_{12} \{false\}$
- 13. $\models_{pk} \{true\} \pi_{13} \{true\}$
- 14. $\models_{tk} \{true\} \pi_{14} \{true\}$
- 15. $\models_{pk} \{ false \} \pi_{15} \{ true \}$
- 16. $\models_{tk} \{false\} \pi_{16} \{true\}$

Assuming that the above correctness assertions are valid, what conclusions can be drawn on the preconditions p_i , $1 \le i \le 4$, the programs π_i , $1 \le i \le 16$, and the postconditions q_i , $5 \le i \le 8$, (wrt the characterization sets $Ch(p_i)$, $Ch(q_i)$, and $Def(\llbracket \pi_i \rrbracket)$)? Can in fact all triples assumed to be correct, or are some triples not satisfiable? Are all triples meaningful? Are some of them trivial? Provide a brief reasoning for your answer.

Exercise 2 : (2 Points)

Show that the at first sight tempting naive version of the forward assignment rule without quantors is not correct:

 $\begin{bmatrix} ass_{fw-naive} \end{bmatrix} \quad \frac{-}{\{p\} \ x := t \ \{p[t/x]\}}$

Exercise 3 : (8 Points)

Using the Hoare calculus for partial correctness, prove (in terms of a linear proof sketch) that the below Hoare assertion is partially correct:

 $\{x = n \land y = m\}$ while $x \neq 1$ do y := y + m; x := x - 1 od $\{y = n * m\}$

Submission: Wednesday, 10 April 2019, before the lecture.