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Flow Graphs

...as representations of While programs.

Definition 7.1.1.1 (Flow Graph)

A flow graph is a quadruple G = (N ,E , s, e) with

I N , set of nodes.

I E ⊆ N × N , set of edges.

I s, distinguished start node w/out any predecessors.

I e, distinguished end node w/out any successors.

Nodes represent program points, edges the branching structure
of G . Every node of G is assumed to lie on a path from s to e.
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Node-labelled vs. Edge-labelled Flow Graphs

Given a flow graph, instructions (i.e., assignments, tests) can
be represented by

I nodes

I edges

leading to

I node-labelled

I edge-labelled

flow graphs, respectively.
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Example: A Node-Labelled Flow Graph

a := 19+b

x := a+b

2
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e=9

s=1

a+b < 0

y := a+b

a := a+1

z := a+b

b := 2

p := a*b

a = 21
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Example: An Edge-Labelled Flow Graph
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Edge-Labelled Flow Graph after Cleaning Up
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Predecessor Nodes, Successor Nodes, Paths

Let G = (N ,E , s, e) be a flow graph, m, n be two nodes of N .

Definition 7.1.1.2 (Predecessor, Successor Nodes)
I predG (n)=df {m | (m, n) ∈ E} denotes the set of prede-

cessor nodes of n.

I succG (n)=df {m | (n,m) ∈ E} denotes the set of succes-
sor nodes of n.

Definition 7.1.1.3 (Paths)
I A sequence of edges 〈(n1,m1), (n2,m2), . . . , (nk ,mk)〉

with mi = ni+1, 1 ≤ i < k is called a path from n1 to mk .

I PG [m, n] denotes the set of all paths from m to n.

Note, if G is obvious from the context, we drop index G and
write pred , succ , and P instead of predG , succG , and PG , resp.
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In the following

...we consider

I edge-labelled

flow graphs, which are pragmatically advantageous by requi-
ring less notational overhead. Moreover, we do not evaluate
tests in order to avoid (some) undecidabilities, leading us to
so-called non-deterministic flow graphs.

Note, advantages and disadvantages of particular flow graph
variants as program representations are discussed in

I Appendix B: Pragmatics of Flow Graph Representations
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Partially Ordered Sets, Complete Lattices

Definition 7.1.2.1 (Partially Ordered Set)

Let S be a set and R ⊆ S × S be a relation on S . Then (S ,R)
is called a partially ordered set (dtsch. partiell geordnete Men-
ge) iff R is reflexive, transitive, and anti-symmetric.

Definition 7.1.2.2 (Lattice, Complete Lattice)

Let (P ,v) be a partially ordered set. Then (P ,v) is a

I lattice (dtsch. Verband), if every finite nonempty subset
P ′ of P has a least upper bound and a greatest lower
bound in P .

I complete lattice (dtsch. vollständiger Verband), if every
subset P ′ of P has a least upper bound and a greatest
lower bound in P .
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Examples: Partially Ordered Sets and Lattices
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Examples: Complete Lattices

{a,b} {b,c}{a,c}

 {b}{a} {c}

{}

{a,b,c}
a)

True

False

0 1 2 3−3 −2 −1 ......

c) d)

b)

b

d

a

e

c
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Notions, Notations for Lattices

Let (C ,v) be a complete lattice, C ′ ⊆ C a subset of C . Then

I
d

C ′ denotes the greatest lower bound of C ′.

I
⊔

C ′ denotes the least upper bound of C ′.

I
d

C =
⊔
∅ is the least element of C , denoted by ⊥.

I
⊔

C =
d
∅ is the greatest element of C , denoted by >.

This gives rise to write a complete lattice as a six-tuple

I Ĉ= (C,v,u,t,⊥,>)

where u, t, ⊥, and > are read as meet, join, bottom, and
top, respectively.
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Descending, Ascending Chain Condition

Definition 7.1.2.3 (Chain Condition)

Let Ĉ= (C,v,u,t,⊥,>) be a lattice. Ĉ satisfies the

1. descending chain condition (dtsch. absteigende Kettenbe-
dingung), if every descending chain gets stationary, i.e.,
for every chain c1 w c2 w . . . w cn w . . . there is an index
m ≥ 1 with cm = cm+j for all j ∈ IN.

2. ascending chain condition (dtsch.aufsteigende Kettenbe-
dingung), if every ascending chain gets stationary, i.e., for
every chain c1 v c2 v . . . v cn v . . . there is an index
m ≥ 1 with cm = cm+j for all j ∈ IN.
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Monotonicity, Distributivity, and Additivity
...are important properties of functions on lattices:

Definition 7.1.2.4 (Monotonicity)

Let Ĉ= (C,v,u,t,⊥,>) be a complete lattice and f : C→C
be a function on C. Then f is called

I monotonic iff ∀ c , c ′ ∈ C. c v c ′ ⇒ f (c) v f (c ′)
(Preservation of the order of elements)

Definition 7.1.2.5 (Distributivity, Additivity)

Let Ĉ= (C,v,u,t,⊥,>) be a complete lattice and f : C→C
be a function on C. Then f is called

I distributive iff ∀ ∅ 6= C ′ ⊆ C. f (
d

C ′) =
d
{f (c) | c ∈ C ′}

(Preservation of greatest lower bounds)

I additive iff ∀ ∅ 6= C ′ ⊆ C. f (
⊔

C ′) =
⊔
{f (c) | c ∈ C ′}

(Preservation of least upper bounds)
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Monotonicity

...characterized in terms of the preservation of greatest lower
and least upper bounds:

Lemma 7.1.2.6

Let Ĉ= (C,v,u,t,⊥,>) be a complete lattice, f : C→C a
function on C. Then:

f is monotonic

⇐⇒ ∀∅ 6= C ′ ⊆ C. f (
l

C ′) v
l
{f (c) | c ∈ C ′}

⇐⇒ ∀∅ 6= C ′ ⊆ C. f (
⊔

C ′) w
⊔
{f (c) | c ∈ C ′}
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Relating Monotonicity, Distributivity, Additivity

Let Ĉ= (C,v,u,t,⊥,>) be a complete lattice, f : C→C a
function on C.

Lemma 7.1.2.7
1. f is distributive iff f is additive.

2. f is monotonic if f is distributive or additive.
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Local DFA Semantics

Let G = (N ,E , s, e) be an edge-labelled flow graph.

Definition 7.2.1 (Local DFA Semantics)

A local abstract DFA semanctics for G is a map

[[ ]] : E→ (C→C)

where Ĉ= (C,v,u,t,⊥,>) is a complete lattice.

Note: The elements of Ĉ are the mathematical objects mode-
ling and representing the data flow information of interest.
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DFA Specification

Let G = (N ,E , s, e) be an edge-labelled flow graph.

Definition 7.3.1 (DFA Specification)

A DFA specification for G is a triple SG = (Ĉ, [[ ]], cs) with

I Ĉ= (C,v,u,t,⊥,>) a complete lattice.

I [[ ]] : E→ (C→C) a local abstract semantics.

I cs ∈ C an initial information (or start assertion).

Definition 7.3.2 (DFA Problem)

A DFA specification SG = (Ĉ, [[ ]], cs) defines a DFA problem
for G .
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Note

Let SG = (Ĉ, [[ ]], cs) be a DFA specification for G. Then:

I The elements of C represent the data flow information
of interest.

I The functions [[ e ]], e ∈ E , abstract the concrete seman-
tics of instructions to the level of the analysis.

I cs ∈ C is the data flow information assumed to be valid at
the startnode s of G .

Overall, this gives rise to call

I Ĉ a DFA lattice.

I [[ ]] a local abstract DFA semantics (or DFA semantics).

I [[ e ]], e ∈ E , a local semantic DFA function (or DFA func-
tion).

I cs ∈ C a DFA start assertion.
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General Convention

...for DFA lattices:

I greater in the lattice means better, more precise
information!

(Note: In the Theory of Abstract Interpretation, this
convention is made oppositely (cf. Chapter 15.2)
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Example: Availability of a Term t (1)
...a term t is available at a program point n, if t is computed
along every path p from s to n without that any operand of t
is modified after the last computation of t on p.

DFA Specification for the Availability of a Term t:

I DFA lattice
Ĉ= (C,u,t,v,⊥,>) =df

(IB, ∧ , ∨ ,≤, falsch,wahr) = ÎB

I DFA semantics
[[ ]]t

av : E→ ( IB→ IB ) where

∀ e ∈ E . ∀ b ∈ IB. [[ e ]]t
av (b) =df (b∨Compt

e)∧Transpt
e

I DFA start assertion: bs ∈ IB

Overall:

I Availability Specification: Sav ,t
G = (ÎB, [[ ]]t

av , bs)
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Example: Availability of a Term t (2)

...where ÎB denotes the data flow lattice and Compt
e , Mod t

e ,
and Transpt

e three local predicates associated with edges and
their instructions:

I ÎB=df (IB, ∧ , ∨ ,≤, falsch,wahr)
...lattice of Boolean truth values: least element falsch,
greatest element wahr, falsch ≤ wahr, logical ∧ and
logical ∨ as meet and join operation, respectively.

I Compt
e ...wahr, if t is computed by the instruction at

edge e, otherwise falsch.

I Transpt
e ...wahr, if e is transparent for t (i.e., no operand

of t is assigned a new value by the instruction at edge e),
otherwise falsch.
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DFA Problems

...are practically relevant, if their underlying local DFA seman-
tics are

I monotonic

I distributive/additive

and their data flow lattices satisfy the

I descending/ascending chain condition.
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Properties of DFA Semantics, DFA Problems
Let SG =df (Ĉ, [[ ]], cs) be a DFA specification for G .

Definition 7.3.3 (Properties of DFA Semantics)

The local DFA semantics [[ ]] : E → (C → C) of SG is mono-
tonic/distributive/additive iff all DFA functions [[ e ]], e ∈ E ,
are monotonic/distributive/additive, respectively.

Definition 7.3.4 (Properties of DFA Problems)

The DFA problem specified by SG

I is monotonic/distributive/additive iff the local DFA se-
mantics [[ ]] of SG is monotonic/distributive/additive,
respectively.

I satisfies the descending/ascending chain condition iff the

DFA lattice Ĉ of SG satisfies the descending/ascending
chain condition, respectively.
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Example: Availability of a Term t (1)

Lemma 7.3.5 (DFA Functions)

∀ e ∈ E . [[ e ]]t
av =


Cstwahr if Compt

e ∧Transpt
e

IdIB if ¬Compt
e ∧ Transpt

e

Cst falsch otherwise

where

I Cstwahr, Cst falsch : IB→ IB (constant functions on IB)

Cstwahr =df λb. wahr
Cst falsch =df λb. falsch

I IdIB : IB→ IB (identity on IB)

IdIB =df λb. b
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Example: Availability of a Term t (2)

Lemma 7.3.6 (Chain Condition)

ÎB satisfies the descending and ascending chain condition.

Lemma 7.3.7 (Distributivity, Additivity)

[[ e ]]t
av , e ∈ E , is distributive and additive (and hence, also

monotonic).

Proof. Immediately with Lemma 7.3.5 and Lemma 7.1.2.7(2).

Corollary 7.3.8 (Availability of a Term t)

The DFA problem specified by Sav ,t
G = (ÎB, [[ ]]t

av , bs) is distri-
butive and additive and satisfies the descending and ascending
chain condition.
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Towards a Global Abstract Semantics
...by globalizing a local abstract semantics for instructions to a
global abstract semantics for flow graphs.

This leads to the nondeterministic operational

I collecting (CS) semantics

from which we derive two deterministic operational variants:

I The meet over all paths (MOP) semantics
I The join over all paths (JOP) semantics

...together with two computational deterministic denotational
variants:

I The maximum fixed point (MaxFP) semantics
I The minimum fixed point (MinFP) semantics

which induce computation procedures for computing or ap-
proximating their operational counterparts.
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Chapter 7.4

Operational Global DFA Semantics

43/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

Chap. 10

Appendices

A

B

Chapter 7.4.1

Collecting Semantics
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Extending DFA Functions from Edges to Paths

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Definition 7.4.1.1 (Extending [[ ]] to Paths)

The DFA semantics [[ e ]], e ∈ E , is extended from edges onto
paths p = 〈e1, e2, . . . , eq〉 by defining:

[[ p ]] =df

{
IdC if λp < 1
[[ 〈e2, . . . , eq〉 ]] ◦ [[ e1 ]] otherwise

where IdC : C→C denotes the identity on C, i.e., IdC =λc . c .

Illustrating the extension of [[ ]] from edges to paths:

c0 ( ) = ( ) = ( ) = ( ) = ( ) =c1 c3 c4c2 c
5

e 1 e 2 e 3 e 4 e 5
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The Collecting DFA Semantics

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Definition 7.4.1.2 (Collecting DFA Semantics)

The (nondeterministic) collecting DFA semantics (or global
abstract semantics) induced by SG is defined by:

[[ ]]CS
SG

: N→P(C)

∀ n ∈ N . [[ n ]]CS
SG

=df { [[ p ]](cs) | p ∈ P[s, n] }

where P denotes the powerset operator.

Note:
[[ s ]]CS

SG
= {cs}
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Illustrating the Collecting DFA Semantics

{c
1
}

n

e

s

...

...{c
2
} {c

k
}
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Note

...if π is a While program, G its flow graph representation,
and SG =df (Ĉ, [[ ]],⊥) a DFA specification for G wrt the start
assertion ⊥, then the global DFA semantics at the program
end node e

[[ e ]]CS
SG

= { [[ p ]](⊥) | p ∈ P[s, e] }

can be considered the nondeterministic abstract counterpart of
the deterministic While semantics of π for Σ:

[[ π ]]While(Σ) = { [[ π ]]While(σ) |σ ∈ Σ}
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The Meet Over All Paths (MOP) Semantics

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Definition 7.4.2.1 (MOP Semantics)

The (deterministic) MOP semantics of SG is defined by:

[[ ]]MOP
SG

: N→C

∀ n ∈ N . [[ n ]]MOP
SG

=df

l
[[ n ]]CS

SG

=
l
{ [[ p ]](cs) | p ∈ P[s, n] }

Note:
d

[[ n ]]CS
SG

and hence [[ n ]]MOP
SG

, n ∈ N , exists, since Ĉ is a
complete lattice.
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Illustrating the MOP Semantics

n

c
1

c
2 k

c...

e

s

...

...

51/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

Chap. 10

Appendices

A

B

Chapter 7.4.3

The Join Over All Paths Semantics
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The Join Over All Paths (JOP) Semantics

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Definition 7.4.3.1 (JOP Semantics)

The (deterministic) JOP semantics of SG is defined by:

[[ ]]JOP
SG

: N→C

∀ n ∈ N . [[ n ]]JOP
SG

=df

⊔
[[ n ]]CS

SG

=
⊔
{ [[ p ]](cs) | p ∈ P[s, n] }

Note:
⊔

[[ n ]]CS
SG

and hence [[ n ]]JOP
SG

, n ∈ N , exists, since Ĉ is a
complete lattice.
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Illustrating the JOP Semantics

c
1

c
2 k

c...
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Chapter 7.4.4

MOP and JOP Semantics as Specifying
Solutions of DFA Problems
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As illustrated by the Figures
...of Chapter 7.4.2 and 7.4.3, the MOP and the JOP semantics
bound for program point n the DFA information

I possible at n wrt SG :

Independently of the path p ∈ P[s, n] along which node n is
reached, the information provided by p at n is

I at least as large as the MOP semantics at n (it can not
be worse, only better):

[[ p ]](cs) w [[ n ]]MOP
SG

I at most as large as the JOP semantics at n (it can not be
better, only worse):

[[ p ]](cs) v [[ n ]]JOP
SG

This means:

∀ p ∈ P[s, n]. [[ n ]]MOP
SG
v [[ p ]](cs) v [[ n ]]JOP

SG
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In other words

...the MOP and the JOP semantics provide for every program
point n the DFA informations which are

I the best possible valid ones at n wrt SG

in the following sense:

I [[ n ]]MOP
SG

is the minimum information valid at n (it can not

be worse, only better): ∀ p ∈ P[s, n]. [[ n ]]MOP
SG
v [[ p ]](cs).

I [[ n ]]JOP
SG

is the maximum information valid at n (it can not

be better, only worse): ∀ p ∈ P[s, n]. [[ n ]]JOP
SG
w [[ p ]](cs).

This means, the MOP and JOP semantics ensure the absence
of ‘surprises:’ Independently of the path p ∈ P[s, n] taken
along which node n is reached, we always have:

[[ n ]]MOP
SG
v [[ p ]](cs) v [[ n ]]JOP

SG
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The Specifying Solutions of a DFA Problem

This gives rise to the following definition:

Definition 7.4.4.1 (Specifying Solutions of a DFA P.)

The MOP and the JOP semantics of a flow graph define the
specifying solutions of a DFA problem, its so-called MOP and
JOP solutions.
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Conservative DFA Algorithms

Definition 7.4.4.2 (Conservative DFA Algorithm)

A DFA algorithm A is

I MOP conservative

I JOP conservative

for SG , if A terminates with

I a lower approximation of the MOP semantics

I an upper approximation of the JOP semantics

of SG , respectively.
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Tight DFA Algorithms

Definition 7.4.4.3 (Tight DFA Algorithm)

A DFA algorithm A is

I MOP tight

I JOP tight

for SG , if A terminates with

I the MOP semantics

I the JOP semantics

of SG , respectively.
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Chapter 7.4.5

Undecidability of MOP and JOP Semantics
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Unfortunately

...the definitions of the MOP and JOP semantics do not direct-
ly induce

I effective computation procedures

for computing them (think of loops in a non-deterministically
interpreted flow graph causing the number of paths reaching a
node to be infinite).

Even worse, the MOP and JOP semantics of a flow graph are

I not decidable!
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Undecidability of the MOP Semantics

Theorem 7.4.5.1 (Undecidability of the MOP Sem.)

There is no algorithm A such that:

I The input of A is
I a DFA specification SG = (Ĉ, [[ ]], cs).

I algorithms for computing of the meet, the equality test,
and the application of monotonic functions on Ĉ.

I The output of A is the MOP semantics of SG .

(John B. Kam, Jeffrey D. Ullman. Monotone Data Flow

Analysis Frameworks. Acta Informatica 7:305-317, 1977)
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Undecidability of the JOP Semantics

Corollary 7.4.5.2 (Undecidability of the JOP Sem.)

There is no algorithm A such that:

I The input of A is
I a DFA specification SG = (Ĉ, [[ ]], cs).

I algorithms for the computing the meet, the equality test,
and the application of monotonic functions on Ĉ.

I The output of A is the JOP semantics of SG .
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Towards Conservative and Tight DFA Alg’s

...because of the preceding negative results we complement
the operational approach underlying the MOP and JOP se-
mantics an orthogonal denotational globalization approach of
a local abstract semantics leading to the

I Maximum fixed point (MaxFP) semantics

I Minimum fixed point (MinFP) semantics

of a flow graph, respectively.

The MaxFP and MinFP semantics are also called the

I Maximum fixed point (MaxFP) solution

I Minimum fixed point (MinFP) solution

of a DFA problem, respectively, which (under certain condi-
tions) can

I effectively be computed.
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Chapter 7.5

Denotational Global DFA Semantics
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Chapter 7.5.1

The Maximum Fixed Point Semantics
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The Maximum Fixed Point (MaxFP) Approach

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Equation System 7.5.1.1 (MaxFP Equation System)

inf (n) =

{
cs if n = sd
{ [[ (m, n) ]](inf (m)) |m ∈ pred(n) } otherwise

Illustrating the MaxFP Approach (n 6= s):

1
(m

,n)

2
(m

,n
)

k

(m
,n)

c2 ck
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2 ’ c
k’c
1’

c1 c2 ck
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c1

’ ’ ’

68/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.5.1

7.5.2

7.6

7.7

7.8

7.9

7.10

7.11

7.12

Chap. 10

Appendices

A

B

The MaxFP Semantics

Let

I ν-inf cs(n), n ∈ N

denote the greatest solution of Equation System 7.5.1.1.

Definition 7.5.1.2 (MaxFP Semantics)

The (deterministic) MaxFP semantics of SG is defined by:

[[ ]]MaxFP
SG

: N→C

∀ n ∈ N . [[ n ]]MaxFP
SG

=df ν-inf cs(n)

Note:
[[ s ]]MaxFP

SG
= cs
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Chapter 7.5.2

The Minimum Fixed Point Semantics
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The Minimum Fixed Point (MinFP) Approach

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Equation System 7.5.2.1 (MinFP Equation System)

inf (n) =

{
cs if n = s⊔
{ [[ (m, n) ]](inf (m)) |m ∈ pred(n) } otherwise

Illustrating the MinFP Approach (n 6= s):
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The MinFP Semantics

Let

I µ-inf cs(n), n ∈ N

denote the least solution of Equation System 7.5.2.1.

Definition 7.5.2.2 (MinFP Semantics)

The MinFP semantics of SG is defined by:

[[ ]]MinFP
SG

: N→C

∀ n ∈ N . [[ n ]]MinFP
SG

=df µ-inf cs(n)

Note:
[[ s ]]MinFP

SG
= cs
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Chapter 7.6

The Generic Fixed Point Algorithm
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The MaxFP and MinFP Semantics

...are practically relevant because MaxFP Equation System
7.5.1.1 and MinFP Equation System 7.5.2.1 induce a generic

I iterative computation procedure (Algorithm 7.6.1.1)

approximating their greatest and least solutions, respectively,
i.e., the MaxFP and MinFP semantics.
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The Generic Fixed Point Algorithm 7.6.1.1 (1)

Input: A DFA specification SG =df (Ĉ, [[ ]], cs).

Output: On termination of the algorithm (cf. Termination
Theorem 7.6.2.1), variable inf [n] stores the MaxFP solution of
SG at node n.

Additionally (cf. Safety Theorem 7.7.1 and Coincidence Theo-
rem 7.7.2): If [[ ]] is

I distributive: inf [n] stores

I monotonic: inf [n] stores a lower approximation of

the MOP solution of SG at node n.

Remark: The variable workset controls the iterative process.
It temporarily stores a set of nodes of G , whose annotations
have recently been changed and thus can impact the annota-
tions of their neighbouring nodes.
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The Generic Fixed Point Algorithm 7.6.1.1 (2)
( Prologue: Initializing inf and workset )
FORALL n ∈ N\{s} DO inf [n] := > OD;
inf [s] := cs;
workset := N;

( Main loop: The iterative fixed point computation )
WHILE workset 6= ∅ DO

CHOOSE m ∈ workset;
workset := workset\{m };
( Updating the annotations of all successors of node m )
FORALL n ∈ succ(m) DO

meet := [[ (m, n) ]](inf [m]) u inf [n];
IF inf [n] A meet

THEN
inf [n] := meet;
workset := workset ∪ { n }

FI
OD ESOOHC OD.
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Termination

Theorem 7.6.2.1 (Termination)

The Generic Fixed Point Algorithm 7.6.1.1 terminates w/ the

1. MaxFP semantics of SG , if

1.1 [[ ]] is monotonic

1.2 Ĉ satisfies the descending chain condition.

2. MinFP semantics of SG , if

2.1 [[ ]] is monotonic

2.2 Ĉusd satisfies the ascending chain condition, where

Ĉusd =df (C,t,u,w,>,⊥)

is lattice Ĉ= (C,u,t,v,⊥,>) put up-side down.
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The Computable Solutions of a DFA Problem

...together the Generic Fixed Point Algorithm 7.6.1.1 and Ter-
mination Theorem 7.6.2.1 give rise to the following definition:

Definition 7.6.2.2 (Computable Solutions of a DFA P.)

The MaxFP and the MinFP semantics of a flow graph define
the computable solutions of a DFA problem, its so-called
MaxFP and MinFP solutions.
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Safety and Coincidence
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MOP/MaxFP- and JOP/MinFP Semantics

...of a DFA specification and the question of their relation-
ship:

SG SG

G
S =

df
(C, ,cs

)

Solution of Solution of?

MOP Semantics

GS

MOP Solution: MaxFP Solution:

Specifying Computable

MaxFP Semantics

Solution of Solution of?
GS

Computable Specifying

MinFP Semantics

JOP Solution:MinFP Solution:

JOP Semantics

82/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

Chap. 10

Appendices

A

B

Safety

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Theorem 7.7.1 (Safety)

1. The MaxFP semantics of SG is a safe (i.e., lower) appro-
ximation of the MOP semantics of SG , i.e.,

∀ n ∈ N . [[ n ]]MaxFP
SG

v [[ n ]]MOP
SG

2. The MinFP semantics of SG is a safe (i.e., upper) appro-
ximation of the JOP semantics of SG , i.e.,

∀ n ∈ N . [[ n ]]MinFP
SG

w [[ n ]]JOP
SG

if the DFA semantics [[ ]] is monotonic.
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Coincidence

Let SG =df (Ĉ, [[ ]], cs) be a DFA specification.

Theorem 7.7.2 (Coincidence)

1. The MaxFP and the MOP semantics of SG coincide, i.e.,

∀ n ∈ N . [[ n ]]MaxFP
SG

= [[ n ]]MOP
SG

2. The MinFP and the JOP semantics of SG coincide, i.e.,

∀ n ∈ N . [[ n ]]MinFP
SG

= [[ n ]]JOP
SG

if the DFA semantics [[ ]] is distributive or additive, respective-
ly.

Recall Lemma 7.1.2.7(1): [[ ]] is distributive iff [[ ]] is additive.
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MOP/MaxFP- and JOP/MinFP Semantics

...of a DFA Specification and their relationship:

SG SG

G
S =

df
(C, ,cs

)

Solution of Solution of

MOP Semantics

S

MOP Solution:
Specifying Computable

MaxFP Semantics

Solution of Solution ofS

Computable Specifying

MinFP Semantics

JOP Solution:MinFP Solution:

JOP Semantics

G

=

additive

_

monotonic

MaxFP Solution:=

distributive

_

monotonic

G
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Conservativity of Algorithm 7.6.1.1

Corollary 7.7.3 (MOP/JOP Conservativity)

Algorithm 7.6.1.1 is

I MOP (JOP) conservative

for SG , i.e., it terminates with a lower (upper) approximation
of the MOP (JOP) semantics of SG , if

1. [[ ]] is monotonic

2. Ĉ satisfies the descending (ascending) chain condition, re-
spectively.
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Tightness of Algorithm 7.6.1.1

Corollary 7.7.4 (MOP/JOP Tightness)

Algorithm 7.6.1.1 is

I MOP (JOP) tight

for SG , i.e., it terminates with the MOP (JOP) semantics of
SG , if

1. [[ ]] is distributive (additive)

2. Ĉ satisfies the descending (ascending) chain condition

respectively.
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Soundness and Completeness
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Soundness and Completeness (1)
Analysis Scenario:

I Let φ be a program property of interest (e.g., availability
of a term, liveness of a variable, etc.).

I Let SφG be a DFA specification designed for φ.

Definition 7.8.1 (Soundness)

SφG is MOP sound (JOP sound) for φ, if, whenever the MOP

semantics (JOP semantics) of SφG indicates that φ is valid,
then φ is valid.

Definition 7.8.2 (Completeness)

SφG is MOP complete (JOP complete) for φ, if, whenever φ is

valid, then the MOP semantics (JOP semantics) of SφG indi-
cates that φ is valid.
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Soundness and Completeness (2)

Intuitively

I MOP soundness means: [[ ]]MOP
SφG

‘implies’ φ.

I MOP completeness means: φ ‘implies’ [[ ]]MOP
SφG

.

and

I JOP soundness means: φ ‘implies’ [[ ]]JOP
SφG

.

I JOP completeness means: [[ ]]JOP
SφG

‘implies’ φ.
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Soundness and Completeness (3)

Intuitively, if SφG is MOP (JOP) sound and complete for φ, this
means:

We compute

I the property of interest,

I the whole property of interest,

I and only the property of interest.

In other words, we compute

I the program property of interest accurately!
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The Framework and Toolkit View of DFA
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Data Flow Analysis: A Holistic View

...considering (intraprocedural) DFA from a holistic angle: The

I Framework and Toolkit (MOP/MaxFP) View of DFA

S
G

Computed Solution

Equivalence Optimality/Conservativity

Soundness

Completeness

3 2 1a)

Intraprocedural

DFA
Framework

Theory

Obligations:

Proof

Coincidence Theorem 

Safety Theorem 

Termination Theorem

Practice Tool Kit

MaxFP−SolutionMOP−Solution

φ

Program

Property

Intraprocedural

DFA
Specification

1b)

Effectivity

Generic

MaxFP Algorithm

Termination Theorem

C

s
c
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Data Flow Analysis in Practice

...working with framework and toolkit is a three-stage process:

The Three-Stage Process

1. Identifying a Program Property of Interest

Identify a program property of interest (e.g., availability
of a term, liveness of a variable, etc.), say φ, and define φ
formally.

2. Designing a DFA Specification

Design a DFA specification SφG = (Ĉ, [[ ]], cs) for φ.

3. Accomplishing Proof Obligations, Obtaining Guarantees

Prove a fixed set of proof obligations about the compo-
nents of SφG and the relation of its MOP (JOP) solution
and φ to obtain guarantees that its MaxFP (MinFP) solu-
tion is sound or even sound and complete for φ.
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Proof Obligations, Implied Guarantees (1)

Proof obligations and guarantees in detail:

I Proof Obligations 1a), 1b): Descending (ascending) chain

condition for Ĉ, monotonicity for [[ ]]

Guarantees:

I Effectivity: Termination of Algorithm 7.6.1.1 with the
MaxFP (MinFP) semantics of SφG .

I Conservativity: The MaxFP (MinFP) solution of SφG is
MOP (JOP) conservative.

I Proof Obligation 2): Distributivity (additivity) for [[ ]]

Guarantee:

I Tightness: The MaxFP (MinFP) semantics of SφG is
MOP (JOP) tight.
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Proof Obligations, Implied Guarantees (2)

I Proof Obligation 3): Equivalence of MOPSφG
(JOPSφG

) and

φ

Guarantees:

I Whenever the MOP solution of SφG indicates the validity
of φ, then it is valid: Soundness.

 We compute the property of interest, and only the
property of interest.

I Whenever φ is valid, this is indicated by the MOP solu-
tion of SφG : Completeness.

 We compute the whole property of interest.
I Vice versa for the JOP solution of SφG .

Guarantee of combined Soundness and Completeness:

I We compute program property φ accurately!
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Applications
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Chapter 7.10.1

Distributive DFA: Available Expressions
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Intuitively
...a term is available at a node if, no matter which path is ta-
ken from the entry of the program to that node, the term is
computed without that any of the variables occurring in it is
redefined before reaching this node.

Illustration:

e

Comp

Mod

Mod

Transp

Transp Transp

Transp

Transp

Transp

Transp

Comp
Transp

n

Mod

Transp

Transp

s s
av

Transp

...

Comp

Comp
Mod
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Availability

...we will specify the availability problem in four different vari-
ants in order to illustrate the

I usage of different lattices for DFA

I class of so-called
I bitvector
I Gen/Kill

DFA problems availability is a typical representative of.

...computing available terms is a

I canonical example of a distributive DFA problem.
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Preliminaries

Let ιe ≡ x := exp (or ιe ≡ exp) be the instruction (or the con-
dition) at edge e, t a term.

Local Predicates (for edges)

I Compt
e

...wahr, if t is computed by ιe (i.e., t is a subterm of the
right-hand side expression exp of ιe), otherwise falsch.

I Mod t
e

...wahr, if t is modified by ιe (i.e., ιe assigns a new value
to some operand of t), otherwise falsch.

I Transpt
e =df ¬Mod t

e

...wahr, if e is transparent for t (i.e., ιe does not assign a
new value to any operand of t), otherwise falsch.
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Variant 1: Fixing the Setting

...availability for a single term t.

Lattice

I ÎB =df (IB, ∧ , ∨ ,≤, falsch,wahr)
...lattice of Boolean truth values: least element falsch,
greatest element wahr, falsch ≤ wahr, logical ∧ and
logical ∨ as meet and join operation, respectively.

Utility Functions

I Constant Functions Cstwahr, Cst falsch : IB→ IB

Cstwahr =df λb. wahr
Cst falsch =df λb. falsch

I Identity IdIB : IB→ IB

IdIB =df λb. b
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Variant 1: Specifying the DFA

DFA Specification

I DFA lattice
Ĉ= (C,u,t,v,⊥,>) =df

(IB, ∧ , ∨ ,≤, falsch,wahr) = ÎB

I DFA semantics
[[ ]]t

av : E→ ( IB→ IB ) where

∀ e ∈ E ∀ b ∈ IB. [[ e ]]t
av (b) =df (b∨Compt

e)∧Transpt
e

I Start assertion: bs ∈ IB

Availability Specification for t

I Specification: Sav ,t
G = (ÎB, [[ ]]t

av , bs)
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Variant 1: Fulfilling the Proof Obligations

Lemma 7.10.1.1 (DFA Functions)

∀ e ∈ E . [[ e ]]t
av =


Cstwahr if Compt

e ∧Transpt
e

IdIB if ¬Compt
e ∧ Transpt

e

Cst falsch otherwise

Lemma 7.10.1.2 (Chain Conditions)

ÎB satisfies the descending and ascending chain condition.

Lemma 7.10.1.3 (Distributivity, Additivity)

[[ ]]t
av is distributive and additive.

Proof. Immediately with Lemma 7.10.1.1.

Corollary 7.10.1.4 (Monotonicity)

[[ ]]t
av is monotonic.
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Variant 1: Collecting the Guarantees
...on termination, tightness.

Theorem 7.10.1.5 (Termination)

Applied to Sav ,t
G = (ÎB, [[ ]]t

av , bs), Algorithm 7.6.1.1 terminates
with the MaxFP/MinFP semantics of Sav ,t

G .

Proof. Immediately with Lemma 7.10.1.2, Corollary 7.10.1.4,
and Termination Theorem 7.6.2.1.

Theorem 7.10.1.6 (Tightness)

Applied to Sav ,t
G = (ÎB, [[ ]]t

av , bs), Algorithm 7.6.1.1 is
MOP/JOP tight for Sav ,t

G (i.e., terminates with the MOP/JOP
semantics of Sav ,t

G ).

Proof. Immediately with Lemma 7.10.1.3, Coincidence Theo-
rem 7.7.2, and Termination Theorem 7.6.2.1.
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Variant 2: Fixing the Setting

...availability for a finite set of terms T .

Lattice

I P̂(T )=df (P(T ),∩,∪,⊆, ∅,T )

...power set lattice of T : least element ∅, greatest ele-
ment T , subset relation ⊆ as ordering relation, set inter-
section ∩ and set union ∪ as meet and join operation,
respectively.

106/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.10.1

7.10.2

7.11

7.12

Chap. 10

Appendices

A

B

Variant 2: Specifying the DFA

DFA Specification

I DFA lattice
Ĉ= (C,u,t,v,⊥,>) =df (P(T ),∩,∪,⊆, ∅,T ) = P̂(T )

I DFA semantics
[[ ]]T

av : E→ (P(T )→P(T ) ) where

∀ e ∈ E ∀T ′ ∈ P(T ). [[ e ]]T
av (T ′) =df

{t ∈ T | (t ∈ T ′ ∨Compt
e)∧Transpt

e}
I Start assertion: Ts ∈ P(T )

Availability Specification for T

I Specification: Sav ,T
G = (P̂(T ), [[ ]]T

av ,Ts)

107/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.10.1

7.10.2

7.11

7.12

Chap. 10

Appendices

A

B

Variant 2: Fulfilling the Proof Obligations

Lemma 7.10.1.7 (Chain Conditions)

P̂(T ) satisfies the descending and ascending chain condition.

Lemma 7.10.1.8 (Distributivity, Additivity)

[[ ]]T
av is distributive and additive.

Corollary 7.10.1.9 (Monotonicity)

[[ ]]T
av is monotonic.
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Variant 2: Collecting the Guarantees
...on termination, tightness.

Theorem 7.10.1.10 (Termination)

Applied to Sav ,T
G = (P̂(T ), [[ ]]T

av ,Ts), Algorithm 7.6.1.1 termi-

nates with the MaxFP/MinFP semantics of Sav ,T
G .

Proof. Immediately with Lemma 7.10.1.7, Corollary 7.10.1.9,
and Termination Theorem 7.6.2.1.

Theorem 7.10.1.11 (Tightness)

Applied to Sav ,T
G = (P̂(T ), [[ ]]T

av ,Ts), Algorithm 7.6.1.1 is

MOP/JOP tight for Sav ,T
G (i.e., it terminates with the

MOP/JOP semantics of Sav ,T
G ).

Proof. Immediately with Lemma 7.10.1.8, Coincidence Theo-
rem 7.7.2, and Termination Theorem 7.6.2.1.
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Variant 3: Fixing the Setting (1)

...availability for a finite set of terms T , |T |= n.

Lattice

I ÎBn=df (IBn,∧pw ,∨pw , <pw , falsch,wahr)

...n-ary cross-product lattice over IB: least element
falsch=df (falsch, . . . , falsch) ∈ IBn, greatest element
wahr=df (wahr, . . . ,wahr) ∈ IBn, ordering relation <pw

as pointwise extension of < from ÎB to ÎBn, ∧ pw and
∨ pw as pointwise extensions of logical ∧ and logical ∨
from ÎB to ÎBn as meet and join operation, respectively.
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Variant 3: Fixing the Setting (2)

Utility Functions

I ix : T →{1, . . . , n}, ix−1 : {1, . . . , n}→T

...bijective index mappings which uniquely associates
every term t ∈ T with a number in {1, . . . , n} and vice
versa.

The ix(t)th element of an element
b̄ = (b1, . . . , bix(t), . . . , bn) ∈ IBn

is the availability information for t stored in b̄.

I · ↓·: IBn→{1, . . . , n}→ IB

...projection function which yields the i th element of an
element b̄ ∈ IBn, i.e., ∀ i ∈ {1, . . . , n}. b̄ ↓i =df bi .
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Variant 3: Specifying the DFA (cross-pr. view)
DFA Specification (cross-product view (cpv))

I DFA lattice
Ĉ= (C,u,t,v,⊥,>) =df

(IBn,∧pw ,∨pw , <pw , falsch,wahr) = ÎBn

I DFA semantics
[[ ]]T

av ,cpv : E→ ( IBn→ IBn ) where

∀ e ∈ E ∀ v ∈ IBn. [[ e ]]T
av ,cpv (b̄) =df b̄′

where ∀ i ∈ {1, . . . , n}. b̄′↓i =df

(b̄↓i ∨Compix−1(i)
e )∧Transpix−1(i)

e

I Start assertion: b̄s ∈ IBn

Availability Specification for T

I Specification: Sav ,T ,cpv
G = (ÎBn, [[ ]]T

av ,cpv , b̄s)
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Variant 3: Towards the Bitvector View (1)

...as implementation of Sav ,T ,cpv
G :

I ÎBn can efficiently be implemented in terms of bitvectors
~bv = [d1, . . . , dn], di ∈ {0, 1}, 1 ≤ i ≤ n, of length n.

I Let BVn denote the set of all bitvectors of length n.

I Let ~bv [i ] = di for all ~bv = [d1, . . . , dn] ∈ BVn, 1 ≤ i ≤ n.

I Let ~0 =df [0, . . . , 0] ∈ BVn and ~1 =df [1, . . . , 1] ∈ BVn.

I Let minBV and maxBV be the bitwise minimum (‘logical
∧’) and the bitwise maximum function (‘logical ∨’) on

bitvectors, i.e., ∀ ~bv1, ~bv2 ∈ BVn ∀ i ∈ {1, . . . , n}.
I ( ~bv1 minBV ~bv2)[i ] =df min( ~bv1[i ], ~bv2[i ])
I ( ~bv1 maxBV ~bv2)[i ] =df max( ~bv1[i ], ~bv2[i ])
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Variant 3: Towards the Bitvector View (2)

Utility Functions:

I ix : T →{1, . . . , n}, ix−1 : {1, . . . , n}→T

...bijective index mappings which associate every term
t ∈ T uniquely with a number in {1, . . . , n} and vice
versa.

The ix(t)th element of a bitvector
~bv = [d1, . . . , dix(t), . . . , dn)] ∈ BVn

is the availability information for t stored in ~bv .
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Variant 3: Towards the Bitvector View (3)

...extending and adapting local predicates to bitvectors:

I
−→

CompT
e ∈ BVn

∀ i ∈ {1, . . . , n}.
−→

CompT
e [i ] =df

{
1 if Compix−1(i)

e

0 otherwise

I
−→

TranspT
e ∈ BVn

∀ i ∈ {1, . . . , n}.
−→

TranspT
e [i ] =df

{
1 if Transpix−1(i)

e

0 otherwise
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Variant 3: Specifying the DFA (bitvector view)
DFA Specification (bitvector view (bvv))

I DFA lattice
Ĉ= (C,u,t,v,⊥,>) =df

(BVn,minBV ,maxBV , <BV ,~0,~1) = B̂Vn

I DFA semantics
[[ ]]T

av ,bvv : E→ (BVn→BVn ) where

∀ e ∈ E ∀ ~bv ∈ BVn. [[ e ]]T
av ,bvv ( ~bv) =df

( ~bv maxBV
−→

CompT
e ) minBV

−→
TranspT

e

I Start assertion: ~bvs ∈ BVn

Availability Specification for T

I Specification: Sav ,T ,bvv
G = (B̂Vn, [[ ]]T

av ,bvv ,
~bvs)
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Variant 3: Fulfilling the Proof Obligations

Lemma 7.10.1.12 (Chain Conditions)

ÎBn and B̂Vn satisfy the descending and ascending chain con-
dition.

Lemma 7.10.1.13 (Distributivity, Additivity)

[[ ]]T
av ,cpv and [[ ]]T

av ,bvv are distributive and additive.

Corollary 7.10.1.14 (Monotonicity)

[[ ]]T
av ,cpv and [[ ]]T

av ,bvv are monotonic.
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Variant 3: Collecting the Guarantees (1)

...on termination.

Theorem 7.10.1.15 (Termination)

Applied to Sav ,T ,cpv
G = (ÎBn, [[ ]]T

av ,cpv , b̄s) or Sav ,T ,bvv
G = (B̂Vn,

[[ ]]T
av ,bvv ,

~bvs), Algorithm 7.6.1.1 terminates with the MaxFP/

MinFP semantics of Sav ,T ,cpv
G or Sav ,T ,bvv

G .

Proof. Immediately with Lemma 7.10.1.12, Corollary
7.10.1.14, and Termination Theorem 7.6.2.1.
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Variant 3: Collecting the Guarantees (2)
...on tightness.

Theorem 7.10.1.16 (Tightness)

Applied to Sav ,T ,cpv
G = (ÎBn, [[ ]]T

av ,cpv , b̄s) or Sav ,T ,bvv
G = (B̂Vn,

[[ ]]T
av ,bvv ,

~bvs), Algorithm 7.6.1.1 is MOP/ JOP tight for

Sav ,T ,cpv
G or Sav ,T ,bvv

G , respectively (i.e., it terminates with the

MOP/JOP semantics of Sav ,T ,cpv
G or Sav ,T ,bvv

G , respectively).

Proof. Immediately with Lemma 7.10.1.13, Coincidence Theo-
rem 7.7.2, and Termination Theorem 7.6.2.1.

Note:
I Applied to Sav ,T ,bvv

G instead of its cross-product counter-
part, Algorithm 7.6.1.1 can take advantage of the efficient
bitvector operations available on actual processors.

I This gives rise to call availability a bitvector problem.
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Variant 4: Fixing the Setting

...availability for a finite set of terms T .

Introducing Gen/Kill Predicates for edges

I GenT
e =df {t ∈ T |Compt

e ∧¬Mod t
e}

= {t ∈ T |Compt
e ∧Transpt

e}
I KillT

e =df {t ∈ T |Mod t
e}

= {t ∈ T | ¬Transpt
e}
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Variant 4: Specifying the DFA (gen/kill view)

DFA Specification (gen/kill view (gkv))

I DFA lattice
Ĉ= (C,u,t,v,⊥,>) =df (P(T ),∩,∪,⊆, ∅,T ) = P̂(T )

I DFA semantics
[[ ]]T

av ,gkv : E→ (P(T )→P(T ) ) where

∀e∈E ∀T ′∈P(T ). [[ e ]]T
av ,gkv (T ′) =df (T ′\KillTe ) ∪ GenT

e

I Start assertion: Ts ∈ P(T )

Availability Specification for T

I Specification: Sav ,T ,gkv
G = (P̂(T ), [[ ]]T

av ,gkv ,Ts)
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Variant 4: Fulfilling the Proof Obligations

Comparing

I [[ ]]T
av ,gkv : E→ (P(T )→P(T ) ) where

∀e ∈ E ∀T ′ ∈ P(T ). [[ e ]]T
av ,gkv (T ′) =df (T ′\KillT

e )∪GenT
e

with

I [[ ]]T
av : E→ (P(T )→P(T ) ) where

∀ e ∈ E ∀T ′ ∈ P(T ). [[ e ]]T
av (T ′) =df

{t ∈ T | (t ∈ T ′ ∨Compt
e)∧Transpt

e}

...we get:

Lemma 7.10.1.17 (Equality)

[[ ]]T
av = [[ ]]T

av ,gkv
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Variant 4: Collecting the Guarantees
...on termination, tightness.

Theorem 7.10.1.18 (Termination)

Applied to Sav ,T ,gkv
G = (P̂(T ), [[ ]]T

av ,gkv ,Ts), Algorithm 7.6.1.1

terminates with the MaxFP/MinFP semantics of Sav ,T ,gkv
G .

Proof. Immediately with Lemma 7.10.1.7, Lemma 7.10.1.8,
Corollary 7.10.1.9, and Termination Theorem 7.6.2.1.

Theorem 7.10.1.19 (Tightness)

Applied to Sav ,T ,gkv
G = (P̂(T ), [[ ]]T

av ,gkv ,Ts), Algorithm 7.6.1.1

is MOP/JOP tight for Sav ,T ,gkv
G (i.e., it terminates with the

MOP/JOP semantics of Sav ,T ,gkv
G ).

Proof. Immediately with Lemma 7.10.1.7, Lemma 7.10.1.8,
Coincidence Theorem 6.7.2, and Termination Theorem 7.6.2.1.
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Availability again as a Gen/Kill-Problem (1)

...specializing the generic MaxFP Equation System 7.5.1.1:

Equation System 7.5.1.1 (MaxFP Equation System)

inf (n) =

{
cs if n = sd
{ [[ (m, n) ]](inf (m)) |m ∈ pred(n) } otherwise

...for the availability problem yields:

Equation System 7.10.1.20 (Availability)

Available(n) ={
Ts if n = s⋂
{ [[ (m, n) ]]T

av ,gkv (Available(m)) |m ∈ pred(n) } otherwise
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Availability again as a Gen/Kill Problem (2)

...expanding additionally [[ ]]T
av ,gkv we get:

Equation System 7.10.1.21 (Availability)

Available(n) ={
Ts if n = s⋂
{ (Available(m)\KillT

(m,n)) ∪ GenT
(m,n) |m ∈ pred(n) } otherwise

Note: Both Equation System 7.10.1.21 and the definition of
the DFA semantics

I [[ ]]T
av ,gkv : E→ (P(T )→P(T ) ) where

∀e ∈ E ∀T ′ ∈ P(T ). [[ e ]]T
av ,gkv (T ′) =df (T ′\KillT

e )∪GenT
e

give rise to call availability a Gen/Kill problem.
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Gen/Kill (or Bitvector) Problems
...including properties like

I availability and very busyness of terms, liveness and
reaching definitions of variables, etc.

form despite their conceptual simplicity a most important class
of DFA problems with numerous applications in program opti-
mization including:

I Partially redundant expression elimination (busy/lazy
code motion)

I Strength reduction (busy/lazy strength reduction)
I Partial dead-code elimination
I Partially redundant assignment elimination
I Assignment motion
I ...

...see course notes of LVA 185.A04 Optimizing Compilers for
further details.
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Variants 1 Thru 4: Closing the Final Proof Gap

...proving soundness and completeness for the MOP view of
the availability property using Sav ,t

G (Variant 1) as example:

S
G

?

Generic

MaxFP Algorithm

Computed Solution

Termination Theorem

Completeness

Soundness

3 2 1b) 1a)

Intraprocedural

DFA
Framework

Equivalence

Theory

Obligations:

Proof
Effectivity

Termination Theorem

Practice Tool Kit

MaxFP−SolutionMOP−Solution

φ

Program

Property

Intraprocedural

DFA
Specification

Optimality

Coincidence Theorem 

C

s
c
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Recall

...informally, a term is available at a node

I if, no matter which path is taken from the entry of the
program to that node, the term is computed without that
any of the variables occurring in it is redefined before
reaching this node.

Note

I If entry of the program is replaced by entry of the proce-
dure, the informal ‘definition’ of availibility does not fore-
see the possibility of the availability of an expression at
the procedure entry itself.

I Situations where this availability is ensured by the calling
context of the procedure, are thus not captured and can
not be dealt with.
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Towards defining Availability Formally

...useful notation.

Let G = (N ,E , s, e) be a flow graph, and Predicate a predicate
defined for edges e ∈ E .

For paths p = 〈e1, . . . , eq〉 ∈ P[m, n], we define:

I pi , 1 ≤ i ≤ q, denotes the i th edge ei of p.

I p[k,l ] denotes the subpath 〈ek , . . . , el〉 of p.

I λp = q denotes the length of p, i.e., the number of edges
of p.

For predicates along paths, we define:

I Predicate∀p ⇐⇒df ∀ 1 ≤ i ≤ λp. Predicatepi

I Predicate∃p ⇐⇒df ∃ 1 ≤ i ≤ λp. Predicatepi
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Availability

...defined formally:

Definition 7.10.1.22 (Availability)

Let G = (N ,E , s, e) be a flow graph, t a term, and avs ∈ IB
the availability information for t at s ensured by the calling
context of G . Then:

Availablet(n) ⇐⇒df
avs if n = s
∀ p ∈ P[s, n]. (av t

s ∧Transpt ∀
p ) ∨

∃ i ≤ λp. Compt
pi
∧Transpt ∀

p[i ,λp ] otherwise
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Illustrating the Essence of Definition 7.10.1.22

e

Comp

Mod

Mod

Transp

Transp Transp

Transp

Transp

Transp

Transp

Comp
Transp

n

Mod

Transp

Transp

s s
av

Transp

...

Comp

Comp
Mod

131/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.10.1

7.10.2

7.11

7.12

Chap. 10

Appendices

A

B

Context Edges

...allow a simpler case-free definition of availability:

(.) = c
s

8

3 5

a > 2*z

z := a+b

x := a+b

4
7

a := a+1

6

y := a+b

a := a+b

e=9

a+b < 0

(a > 2*z)

(a+b < 0)
2

s=1

s
ctx

(s
ctx

, s)
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Using Context Edges
s

ctx

av
s

Comp =
Transp

e

Comp

Mod

Mod

Transp

Transp Transp

Transp

Transp

Transp

Transp

Comp
Transp

n

Mod

Transp

Transp

s

Transp

...

Comp

Comp
Mod

...availability can be defined without cases:

∀ n ∈ N\{sctx}. Availablet(n) ⇐⇒df

∀ p ∈ P[sctx , n]. ∃ i ≤ λp. Compt
pi
∧Transpt ∀

p[i ,λp ]
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Closing the Final Proof Gap

Theorem 7.10.1.23 (Soundness and Completeness)

Let G = (N ,E , s, e) be a flow graph, t an expression, avs ∈ IB
the availability information for t at s ensured by the calling
context of G , and let [[ ]]MOP

Sav,t
G

be the MOP semantics of G for

the DFA specification Sav ,t
G = (ÎB, [[ ]]t

av , avs, fw).

Then:
∀ n ∈ N . Availablet(n) ⇐⇒ [[ n ]]MOP

Sav,t
G
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Gap Closed: Soundness and Completeness

...for the MOP view of Sav ,t
G for term availability proven:

S
G

Generic

MaxFP Algorithm

Computed Solution

Termination Theorem

Completeness

Soundness

3 2 1b) 1a)

Intraprocedural

DFA
Framework

C

Equivalence

Theory

Obligations:

Proof
Effectivity

Termination Theorem

Practice Tool Kit

MaxFP−SolutionMOP−Solution

φ

Program

Property

Intraprocedural

DFA
Specification c

s

Coincidence Theorem 

Optimality
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Homework: Exercise 7.10.1.24

1. What does soundness and completeness mean

2. How can soundness and completeness be proven

...for the JOP view of Sav ,t
G for term availability?

136/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.10.1

7.10.2

7.11

7.12

Chap. 10

Appendices

A

B

Chapter 7.10.2

Monotonic DFA: Simple Constants
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Intuitively
...a term is a constant of value c at a node, if, no matter
which path is taken from the entry of the program to that
node, the evaluation of this term at the node yields value c .

Illustration:

x := 2

y := 3

x := 3

y := 2

x := xy−6

y := y−1

z := x  + xy

2

3

s=1

e=4 z            0

x+y            0

xy−6            0

2

y := 0

x := x+1

Example by Markus Müller-Olm, Helmut Seidl (SAS 2002)
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Constant Propagation and Folding

...terms of a constant value can be replaced at compile time
by this value effectively moving computational effort from the
run time of a program to its compile time improving its run
time performance, a so-called program optimization known as
constant propagation and folding.

Unfortunately, there is no algorithm which always succeeds in
determining if a term is a constant of some value at a node or
not.
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Undecidability of Constant Propagation

Theorem 7.10.2.1 (Undecidability, Reif&Lewis 1977)

In the arithmetic domain, the problem of discovering all text
expressions covered by constant signs is undecidable.

(John H. Reif, Harry R. Lewis. Symbolic Evaluation and
the Global Value Graph. In Conference Record of the

4th Annual SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’77), 104-118, 1977)
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Proof Sketch of Theorem 7.10.2.1 (1)

The proof of Theorem 7.10.2.1 works by reducing Hilbert’s
10th problem to the problem of discovering all text expressions
covered by constant signs:

I Hilbert’s 10th Problem

Let {x1, . . . , xk} be a set of variables, k > 5, and let
P(x1, . . . , xk) be a (multivariate) polynomial.

It is not decidable, if P(x1, . . . , xk) has a root in the
natural numbers (Matijasevic 1970).

141/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.10.1

7.10.2

7.11

7.12

Chap. 10

Appendices

A

B

Proof Sketch of Theorem 7.10.2.1 (2)
...consider program G given by its below flow graph:

...
...
x := 1

00
x  := 0

x  := 0
1

x  := 0
k

x  := x + 1

x  := x + 1

x  := x + 1
k

2

1

k

2

1

s

0

e

z :=  x  div (1+P(x  ,x  ,...,x  )  )
2

k21
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Proof Sketch of Theorem 7.10.2.1 (3)

Then: Proving the equivalence

P has no root in the natural numbers iff

z is of a constant value at node e of G

completes the proof. �
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Simple Constants

...due to this negative result, in practice simpler decidable ver-
sions of the constant propagation and folding problem are con-
sidered, one of which is the class of so-called simple constants.

Informally, a term is a simple constant at a node, if every ope-
rand of the term has a unique constant value at this node, no
matter, which path is taken from the entry of the program to
the node.
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Illustrating Simple Constants (1)

2, c 4b

2, c 4b

a 3, b 2
c 4

a 3, b,d 2, c 4

c 4a 3, b 2,

a,b

b)a)

b :=

c :=

d :=

a :=

b := a

c := a+b

d := a+1

f := a+b*c

e := a+d

f := a+

a

a := 3

2

a,b 2,

a,b 2,c := a+1

2

3

a := 2 a :=

c 4, dd := c−2

c :=

d :=

e := a+d

2

2

2

3

3
4

4

8

c)

b :=

c :=

d :=

a :=

e :=

f := a+

a :=

c :=

d :=

2

2

2

3

3
4

4

8

5

Note:

I All terms except of a + d and a + 8 are simple constants
(Figure b)).

I a + d is a constant of value 5 but not a simple constant
(Figure c)).
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Illustrating Simple Constants (2)
I None of the (none-trivial) terms in the initial example of

Müller-Olm and Seidl is a simple constant.
I a + d as well as all terms in the example of Müller-Olm

and Seidl can be detected to be constants by more so-
phisticated (and in the latter case computationally con-
siderably more complex) constant propagation algorithms
(cf. course notes of LVA 185.A04 Optimizing Compilers
for details).

...computing simple constants is

I a canonical example of a monotonic (non distributive)
DFA problem.

I an example of an incomplete analysis algorithm, which
fails to dectect many terms to be constant, which could
be detected so, but which is efficient w/ still useful results
for optimization: Trading completeness for efficiency!
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Computing Simple Constants: Preliminaries
...from data domains to DFA lattices.

Let ID be the

I data domain of interest (e.g., the set of natural numbers
IN, the set of integers ZZ, the set of Boolean truth values
IB, etc.) with a distinguished element ⊥ representing the
value undefined.

We extend ID by adding

I a new element > not in ID, i.e., > 6∈ ID

...and denote the extended domain by

I ID′ =df ID∪{>} .

Note: Assuming ⊥ an element of the underlying data domain,
whereas > not, might appear arbitrary. It is motivated by the
fact that data types implemented on machines often contain a
representation considered the undefined value of the data type.
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Constructing DFA Lattices
...given an extended data domain ID′, we construct the flat
lattice FLID′ (cf. Appendix A.4)

d d d d ddd21 3 4 5 6 7

which is the basic DFA lattice of the DFA analysis for simple
constants.

Intuitively

I > represents complete but inconsistent information.
I di , i ≥ 1, represents accurate information.
I ⊥ represents no information, the ‘empty’ information.
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The Basic DFA Lattice over ZZ

...is given by FLZZ:

0 1 2−1−2−42 42

...which is used for computing the class of simple constants
over ZZ.
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Abstract Program States: DFA States

Definition 7.10.2.2 (DFA States)

1. A DFA state is a total mapping σ : V→ ID′, which maps
every variable to a datum d ∈ ID′.

2. The set of all DFA states is defined by

Σ′=df {σ |σ : V→ ID′ }.

3. σ⊥ and σ> denote two distinguished DFA states of Σ′,
which are defined by:

∀ v ∈ V. σ⊥(v) = ⊥, σ>(v) = >.
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Illustrating a DFA State σ over ZZ

v

:σ

1

v
2

k
v

0 1 2−1−2−42 42

0 1 2−1−2−42 42

0 1 2−1−2−42 42
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Initial DFA States

...for an initial DFA state, we require that no variable is
mapped to the special value >, i.e, we require to either have
accurate information of the value of a variable, when entering
a procedure, or no information at all. We define:

Definition 7.10.2.3 (Initial DFA States over ID′)

The set of initial DFA states is defined by

Σ
′

Init =df {σ ∈ Σ′ | ∀ v ∈ V. σ(v) 6= >}
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Extending the Interpretation
...of constant and operator symbols from ID to ID′.

Definition 7.10.2.4 (Extending the Interpretation)

Let I =df ( ID, I0 ) be an interpretation of constant and opera-
tor symbols over the data domain ID.

Then I ′=df ( ID′, I ′0 ) is an interpretation over ID′ which ex-
tends I by defining

I I ′0(c) =df I0(c) for every constant symbol c ∈ C

I I ′0(op) : ID′k→ ID′ for every k-ary operator symbol op∈O:

∀ (d1, . . . , dk) ∈ ID′k . I ′0(op)(d1, . . . , dk) =df
I0(op)(d1, . . . , dk) if di =⊥ for some 1 ≤ i ≤ k , or

dj 6= >, 1 ≤ j ≤ k

> if di 6= ⊥, 1 ≤ i ≤ k , and
dj => for some 1 ≤ j ≤ k
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The Abstract Term Semantics over ID′

Definition 7.10.2.5 (Abstract Term Semantics)

The abstract semantics of terms t ∈ T is defined by the eva-
luation function

E : T→ (Σ′ → ID′)

defined by

∀t ∈ T ∀σ ∈ Σ′. E(t)(σ) =df


σ(x) if t ≡ x ∈ V
I ′0(c) if t ≡ c ∈ C
I ′0(op)(E(t1)(σ), . . . , E(tk)(σ))

if t ≡ (op, t1, . . . , tk)
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The Abstract Instruction Semantics

Definition 7.10.2.6 (Abstract Instruction Semantics)

The abstract semantics of

I an assignment instruction ι ≡ x := t is given by the state
transformer θι: Σ′ → Σ′ defined by

∀σ ∈ Σ′ ∀ y ∈ V. θι(σ)(y) =df

{
E(t)(σ) if y = x
σ(y) otherwise

I the empty instruction ι ≡ skip and a condition ι ≡ cond
is given by the identical state transformer IdΣ′ , i.e.,
θι =df IdΣ′ with IdΣ′ : Σ′ → Σ′ defined by
∀σ ∈ Σ′. IdΣ′(σ) =df σ.

Note: Executing skip and evaluating conditions do not have
side effects.
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The DFA Lattice for Simple Constants

...the set of DFA states together with the pointwise ordering
of states, vΣ′ , forms a complete lattice (cf. Appendix A.4):

∀σ, σ′ ∈ Σ′. σ vΣ′ σ
′ iff ∀ v ∈ V. σ(v) vFLID′

σ′(v)

Lemma 7.10.2.7 (Lattice of DFA States)

Σ̂′ =df (Σ′,uΣ′ ,tΣ′ ,vΣ′ , σ⊥, σ>) is a complete lattice with

I least element σ⊥,

I greatest element σ>,

I pointwise meet uΣ′ and join tΣ′ as meet and join opera-
tion, respectively.
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Simple Constants: Specifying the DFA

DFA Specification

I DFA lattice
Ĉ= (C,u,t,v,⊥,>)=df

(Σ′,uΣ′ ,tΣ′ ,vΣ′ , σ⊥, σ>) = Σ̂′

with Σ′ set of DFA states over ZZ.

I DFA semantics
[[ ]]sc : E→ ( Σ′→Σ′ ) where ∀ e ∈ E . [[ e ]]sc=df θ

′
ιe

I Start assertion: σs ∈ Σ
′

Init

Simple Constants Specification

I Specification: Ssc
G = (Σ̂′, [[ ]]sc , σs)
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Simple Constants: Fulfilling the Proof Oblig.

Lemma 7.10.2.8 (Chain Conditions)

Σ̂′ satisfies the descending and ascending chain condition.

Note: The set of variables occurring in a program is finite.

Lemma 7.10.2.9 (Monotonicity)

[[ ]]sc is monotonic.

Lemma 7.10.2.10 (Non-Distributivity/Addititivity)

[[ ]]sc is (in general) not distributive and not additive.
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Simple Constants: Collecting the Guarantees
...on termination, conservativity.

Theorem 7.10.2.11 (Termination)

Applied to Ssc
G = (Σ̂′, [[ ]]sc , σs), Algorithm 7.6.1.1 terminates

with the MaxFP/MinFP semantics of Ssc
G .

Proof. Immediately with Lemma 7.10.2.8, Lemma 7.10.2.9,
and Termination Theorem 7.6.2.1.

Theorem 7.10.2.12 (Safety, Conservativity)

Applied to Ssc
G = (Σ̂′, [[ ]]sc , σs), Algorithm 7.6.1.1 is MOP/JOP

conservative for Ssc
G (i.e., it terminates with a lower (upper)

approximation of the MOP/JOP semantics of Ssc
G , resp.).

Proof. Immediately with Lemma 7.10.2.8, Lemma 7.10.2.9,
Safety Theorem 7.7.1, and Termination Theorem 7.6.2.1.
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Simple Constants: Negative Result

...on tightness.

Theorem 7.10.2.13 (Non-Tightness)

Applied to Ssc
G = (Σ̂′, [[ ]]sc , σs), Algorithm 7.6.1.1 is in general

not MOP/JOP tight for Ssc
G (i.e., it terminates with a proper

approximation of the MOP/JOP solution of Ssc
G , respectively).

Proof. Immediately with Lemma 7.10.2.8, Lemma 7.10.2.9,
Lemma 7.10.2.10, Coincidence Theorem 7.7.2, and Termina-
tion Theorem 7.6.2.1.

In closing: The MaxFP/MinFP solutions of Ssc
G are always safe

approximations of the MOP/JOP solutions of Ssc
G . In general,

the operational MOP/JOP solutions of Ssc
G and their denota-

tional MaxFP/MinFP counterparts do not coincide.
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Simple Constants: Closing the Final Proof Gap

...proving soundness and completeness for the MOP view of
Ssc

G for the simple constant property:

S
G

?

Generic

MaxFP Algorithm

Computed Solution

Termination Theorem

Completeness

Soundness

3 2 1b) 1a)

Intraprocedural

DFA
Framework

Equivalence

Theory

Obligations:

Proof
Effectivity

Termination Theorem

Practice Tool Kit

MaxFP−SolutionMOP−Solution

φ

Program

Property

Intraprocedural

DFA
Specification

Conservativity

C

s
c

Safety Theorem 
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Simple Constants: Soundness, Completeness

...for the MOP semantics.

Theorem 7.10.2.14 (Soundness and Completeness)

The MOP semantics of Ssc
G is

1. sound and complete for variables.

2. sound but not complete for (non-trivial) terms (i.e., for
terms containing at least one (non-unary) operator sym-
bol).

...for Theorem 7.10.2.14(2), note that the MOP solution at
every node can be considered a state, i.e., a map from vari-
ables to values, allowing an evaluation of terms.
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Simple Constants: Soundness, Completeness

...for the MaxFP semantics.

Theorem 7.10.2.15 (Soundness and Completeness)

The MaxFP semantics of Ssc
G is sound but not complete (for

both variables and terms).

...see course notes of LVA 185.A04 Optimizing Compilers for
further details.
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Simple Constants: Illustrating Example

2, c 4b

2, c 4b

a 3, b 2
c 4

a 3, b,d 2, c 4

c 4a 3, b 2,

a,b

b)a)

b :=

c :=

d :=

a :=

b := a

c := a+b

d := a+1

f := a+b*c

e := a+d

f := a+

a

a := 3

2

a,b 2,

a,b 2,c := a+1

2

3

a := 2 a :=

c 4, dd := c−2

c :=

d :=

e := a+d

2

2

2

3

3
4

4

8

...all terms except of a + d and a + 8 are simple constants.

Recall: a + d is a constant of value 5 but not a simple con-
stant; a + 8 is not a constant.
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Gap Partially Closed: Soundness

...for the MOP view of Ssc
G for simple constants proven:

S
G

Generic

MaxFP Algorithm

Computed Solution

Termination Theorem

3 2 1b) 1a)

Intraprocedural

DFA
Framework

C

Soundness

Theory

Obligations:

Proof
Effectivity

Termination Theorem

Practice Tool Kit

MaxFP−SolutionMOP−Solution

φ

Program

Property

Intraprocedural

DFA
Specification c

s

Conservativity

Safety Theorem Soundness
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Homework: Exercise 7.10.2.16

1. What does soundness and completeness mean

2. How can soundness and completeness be proven

...for the JOP view of Ssc
G for the simple constants property?
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Chapter 7.11

Summary, Looking Ahead

167/444



Contents

Part III

Chap. 7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

Chap. 10

Appendices

A

B

The Framework/Toolkit View

...of data flow analysis.

S
G

Computed Solution

Equivalence Optimality/Conservativity

Soundness

Completeness

3 2 1a)

Intraprocedural

DFA
Framework

Theory

Obligations:

Proof

Coincidence Theorem 

Safety Theorem 

Termination Theorem

Practice Tool Kit

MaxFP−SolutionMOP−Solution

φ

Program

Property

Intraprocedural

DFA
Specification

1b)

Effectivity

Generic

MaxFP Algorithm

Termination Theorem

C

s
c

...reconsidered from the angle of correctness, accuracy, and
the kind of φ.
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Kinds of Properties: Must vs. May

...basically, we can distinguish two kinds of properties φ:

I Universally quantified (or must) properties φ∀: φ∀ holds
at a node n, if it holds along all paths from s to n at n.

I Existentially quantified (or may) properties φ∃: φ∃ holds
at a node n, if it holds along some paths from s to n at n.

Must-properties φ∀ are related to the

I operational MOP semantics of a program and its compu-
tational denotational counterpart, the MaxFP semantics.

May-properties φ∃ are related to the

I operational JOP semantics of a program and its computa-
tional denotational counterpart, the MinFP semantics.
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Correctness and Accuracy

...essentially, there are two places where correctness and accu-
racy issues are handled in the framework/toolkit view of DFA:

Framework/Toolkit internally: captured by

I Safety  Conservativity

I Coincidence  Tightness

...relating MaxFP/MinFP and MOP/JOP solution, respective-
ly.

Framework/Toolkit externally: captured by

I Soundness  No false positives

I Completeness  No false negatives

...relating MOP/JOP solution and φ∀/φ∃, respectively.
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Illustrating

...the places of internal and external correctness and accuracy
handling:

S
G

Computed Solution

Equivalence Optimality/Conservativity

Soundness

Completeness

3 2 1a)
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DFA
Framework

Theory
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Proof

Coincidence Theorem 
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Termination Theorem

Practice Tool Kit

MaxFP−SolutionMOP−Solution

φ

Program

Property

Intraprocedural

DFA
Specification

1b)

Effectivity

Generic

MaxFP Algorithm

Termination Theorem

sc

C
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Looking ahead: The Uniform View of DFA
...in the course of this lecture course (and of LVA 185.A04
Optimizing Compilers), we will see:

I The Framework and Toolkit View of DFA

is achievable beyond the base case of intraprocedural DFA pro-
viding a uniform view of DFA:

Equivalence EffectivityObligations:

Proof

Optimality/Conservativity

Completeness

Soundness
Coincidence Theorem 

Safety Theorem 

Theory

Interface

DFA
Framework

MOP−Solution

3 1b) 1a)2

ToolkitPractice

MaxFP−Solution

Parallel
Object−oriented

Conditional
...

Intraprocedural

Generic

MaxFP Alg.(s)

Computed Solution

Termination Theorem

Termination Theorem

Specification

DFA

Program
Property

φ

Interprocedural
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References, Further Reading
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Further Reading for Chapter 7 (1)

Textbook Representations

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.
Ullman. Compilers: Principles, Techniques, & Tools.
Addison-Wesley, 2nd edition, 2007. (Chapter 1.2, The
Structure of a Compiler; Chapter 1.4, The Science of
Building a Compiler; Chapter 1.4.2, The Science of Code
Optimization; Chapter 9.1, The Principal Sources of
Program Optimization)

Keith D. Cooper, Linda Torczon. Engineering a Compiler.
Morgan Kaufman Publishers, 2004. (Appendix B.3.1,
Graphical Intermediate Representations)

Matthew S. Hecht. Flow Analysis of Computer Programs.
Elsevier, North-Holland, 1977.
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Further Reading for Chapter 7 (2)

Uday P. Khedker, Amitabha Sanyal, Bageshri Karkare.
Data Flow Analysis: Theory and Practice. CRC Press,
2009. (Chapter 3, Theoretical Abstractions in Data Flow
Analysis; Chapter 4, General Data Flow Frameworks;
Chapter 5, Complexity of Iterative Data Flow Analysis)

Robert Morgan. Building an Optimizing Compiler. Digital
Press, 1998. (Chapter 2.3, Building the Flow Graph;
Chapter 4.7, Structure of Program Flow Graph)

Stephen S. Muchnick. Advanced Compiler Design Imple-
mentation. Morgan Kaufman Publishers, 1997. (Chapter
7, Control-Flow Analysis)
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Further Reading for Chapter 7 (3)

Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992.
(Chapter 5, Static Program Analysis)

Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: An Appetizer. Springer-V., 2007. (Chapter
7, Program Analysis; Chapter 8, More on Program Analy-
sis; Appendix B, Implementation of Program Analysis)
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Further Reading for Chapter 7 (4)
Pioneering, Groundbreaking Articles

Frances E. Allen, John A. Cocke. A Program Data Flow
Analysis Procedure. Communications of the ACM
19(3):137-147, 1976.

Susan Horwitz, Alan J. Demers, Tim Teitelbaum. An
Efficient General Iterative Algorithm for Dataflow Analysis.
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Further Reading for Chapter 7 (5)

John B. Kam, Jeffrey D. Ullman. Monotone Data Flow
Analysis Frameworks. Acta Informatica 7:305-317, 1977.

Frameworks and Toolkits

Marion Klein, Jens Knoop, Dirk Koschützki, Bernhard
Steffen. DFA&OPT-METAFrame: A Toolkit for Program
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International Conference on Tools and Algorithms for the
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Further Reading for Chapter 7 (6)

Thomas J. Marlowe, Barbara G. Ryder. Properties of Data
Flow Frameworks. Acta Informatica 28(2):121-163, 1990.

Stephen P. Masticola, Thomas J. Marlowe, Barbara G. Ry-
der. Lattice Frameworks for Multisource and Bidirectional
Data Flow Problems. ACM Transactions on Programming
Languages and Systems (TOPLAS) 17(5):777-803, 1995.

Florian Martin. PAG - An Efficient Program Analyzer Ge-
nerator. Journal of Software Tools for Technology Trans-
fer 2(1):46-67, 1998.
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Static Analysis Symposium (SAS’96), Springer-V., LNCS
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Further Reading for Chapter 7 (7)

Solving Equation Systems, Computing Fixed Points

Christian Fecht, Helmut Seidl. An Even Faster Solver for
General Systems of Equations. In Proceedings of the 3rd
Static Analysis Symposium (SAS’96), Springer-V., LNCS
1145, 189-204, 1996.

Christian Fecht, Helmut Seidl. Propagating Differences:
An Efficient New Fixpoint Algorithm for Distributive
Constraint Systems. In Proceedings of the 7th European
Symposium on Programming (ESOP’98), Springer-V.,
LNCS 1381, 90-104, 1998.

Christian Fecht, Helmut Seidl. A Faster Solver for General
Systems of Equations. Science of Computer Programming
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Further Reading for Chapter 7 (8)

Bernhard Steffen, Andreas Claßen, Marion Klein, Jens
Knoop, Tiziana Margaria. The Fixpoint Analysis Machine.
In Proceedings of the 6th International Conference on
Concurrency Theory (CONCUR’95), Springer-V., LNCS
962, 72-87, 1995.

Flow Graph Pragmatics

Larry Carter, Jeanne Ferrante, Clark Thomborson. Folklore
Confirmed: Reducible Flow Graphs are Exponentially
Larger. In Conference Record of the 30th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2003), 106-114, 2003.
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Further Reading for Chapter 7 (9)

Jens Knoop, Dirk Koschützki, Bernhard Steffen. Basic-
block Graphs: Living Dinosaurs? In Proceedings of the 7th
International Conference on Compiler Construction
(CC’98), Springer-V., LNCS 1383, 65-79, 1998.

Miscellaneous

Stephen M. Blackburn, Amer Diwan, Matthias Haus-
wirth, Peter F. Sweeny, José Nelson Amaral, Tim Brecht,
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Further Reading for Chapter 7 (10)

Martin Davis. Hilbert’s Tenth Problem is Unsolvable.
American Mathematical Monthly 80:33-269, 1973.

Martin Davis, Yuri Matijasevič, Julia Robinson. Hilbert’s
Tenth Problem. Diophantine Equations: Positive Aspects
of a Negative Solution. In Proceedings of the Symposium
on the Hilbert Problems (De Kalb, Illinois), May 1974,
American Mathematical Society, Providence, R.I.,
323-378, 1976.

William Landi. Undecidability of Static Analysis. ACM
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Further Reading for Chapter 7 (11)

Janusz Laski, William Stanley. Software Verification and
Analysis. Springer-V., 2009. (Chapter 7, What can one tell
about a Program without its Execution: Static Analysis)

Yuri V. Matijasevic. Enumerable Sets are Diophantine (In
Russian). Dodl. Akad. Nauk SSSR 191, 279-282, 1970.

Yuri V. Matijasevič. On Recursive Unsolvability of Hil-
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national Congress on Logic, Methodology and Philosophy
of Science (Bucharest 1971), North-Holland, Amsterdam,
89-110, 1973.

Yuri V. Matijasevic. What Should We Do Having Proved a
Decision Problem to be Unsolvable? Algorithms in Modern
Mathematics and Computer Science 1979:441-448, 1979.
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Further Reading for Chapter 7 (12)

Yuri V. Matijasevic. Hilbert’s Tenth Problem. MIT Press,
1993.

Markus Müller-Olm, Helmut Seidl. Polynomial Constants
are Decidable. In Proceedings of the 9th Static Analysis
Symposium (SAS 2002), Springer-V., LNCS 2477, 4-19,
2002.
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Strongest Post-Condition View in PV and PA
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Weakest Pre-Condition View in PV and PA
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Appendix A

Mathematical Foundations
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Relations
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Relations

Let Mi , 1 ≤ i ≤ k , be sets.

Definition A.1.1 (k-ary Relation)

A (k-ary) relation is a set R of ordered tuples of elements of
M1, . . . ,Mk , i.e., R ⊆ M1 × . . .×Mk is a subset of the car-
tesian product of the sets Mi , 1 ≤ i ≤ k .

Examples

I ∅ is the smallest relation on M1 × . . .×Mk .

I M1 × . . .×Mk is the biggest relation on M1 × . . .×Mk .
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Binary Relations

Let M , N be sets.

Definition A.1.2 (Binary Relation)

A (binary) relation is a set R of ordered pairs of elements of
M and N , i.e., R is a subset of the cartesian product of M and
N , R ⊆ M × N , called a relation from M to N .

Examples

I ∅ is the smallest relation from M to N .

I M × N is the biggest relation from M to N .

Note

I If R is a relation from M to N , it is common to write
m R n, R(m, n), or R m n instead of (m, n) ∈ R .
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Between, On

Definition A.1.3 (Between, On)

A relation R from M to N is called a relation between M and
N (or a relation on M × N).

If M equals N , then R is called a relation on M , in symbols:
(M ,R).

194/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

A.1

A.2

A.3

A.4

A.5

A.6

A.7

B

Domain and Range of a Binary Relation

Definition A.1.4 (Domain and Range)

Let R be a relation from M to N .

The sets

I dom(R) =df {m | ∃ n ∈ N . (m, n) ∈ R}
I ran(R) =df {n | ∃m ∈ M . (m, n) ∈ R}

are called the domain and the range of R , respectively.
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Properties of Relations on a Set M

Definition A.1.5 (Properties of Relations on M)

A relation R on a set M is called

I reflexive iff ∀m ∈ M . m R m

I irreflexive iff ∀m ∈ M . ¬m R m

I transitive iff ∀m, n, p ∈ M . m R n ∧ n R p ⇒ m R p

I intransitive iff ∀m, n, p ∈ M . m R n ∧ n R p ⇒ ¬m R p

I symmetric iff ∀m, n ∈ M . m R n ⇐⇒ n R m

I antisymmetric iff ∀m, n ∈ M . m R n ∧ n R m ⇒ m = n

I asymmetric iff ∀m, n ∈ M . m R n ⇒ ¬n R m

I linear iff ∀m, n ∈ M . m R n ∨ n R m ∨ m = n

I total iff ∀m, n ∈ M . m R n ∨ n R m
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(Anti-) Example

Let G = (N ,E , s ≡ 1, e ≡ 7) be the below (flow) graph, and
let R be the relation ‘· is linked to · via a (directed) edge’ on
N of G (e.g., node 4 is linked to node 6 but not vice versa).

1

2 3

4

5 6

7

The relation R is not reflexive, not irreflexive, not transitive,
not intransive, not symmetric, not antisymmetric, not asym-
metric, not linear, and not total.
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Equivalence Relation

Let R be a relation on M .

Definition A.1.6 (Equivalence Relation)

R is an equivalence relation (or equivalence) iff R is reflexive,
transitive, and symmetric.
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Exercise A.1.7
Let | denote the divisibility relation on the set of natural num-
bers IN0, i.e., the relation ‘· divides ·’ (w/out remainder),
e.g. 5 | 35.

Prove or disprove: The divisibility relation | on IN0 is

1. reflexive
2. irreflexive
3. transitive
4. intransitive
5. symmetric
6. antisymmetric
7. asymmetric
8. linear
9. total

10. equivalence (relation)

Proof or counterexample.
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A.2.1

Pre-Orders, Partial Orders, and More
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Ordered Sets

Let R be a relation on M .

Definition A.2.1.1 (Pre-Order)

R is a pre-order (or quasi-order) iff R is reflexive and transitive.

Definition A.2.1.2 (Partial Order)

R is a partial order (or poset or order) iff R is reflexive, tran-
sitive, and antisymmetric.

Definition A.2.1.3 (Strict Partial Order)

R is a strict partial order iff R is asymmetric and transitive.
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Examples of Ordered Sets
Pre-order (reflexive, transitive)

I The relation ⇒ on logical formulas.

Partial order (reflexive, transitive, antisymmetric)

I The relations =, ≤ and ≥ on IN.
I The relation m | n (m is a divisor of n) on IN.

Strict partial order (asymmetric, transitive)

I The relations < and > on IN.
I The relations ⊂ and ⊃ on sets.

Equivalence relation (reflexive, transitive, symmetric)

I The relation ⇐⇒ on logical formulas.
I The relation ‘have the same prime number divisors’ on IN.
I The relation ‘are citizens of the same country’ on people.

203/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

A.1

A.2

A.2.1

A.2.2

A.2.3

A.2.4

A.2.5

A.2.6

A.2.7

A.2.8

A.3

A.4

A.5

A.6

A.7

B

Note

I An antisymmetric pre-order is a partial order; a symmetric
pre-order is an equivalence relation.

I For convenience, also the pair (M ,R) is called a pre-order,
partial order, and strict partial order, respectively.

I More accurately, we could speak of the pair (M ,R) as of
a set M which is pre-ordered, partially ordered, and strict-
ly partially ordered by R , respectively.

I Synonymously, we also speak of M as a pre-ordered, par-
tially ordered, and a strictly partially ordered set, respec-
tively, or of M as a set which is equipped with a pre-order,
partial order and strict partial order, respectively.

I On any set, the equality relation = is a partial order,
called the discrete (partial) order.
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The Strict Part of an Ordering

Let v be a pre-order (reflexive, transitive) on P .

Definition A.2.1.4 (Strict Part of v)

The relation @ on P defined by

∀ p, q ∈ P . p @ q ⇐⇒df p v q ∧ p 6= q

is called the strict part of v.

Corollary A.2.1.5 (Strict Partial Order)

Let (P ,v) be a partial order, let @ be the strict part of v.

Then: (P ,@) is a strict partial order.
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Useful Results

Let @ be a strict partial order (asymmetric, transitive) on P .

Lemma A.2.1.6
The relation @ is irreflexive.

Lemma A.2.1.7
The pair (P ,v), where v is defined by

∀ p, q ∈ P . p v q ⇐⇒df p @ q ∨ p = q

is a partial order.
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Induced (or Inherited) Partial Order

Definition A.2.1.8 (Induced Partial Order)

Let (P ,vP) be a partially ordered set, let Q ⊆ P be a subset
of P , and let vQ be the relation on Q defined by

∀ q, r ∈ Q. q vQ r ⇐⇒df q vP r

Then: vQ is called the induced partial order on Q (or the in-
herited order from P on Q).
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Exercise A.2.1.9

Let | denote the divisibility relation on the set of natural num-
bers IN0, i.e., the relation ‘· divides ·’ (w/out remainder),
e.g. 5 | 35.

Prove or disprove: The divisibility relation | on IN0 is a

1. pre-order

2. partial order

3. strict partial order

4. equivalence (relation)

Proof or counterexample.
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A.2.2

Hasse Diagrams
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Hasse Diagrams

...are a sparse graphical representation of partial orders.

6

4 5

2 3

1

The links of a Hasse diagram

I are read from below to above (lower means smaller).

I represent the relation R of ‘· is an immediate predecessor
of ·’ defined by
p R q ⇐⇒df p @ q ∧ 6∃ r ∈ P . p @ r @ q
of a partial order (P ,v), where @ is the strict part of v.
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Reading Hasse Diagrams

The Hasse diagram representation of a partial order

I omits links which express reflexive and transitive relations
explicitly

I focuses on the ‘immediate predecessor’ relation.

The representation of a partial order by its Hasse diagram

I is sparse and thus economical (in the number of links).

I while preserving all relevant information of the partial
order it represents:
I p v q ∧ p = q (reflexivity): trivially represented (just

without an explicit link)
I p v q ∧ p 6= q (transitivity): represented by ascending

paths (with at least one link) from p to q.
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Exercise A.2.2.1

Which of the below diagrams are Hasse diagrams representing
a partial order?

1

1

32

21

1

2

3

1

21 3

1

2

f)a)

{ }

b)

h)g)

1 2

3

d) e)

i)

2

4

c)

j)

6

4 5

2 3

1
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Exercise A.2.2.2

Let | denote the divisibility relation on the set of natural num-
bers IN0, i.e., the relation ‘· divides ·’ (w/out remainder),
e.g. 5 | 35.

Draw an expressive section of the Hasse diagram of the divisi-
bility relation | on IN0.
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A.2.3

Bounds and Extremal Elements
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Bounds in Pre-Orders

Definition A.2.3.1 (Bounds in Pre-Orders)

Let (Q,v) be a pre-order, let q ∈ Q and Q ′ ⊆ Q.

q is called a

I lower bound of Q ′, in signs: q v Q ′, if ∀ q′ ∈ Q ′. q v q′

I upper bound of Q ′, in signs: Q ′ v q, if ∀ q′ ∈ Q ′. q′ v q

I greatest lower bound (glb) (or infimum) of Q ′, in signs:d
Q ′, if q is a lower bound of Q ′ and for every other

lower bound q̂ of Q ′ holds: q̂ v q.

I least upper bound (lub) (or supremum) of Q ′, in signs:⊔
Q ′, if q is an upper bound of Q ′ and for every other

upper bound q̂ of Q ′ holds: q v q̂.
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Extremal Elements in Pre-Orders

Definition A.2.3.2 (Extremal Elements in Pre-Ord’s)

Let (Q,v) be a pre-order, let @ be the strict part of v, and
let Q ′ ⊆ Q and q ∈ Q ′.

q is called a

I minimal element of Q ′, if there is no q′ ∈ Q ′ with q′ @ q.

I maximal element of Q ′, if there is no q′ ∈ Q ′ with q @ q′.

I least (or minimum) element of Q ′, if q v Q ′.

I greatest (or maximum) element of Q ′, if Q ′ v q.

Note: Least and greatest elements of Q itself are usually deno-
ted by ⊥ and > (bottom, top (in German: Tief, Hoch)), re-
spectively, if they exist. Least (greatest) elements of Q are
always minimal (maximal) elements of Q.
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Existence and Uniqueness

...of bounds and extremal elements in partially ordered sets.

Let (P ,v) be a partial order, and let Q ⊆ P be a subset of P .

Lemma A.2.3.3 (lub/glb: Unique if Existent)

Least upper bounds, greatest lower bounds, least elements,
and greatest elements in Q are unique, if they exist.

Lemma A.2.3.4 (Minimal/Maximal El.: Not Unique)

Minimal and maximal elements in Q are usually not unique.

Note: Lemma A.2.3.3 suggests considering
⊔

and
d

partial
maps

⊔
,
d

: P(P)→P from the powerset P(P) of P to P .
Lemma A.2.3.3 does not hold for pre-orders.
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Characterization of Least, Greatest Elements

...in terms of infima and suprema of sets.

Let (P ,v) be a partial order.

Lemma A.2.3.5 (Characterization of ⊥ and >)

The least element ⊥ and the greatest element > of P are gi-
ven by the supremum and the infimum of the empty set, and
the infimum and the supremum of P , respectively, i.e.,

⊥=
⊔
∅ =

l
P and > =

l
∅=

⊔
P

if they exist.
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Lower and Upper Bound Sets

Considering
⊔

and
d

partial functions
⊔
,
d

: P(P)→P on
the powerset of a partial order (P ,v) suggests introducing
two further maps LB ,UB : P(P)→P(P) on P(P):

Definition A.2.3.6 (Lower and Upper Bound Sets)

Let (P ,v) be a partial order. Then:

LB ,UB : P(P)→P(P) denote two maps, which map a subset
Q ⊆ P to the set of its lower bounds and upper bounds,
respectively:

1. ∀Q ⊆ P . LB(Q) =df {lb ∈ P | lb v Q}
2. ∀Q ⊆ P . UB(Q) =df {ub ∈ P |Q v ub}
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Properties of Lower and Upper Bound Sets

Lemma A.2.3.7
Let (P ,v) be a partial order, and let Q ⊆ P . Then:⊔

Q =
l

UB(Q) and
l

Q =
⊔

LB(Q)

if the supremum and the infimum of Q exist.

Lemma A.2.3.8
Let (P ,v) be a partial order, and let Q,Q1,Q2 ⊆ P . Then:

1. Q1 ⊆ Q2 ⇒ LB(Q1) ⊇ LB(Q2) ∧ UB(Q1) ⊇ UB(Q2)

2. UB(LB(UB(Q))) = UB(Q)

3. LB(UB(LB(Q))) = LB(Q)

Note: Lemma A.2.3.8(1) shows that LB and UB are antitonic
maps (cf. Chapter A.2.7).
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Exercise A.2.3.9

Which of the elements of the below diagrams are minimal,
maximal, least or greatest?

1

1

32

21
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2

3

1

21 3
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2

f)a)

{ }

b)

h)g)

1 2

3

d) e)

i)
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c)

j)

6

4 5

2 3

1
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Exercise A.2.3.10

Let | denote the divisibility relation on the set of natural num-
bers IN0, i.e., the relation ‘· divides ·’ (w/out remainder),
e.g. 5 | 35.

Write down the sets of elements of IN0, which are

1. minimal

2. maximal

3. least

4. greatest

wrt the divisibility relation | on IN0.
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A.2.4

Noetherian and Artinian Orders
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Noetherian and Artinian Orders

Let (P ,v) be a partial order.

Definition A.2.4.1 (Noetherian Order)

(P ,v) is called a Noetherian order, if every non-empty subset
∅ 6= Q ⊆ P contains a minimal element.

Definition A.2.4.2 (Artinian Order)

(P ,v) is called an Artinian order, if the dual order (P ,w) of
(P ,v) is a Noetherian order.

Lemma A.2.4.3
(P ,v) is an Artinian order iff every non-empty subset
∅ 6= Q ⊆ P contains a maximal element.
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Well-founded Orders

Let (P ,v) be a partial order.

Definition A.2.4.4 (Well-founded Order)

(P ,v) is called a well-founded order, if (P ,v) is a Noetherian
order and totally ordered.

Lemma A.2.4.5
(P ,v) is a well-founded order iff every non-empty subset
∅ 6= Q ⊆ P contains a least element.
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Noetherian Induction

Theorem A.2.4.6 (Noetherian Induction)

Let (N ,v) be a Noetherian order, let Nmin ⊆ N be the set of
minimal elements of N , and let φ : N→ IB be a predicate on
N . Then:

If

1. ∀ n ∈ Nmin. φ(n) (Induction base)

2. ∀ n ∈ N\Nmin. (∀m @ n. φ(m)) ⇒ φ(n) (Induction step)

then:
∀ n ∈ N . φ(n)
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A.2.5

Chains
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Chains, Antichains
Let (P ,v) be a partial order.

Definition A.2.5.1 (Chain)

A set C ⊆ P is called a chain, if the elements of C are totally
ordered, i.e., ∀ c1, c2 ∈ C . c1 v c2 ∨ c2 v c1.

Definition A.2.5.2 (Antichain)

A set C ⊆ P is called an antichain, if
∀ c1, c2 ∈ C . c1 v c2 ⇒ c1 = c2.

Definition A.2.5.3 (Finite, Infinite (Anti-) Chain)

Let C ⊆ P be a chain or an antichain. C is called finite, if the
number of its elements is finite; C is called infinite otherwise.

Note: Any set P may be converted into an antichain by giving
it the discrete order: (P ,=).
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Ascending Chains, Descending Chains

Definition A.2.5.4 (Ascending, Descending Chain)

Let C ⊆ P be a chain. C given in the form of

I C = {c0 v c1 v c2 v . . .}
I C = {c0 w c1 w c2 w . . .}

is called an ascending chain and descending chain, respectively.
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Examples of Chains

The set

I S =df {n ∈ IN | n even} is a chain in IN.

I S =df {z ∈ ZZ | z odd} is a chain in ZZ.

I S =df { {k ∈ IN | k < n} | n ∈ IN} is a chain in the
powerset P(IN) of IN.

Note: A chain can always be given in the form of an ascending
or descending chain.

I {0 ≤ 2 ≤ 4 ≤ 6 ≤ . . .}: IN as ascending chain.

I {. . . ≥ 6 ≥ 4 ≥ 2 ≥ 0}: IN as descending chain.

I {. . . ≤ −3 ≤ −1 ≤ 1 ≤ 3 ≤ . . .}: ZZ as ascending chain.

I {. . . ≥ 3 ≥ 1 ≥−1 ≥−3 ≥ . . .}: ZZ as descending chain.

I . . .
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Eventually Stationary Sequences

Definition A.2.5.5 (Stationary Sequence)

1. An ascending sequence of the form

p0 v p1 v p2 v . . .

is called eventually stationary, if

∃ n ∈ IN. ∀ j ∈ IN. pn+j = pn

2. A descending sequence of the form

p0 w p1 w p2 w . . .

is called eventually stationary, if

∃ n ∈ IN. ∀ j ∈ IN. pn+j = pn
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Chains and Sequences

Lemma A.2.5.6
An ascending or descending sequence of the form

p0 v p1 v p2 v . . . or p0 w p1 w p2 w . . .

1. is a finite chain iff it is eventually stationary.

2. is an infinite chain iff it is not eventually stationary.

Note the subtle difference between the notion of chains in
terms of sets

{p0 v p1 v p2 v . . .} or {p0 w p1 w p2 w . . .}

and in terms of sequences

p0 v p1 v p2 v . . . or p0 w p1 w p2 w . . .

Sequences may contain duplicates, which would correspond to
defining chains in terms of multisets.
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Ascending, Descending Chain Condition

Let (P ,v) be a partial order.

Definition A.2.5.7 (Asc./Desc. Chain Condition)

(P ,v) satisfies the

1. ascending chain condition (in German: aufsteigende
Kettenbedingung), if every ascending chain is eventually
stationary, i.e., for every chain p1 v p2 v . . . v pn v . . .
there is an index m ≥ 1 with pm = pm+j for all j ∈ IN.

2. descending chain condition (in German: absteigende
Kettenbedingung), if every descending chain is eventually
stationary, i.e., for every chain p1 w p2 w . . . w pn w . . .
there is an index m ≥ 1 with pm = pm+j for all j ∈ IN.
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Chains and Noetherian Orders

Let (P ,v) be a partial order.

Lemma A.2.5.8 (Noetherian Order)

The following statements are equivalent:

1. (P ,v) is a Noetherian order.

2. (P ,v) satisfies the descending chain condition.

3. Every chain of the form

p0 w p1 w p2 w . . .

is eventually stationary, i.e.: ∃ n ∈ IN. ∀ j ∈ IN. pn+j = pn.

4. Every chain of the form

p0 A p1 A p2 A . . .

is finite.
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Chains and Artinian Orders

Let (P ,v) be a partial order.

Lemma A.2.5.9 (Artinian Order)

The following statements are equivalent:

1. (P ,v) is an Artinian order.

2. (P ,v) satisfies the ascending chain condition.

3. Every chain of the form

p0 v p1 v p2 v . . .

is eventually stationary, i.e.: ∃ n ∈ IN. ∀ j ∈ IN. pn+j = pn.

4. Every chain of the form

p0 @ p1 @ p2 @ . . .

is finite.
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Chains and Noetherian, Artinian Orders

Let (P ,v) be a partial order.

Lemma A.2.5.10 (Noetherian and Artinian Order)

The following statements are equivalent:

1. (P ,v) is a Noetherian and an Artinian order.

2. (P ,v) satisfies the descending and the ascending chain
condition.

3. Every chain C ⊆ P is finite.
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A.2.6

Directed Sets

237/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

A.1

A.2

A.2.1

A.2.2

A.2.3

A.2.4

A.2.5

A.2.6

A.2.7

A.2.8

A.3

A.4

A.5

A.6

A.7

B

Directed Sets

Let (P ,v) be a partial order, and let ∅ 6= D ⊆ P .

Definition A.2.6.1 (Directed Set)

D (6= ∅) is called a directed set (in German: gerichtete Men-
ge), if

∀ d , e ∈ D. ∃ f ∈ D. f ∈ UB({d , e})

i.e., for any two elements d and e there is a common upper
bound of d and e in D, i.e., UB({d , e}) ∩ D 6= ∅.
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Properties of Directed Sets

Let (P ,v) be a partial order, and let D ⊆ P .

Lemma A.2.6.2
D is a directed set iff any finite subset D ′ ⊆ D has an upper
bound in D, i.e., ∃ d ∈ D. d ∈ UB(D ′), i.e., UB(D ′) ∩ D 6= ∅.

Lemma A.2.6.3
If D has a greatest element, then D is a directed set.
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Properties of Finite Directed Sets

Let (P ,v) be a partial order, and let D ⊆ P .

Corollary A.2.6.4

Let D be a finite directed set. Then:
⊔

D exists ∈ D and is
the greatest element of D.

Proof. Since D a directed set, we have:

∃ d ∈ D. d ∈ UB(D), i.e., UB(D) ∩ D 6= ∅.

This means D v d . The antisymmetry of v yields that the
element enjoying this property is unique. Thus, d is the
(unique) greatest element of D given by

⊔
D, i.e., d =

⊔
D.

Note: If D is infinite, the statement of Corollary A.2.6.4 does
usually not hold.
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Strongly Directed Sets

Let (P ,v) be a partial order with least element ⊥, and let
D ⊆ P .

Definition A.2.6.5 (Strongly Directed Set)

D 6= ∅ is called a strongly directed set (in German: stark ge-
richtete Menge), if

1. ⊥ ∈ D

2. ∀ d , e ∈ D. ∃ f ∈ D. f =
⊔
{d , e}, i.e., for any two ele-

ments d and e the supremum
⊔
{d , e} of d and e exists

in D.

241/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

A.1

A.2

A.2.1

A.2.2

A.2.3

A.2.4

A.2.5

A.2.6

A.2.7

A.2.8

A.3

A.4

A.5

A.6

A.7

B

Properties of Strongly Directed Sets

Let (P ,v) be a partial order with least element ⊥, and let
D ⊆ P .

Lemma A.2.6.6
D is a strongly directed set iff every finite subset D ′ ⊆ D has a
supremum in D, i.e., ∃ d ∈ D. d =

⊔
D ′.

Lemma A.2.6.7
Let D be a finite strongly directed set. Then:

⊔
D exists ∈ D

and is the greatest element of D.

Note: The statement of Lemma A.2.6.7 does usually not hold,
if D is infinite.
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Directed Sets, Strongly Directed Sets, Chains

Let (P ,v) be a partial order with least element ⊥.

Lemma A.2.6.8
Let ∅ 6= D ⊆ P be a non-empty subset of P . Then:

1. D is a directed set, if D is a strongly directed set.

2. D is a strongly directed set, if ⊥ ∈ D and D is a chain.

Corollary A.2.6.9

Let ∅ 6= D ⊆ P be a non-empty subset of P . Then:

⊥ ∈ D ∧ D chain ⇒ D strongly directed set ⇒ D directed set
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Exercise A.2.6.10

Which of the below partial orders are (strongly) directed sets?
Which of their subsets are (strongly) directed sets?

21

3 4

1 3

2 4

1 3

221

3 4

c)

21

3 4

b)a)

f)e) g)

1 3

2 4

5

6

d)

1 3

2 4

5

244/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

A.1

A.2

A.2.1

A.2.2

A.2.3

A.2.4

A.2.5

A.2.6

A.2.7

A.2.8

A.3

A.4

A.5

A.6

A.7

B

Exercise A.2.6.11

Which of the below partial orders are (strongly) directed sets?
Which of their subsets are (strongly) directed sets?

a)

4 5

2 3

1

b)

4 5

2 3

1

c)

4 5

2 3

1

f)

6

4 5

2 3

g)

6

4 5

2 3

h)

6

4 5

2 3

1

d)

6

4 5

2 3

1

e)

6

4 5

2 3
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Exercise A.2.6.12

Let (IN0,v) be the partial order with v =df |, where | denotes
the divisibility relation on the natural numbers IN0, i.e., the
relation ‘· divides ·’ (w/out remainder), e.g. 5 | 35.

Is the set IN0

1. directed?

2. strongly directed?

What subsets of IN0 are

1. directed?

2. strongly directed?

Proof or counterexample.
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A.2.7

Maps on Partial Orders
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Monotonic and Antitonic Maps on POs

Let (C ,vC ) and (D,vD) be partial orders, and let
f ∈ [C → D] be a map from C to D.

Definition A.2.7.1 (Monotonic Maps on POs)

f is called monotonic (or order preserving) iff

∀ c , c ′ ∈ C . c vC c ′ ⇒ f (c) vD f (c ′)
(Preservation of the ordering of elements)

Definition A.2.7.2 (Antitonic Maps on POs)

f is called antitonic (or order inversing) iff

∀ c , c ′ ∈ C . c vC c ′ ⇒ f (c ′) wD f (c)
(Inversion of the ordering of elements)
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Expanding and Contracting Maps on POs

Let (C ,vC ) be a partial order, let f ∈ [C → C ] be a map on
C , and let ĉ ∈ C be an element of C .

Definition A.2.7.3 (Expanding Maps on POs)

f is called

I expanding (or inflationary) for ĉ iff ĉ v f (ĉ)

I expanding (or inflationary) iff ∀ c ∈ C . c v f (c)

Definition A.2.7.4 (Contracting Maps on POs)

f is called

I contracting (or deflationary) for ĉ iff f (ĉ) v ĉ

I contracting (or deflationary) iff ∀ c ∈ C . f (c) v c
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A.2.8

Order Homomorphisms and Order
Isormorphisms
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PO Homomorphisms, PO Isomorphisms
Let (P ,vP) and (R ,vR) be partial orders, and let
f ∈ [P → R] be a map from P to R .

Definition A.2.8.1 (PO Hom. & Isomorphism)

f is called an

1. order homomorphism between P and R , if f is monotonic
(or order preserving), i.e.,

∀ p, q ∈ P . p vP q ⇒ f (p) vR f (q)

2. order isomorphism between P and R , if f is a bijective
order homomorphism between P and R and the inverse
f −1 of f is an order homomorphism between R and P .

Definition A.2.8.2 (Order Isomorphic)

(P ,vP) and (R ,vR) are called order isomorphic, if there is an
order isomorphism between P and R .
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PO Embeddings

Let (P ,vP) and (R ,vR) be partial orders, and let
f ∈ [P → R] be a map from P to R .

Definition A.2.8.3 (PO Embedding)

f is called an order embedding of P in R iff

∀ p, q ∈ P . p vP q ⇐⇒ f (p) vR f (q)

Lemma A.2.8.4 (PO Embeddings and Isomorphisms)

f is an order isomorphism between P and R iff f is an order
embedding of P in R and f is surjective.

Intuitively: Partial orders, which are order isomorphic, are
‘essentially the same.’
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A.3

Complete Partially Ordered Sets
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A.3.1

Chain and Directly Complete Partial Orders
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Complete Partially Ordered Sets

...or Complete Partial Orders:

I a slightly weaker ordering notion than that of a lattice
(cf. Appendix A.4), which is often more adequate for the
modelling of problems in computer science, where full
lattice properties are often not required.

I come in two different flavours as so-called
I Chain Complete Partial Orders (CCPOs)

I Directedly Complete Partial Orders (DCPOs)

based on the notions of chains and directed sets, respec-
tively, which, however, are equivalent (cf. Theorem 3.1.7).
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Complete Partial Orders: CCPO View

Definition A.3.1.1 (Chain Complete Partial Order)

A partial order (P ,v) is a

1. chain complete partial order (pre-CCPO), if every non-
empty (ascending) chain ∅ 6= C⊆P has a least upper
bound

⊔
C in P , i.e.,

⊔
C exists ∈P .

2. pointed chain complete partial order (CCPO), if every
(ascending) chain C⊆P has a least upper bound

⊔
C in

P , i.e.,
⊔

C exists ∈P .

Note: Some authors use CCPO and CCPPO instead of pre-CCPO

and CCPO, respectively.
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Complete Partial Orders: DCPO View

Definition A.3.1.2 (Directedly Complete Partial Ord.)

A partial order (P ,v) is a

1. directedly complete partial order (pre-DCPO), if every di-
rected subset D⊆P has a least upper bound

⊔
D in P ,

i.e.,
⊔

D exists ∈ P .

2. pointed directedly complete partial order (DCPO), if it is
a pre-DCPO and has a least element ⊥.

Note: Some authors use DCPO and DCPPO instead of pre-DCPO

and DCPO, respectively.
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Remarks on CCPOs and DCPOs

On CCPOs:

I A CCPO is often called a domain.

I ‘Ascending chain’ and ‘chain’ can equivalently be used in
Definition A.3.1.1, since a chain can always be given in
ascending order. ‘Ascending’ chain is just more intuitive.

On DCPOs:

I A directed set S , in which by definition every finite subset
has an upper bound in S , does not need to have a supre-
mum in S , if S is infinite. Therefore, the DCPO property
does not trivially follow from the directed set property
(cf. Corollary A.2.6.4).
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Existence of Least Elements in CPOs

Lemma A.3.1.3 (Least Elem. Existence in CPOs)

Let (C ,v) be a CPO, i.e., a CCPO or DCPO. Then there is a
unique least element in C , denoted by ⊥, which is given by
the supremum of the empty chain or set, i.e.: ⊥=

⊔
∅.

Corollary A.3.1.4 (Non-Emptyness of CPOs)

Let (C ,v) be a CPO, i.e., a CCPO or DCPO. Then: C 6= ∅.

Note: Lemma A.3.1.3 does not hold for pre-CPOs, i.e., a pre-
CPO (P ,v) does not need to have a least element.
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Relating Finite POs, CCPOs and DCPOs
Let P be a finite set, and let v be a relation on P .

Lemma A.3.1.5 (Fin. POs, pre-CCPOs, pre-DCPOs)

The following statements are equivalent:

1. (P ,v) is a partial order.

2. (P ,v) is a pre-CCPO.

3. (P ,v) is a pre-DCPO.

Lemma A.3.1.6 (Finite POs, CCPOs, DCPOs)

Let p ∈ P with p v P . Then the following statements are
equivalent:

1. (P ,v) is a partial order.

2. (P ,v) is a CCPO.

3. (P ,v) is a DCPO.
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Equivalence of CCPOs and DCPOs

Theorem A.3.1.7 (Equivalence)

Let (P ,v) be a partial order. Then the following statements
are equivalent:

1. (P ,v) is a CCPO.

2. (P ,v) is a DCPO.

Note: We simply speak of a CPO, if its flavour based on
chains (CCPO) or directed sets (DCPO) does not matter;
analogously, this applies to pre-CPOs.
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Examples of pre-CPOs and CPOs (1)

I (P(IN),⊆) is a CPO (i.e., a CCPO and a DCPO).

I Least element: ∅
I Least upper bound

⊔
C of C chain ⊆ P(IN):

⋃
C ′∈C

C ′

I The set of finite and infinite strings S partially ordered by
the prefix relation vpfx defined by

∀ s, s ′′ ∈ S . s vpfx s ′′ ⇐⇒df

s = s ′′ ∨ (s finite ∧∃ s ′ ∈ S . s ++s ′= s ′′)

is a CPO.

I ({−n | n ∈ IN},≤) is a pre-CPO (i.e., a pre-CCPO and a
pre-DCPO) but not a CPO (i.e., not a CCPO and
DCPO).
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Examples of pre-CPOs and CPOs (2)

I (∅, ∅) is a pre-CPO (i.e., a pre-CCPO and a pre-DCPO)
but not a CPO (i.e., not a CCPO and DCPO).

(Both the pre-CCPO (absence of non-empty chains in ∅)
and the pre-DCPO (∅ is the only subset of ∅ and is not
directed by definition) property holds trivially. Note also
that P = ∅ implies v = ∅ ⊆ P × P).

I The partial order (P v) given by the below Hasse dia-
gram is a CPO.

6

4 5

2 3

1
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Examples of pre-CPOs and CPOs (3)

I The set of finite and infinite strings S partially ordered by
the lexicographical order vlex defined by

∀ s, t ∈ S . s vlex t ⇐⇒df

s = t ∨ (∃ p finite, s ′, t ′ ∈ S . s = p ++s ′ ∧ t = p ++t ′ ∧
(s ′= ε ∨ s ′1 < t ′1) )

where ε denotes the empty string, w ↓1 denotes the first
character of a string w , and < the lexicographical order-
ing on characters, is a CPO (i.e., a CCPO and a DCPO).
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(Anti-) Examples of CPOs

I (IN,≤) is not a CPO (i.e., not a CCPO and DCPO).

I The set of finite strings Sfin partially ordered by the
I prefix relation vpfx defined by

∀ s, s ′ ∈ Sfin. s vpfx s ′ ⇐⇒df ∃ s ′′ ∈ Sfin. s ++s ′′= s ′

is not a CPO (i.e., not a CCPO and DCPO).

I lexicographical order vlex defined by

∀ s, t ∈ Sfin. s vlex t ⇐⇒df

∃ p, s ′, t ′ ∈ Sfin. s = p ++s ′ ∧ t = p ++t ′ ∧
(s ′= ε ∨ s ′ ↓1 < t ′ ↓1)

where ε denotes the empty string, w ↓1 denotes the first
character of a string w , and < the lexicographical orde-
ring on characters, is not a CPO (i.e., not a CCPO and
DCPO).

I (Pfin(IN),⊆) is not a CPO (i.e., not a CCPO and DCPO).
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Exercise A.3.1.8

Which of the partial orders given by the below Hasse diagrams
are (pre-) CCPOs? Which ones are (pre-) DCPOs?

1 21

1

32

1

2

3

1

6

4 5

2 3

1

3

1

2

a)

{ }

b) d)c)

g)f) h)

1 2

3

2

4

i)

e)
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Strongly Directed CPOs: A DCPO Variant

On DCPOs based on Strongly Directed Sets

I Replacing directed sets by strongly directed sets in Defini-
tion A.3.1.2 leads to SDCPOs.

I Recalling that strongly directed sets are not empty (cf.
Definition A.2.6.5), there is no analogue of pre-DCPOs
for strongly directed sets.

I A strongly directed set S , in which by definition every
finite subset has a supremum in S , does not need to have
a supremum itself in S , if S is infinite. Therefore, the
SDCPO property does not trivially follow from the strong-
ly directed property of sets (cf. Corollary A.2.6.4).
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Exercise A.3.1.9

Let (IN0,v) be the partial order with v =df |, where | denotes
the divisibility relation on the natural numbers IN0, i.e., the
relation ‘· divides ·’ (w/out remainder), e.g. 5 | 35.

Prove or disprove: (IN0,v) is a

1. pre-CCPO

2. CCPO

3. pre-DCPO

4. DCPO

5. SDCPO

Proof or counterexample.
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Maps on Complete Partial Orders
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Continuous Maps on CCPOs

Let (C ,vC ) and (D,vD) be CCPOs, and let f ∈ [C → D] be
a map from C to D.

Definition A.3.2.1 (Continuous Maps on CCPOs)

f is called continuous iff f is monotonic and

∀C ′ 6= ∅ chain ⊆ C . f (
⊔

C C ′) = D

⊔
D f (C ′)

(Preservation of least upper bounds)

Note: ∀ S ⊆ C . f (S) =df { f (s) | s ∈ S}
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Continuous Maps on DCPOs

Let (D,vD) and (E ,vE ) be DCPOs, and let f ∈ [D → E ] be
a map from D to E .

Definition A.3.2.2 (Continuous Maps on DCPOs)

f is called continuous iff

∀D ′ 6= ∅ directed set ⊆ D. f (D ′) directed set ⊆ E ∧
f (
⊔

D D ′) = E

⊔
E f (D ′)

(Preservation of least upper bounds)

Note: ∀ S ⊆ D. f (S) =df { f (s) | s ∈ S}
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Characterizing Monotonicity

Let (C ,vC ), (D,vD) be CCPOs, let (E ,vE ), (F ,vF ) be
DCPOs.

Lemma A.3.2.3 (Characterizing Monotonicity)

1. f : C→D is monotonic

iff ∀C ′ 6= ∅ chain ⊆ C .

f (C ′) chain ⊆ D ∧ f (
⊔

C C ′) wD

⊔
D f (C ′)

2. g : E→F is monotonic

iff ∀E ′ 6= ∅ directed set ⊆ E .

g(E ′) directed set ⊆ F ∧ g(
⊔

E E ′) wF

⊔
F g(E ′)
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Strict Maps on CCPOs and DCPOs

Let (C ,vC ), (D,vD) be CCPOs with least elements ⊥C and
⊥D , respectively, let (E ,vE ), (F ,vF ) be DCPOs with least

elements ⊥E and ⊥F , respectively, and let f ∈ [C
con→ D] and

g ∈ [E
con→ F ] be continuous maps.

Definition A.3.2.4 (Strict Functions on CPOs)

f and g are called strict, if the equalities

I f (
⊔

C C ′) = D

⊔
D f (C ′), g(

⊔
E E ′) = F

⊔
F g(E ′)

also hold for C ′= ∅ and E ′= ∅, i.e., if the equalities

I f (
⊔

C ∅) =C f (⊥C ) = D ⊥D =D

⊔
∅

I f (
⊔

E ∅) =E g(⊥E ) = F ⊥F =F

⊔
∅

are valid.
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A.3.3

Mechanisms for Constructing Complete
Partial Orders
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Common CCPO and DCPO Constructions

The following construction principles hold for

I CCPOs

I DCPOs

Therefore, we simply write CPO.
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Common CPO Constructions: Flat CPOs

Lemma A.3.3.1 (Flat CPO Construction)

Let C be a set. Then:

(C
.
∪ {⊥},vflat) with vflat defined by

∀ c , d ∈ C
.
∪ {⊥}. c vflat d ⇐⇒df c =⊥ ∨ c = d

is a CPO, a so-called flat CPO.

c
1

c
2

c
3

c
5

c
7

c
6

c
4
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Common CPO Constructions: Flat pre-CPOs

Lemma A.3.3.2 (Flat Pre-CPO Construction)

Let D be a set. Then:

(D
.
∪ {>},vflat) with vflat defined by

∀ d , e ∈ D
.
∪ {>}. d vflat e ⇐⇒df e => ∨ d = e

is a pre-CPO, a so-called flat pre-CPO.

d d d d ddd21 3 4 5 6 7
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Common CPO Constructions: Products (1)

Lemma A.3.3.3 (Non-strict Product Construction)

Let (P1,v1), (P2,v2), . . . , (Pn,vn) be CPOs. Then:

The non-strict product (×Pi ,v×), where

I ×Pi =df P1 × P2 × . . .× Pn is the cartesian product of
all Pi , 1 ≤ i ≤ n

I v× is defined pointwise by

∀ (p1, . . . , pn), (q1, . . . , qn) ∈×Pi .

(p1, . . . , pn) v× (q1, . . . , qn) ⇐⇒df

∀ i ∈ {1, . . . , n}. pi vi qi

is a CPO.
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Common CPO Constructions: Products (2)

Lemma A.3.3.4 (Strict Product Construction)

Let (P1,v1), (P2,v2), . . . , (Pn,vn) be CPOs. Then:

The strict (or smash) product (
⊗

Pi ,v⊗), where

I
⊗

Pi =df ×Pi is the the cartesian product of all Pi

I v⊗ =df v× defined pointwise with the additional setting

(p1, . . . , pn) =⊥ ⇐⇒df ∃ i ∈ {1, . . . , n}. pi =⊥i

is a CPO.
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Common CPO Constructions: Sums (1)

Lemma A.3.3.5 (Separated Sum Construction)

Let (P1,v1), (P2,v2), . . . , (Pn,vn) be CPOs. Then:

The separated (or direct) sum (
⊕
⊥Pi ,v⊕⊥), where

I
⊕
⊥Pi =df P1

.
∪P2

.
∪ . . .

.
∪ Pn

.
∪ {⊥} is the disjoint union

of all Pi , 1 ≤ i ≤ n, and a fresh bottom element ⊥
I v⊕⊥ is defined by

∀ p, q ∈
⊕
⊥Pi . p v⊕⊥q ⇐⇒df

p =⊥ ∨ (∃ i ∈ {1, . . . , n}. p, q ∈ Pi ∧ p vi q)

is a CPO.
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Common CPO Constructions: Sums (2)

Lemma A.3.3.6 (Coalesced Sum Construction)

Let (P1,v1), (P2,v2), . . . , (Pn,vn) be CPOs. Then:

The coalesced sum (
⊕
∨Pi ,v⊕∨), where

I
⊕
∨Pi =df P1\{⊥1}

.
∪P2\{⊥2}

.
∪ . . .

.
∪ Pn\{⊥n}

.
∪ {⊥}

is the disjoint union of all Pi , 1 ≤ i ≤ n, and a fresh
bottom element ⊥, which is identified with and replaces
the least elements ⊥i of the sets Pi , i.e., ⊥=df ⊥i ,
i ∈ {1, . . . , n}

I v⊕∨ is defined by

∀ p, q ∈
⊕
∨Pi . p v⊕∨q ⇐⇒df

p =⊥ ∨ (∃ i ∈ {1, . . . , n}. p, q ∈ Pi ∧ p vi q)

is a CPO.
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Common CPO Constructions: Function Space

Lemma A.3.3.7 (Continuous Function Space Con.)

Let (C ,vC ) and (D,vD) be pre-CPOs. Then:

The continuous function space ([C
con→ D],vcfs), where

I [C
con→ D] is the set of continuous maps from C to D

I vcfs is defined pointwise by

∀ f , g ∈ [C
con→ D]. f vcfs g ⇐⇒df ∀ c ∈ C . f (c)vD g(c)

is a pre-CPO. It is a CPO, if (D,vD) is a CPO.

Note: The definition of vcfs does not make use of C being a
pre-CPO. This requirement is only to allow us tailoring the
definition to continuous maps.
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A.4

Lattices
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A.4.1

Lattices, Complete Lattices
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Lattices and Complete Lattices

Let (P ,v) be a partial order, P 6= ∅.

Definition A.4.1.1 (Lattice)

(P ,v) is a lattice (in German: Verband), if every non-empty
finite subset P ′ of P has a least upper bound and a greatest
lower bound in P .

Definition A.4.1.2 (Complete Lattice)

(P ,v) is a complete lattice (in German: vollständiger Ver-
band), if every subset P ′ of P has a least upper bound and a
greatest lower bound in P .

Note: Lattices and complete lattices are special partial orders.
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Properties of Complete Lattices

Lemma A.4.1.3 (Existence of Extremal Elements)

Let (P ,v) be a complete lattice. Then there is

1. a least element in P , denoted by ⊥, satisfying:
⊥ =

⊔
∅ =

d
P .

2. a greatest element in P , denoted by >, satisfying:
> =

d
∅ =

⊔
P .

Lemma A.4.1.4 (Characterization Lemma)

Let (P ,v) be a partial order. Then the following statements
are equivalent:

1. (P ,v) is a complete lattice.

2. Every subset of P has a least upper bound.

3. Every subset of P has a greatest lower bound.
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Properties of Finite Lattices

Lemma A.4.1.5 (Finiteness implies Completeness)

If (P ,v) is a finite lattice, then (P ,v) is a complete lattice.

Corollary A.4.1.6 (Finiteness impl. Ex. of ext. Elem.)

If (P ,v) is a finite lattice, then (P ,v) has a least element
and a greatest element.
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Complete Semi-Lattices

Let (P ,v) be a partial order, P 6= ∅.

Definition A.4.1.7 (Complete Semi-Lattice)

(P ,v) is a complete

1. join semi-lattice (in German: Vereinigungshalbverband) iff
∀ ∅ 6= S ⊆ P .

⊔
S exists ∈ P .

2. meet semi-lattice (in German: Schnitthalbverband) iff
∀ ∅ 6= S ⊆ P .

d
S exists ∈ P .
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Properties of Complete Semi-Lattices (1)

Proposition A.4.1.8 (Extr. Bounds in C. Semi-Lat.)

If (P ,v) is a complete

1. join semi-lattice, then
⊔

P exists ∈ P (whereas⊔
∅ (=̂⊥) does usually not exist in P).

2. meet semi-lattice, then
d

P exists ∈ P (whereasd
∅ (=̂>) does usually not exist in P).

Informally: Least elements need not exist in complete join
semi-lattices, greatest elements need not exist in complete
meet semi-lattices.
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Properties of Complete Semi-Lattices (2)

Lemma A.4.1.9 (Ex. great. El. in C. Join Semi-Lat.)

Let (P ,v) be a complete join semi-lattice. Then:⊔
P exists ∈ P and is the (unique) greatest element in P

that is usually denoted by >, i.e., >=
⊔

P .

Lemma A.4.1.10 (Ex. least El. in C. Meet Semi-Lat.)

Let (P ,v) be a complete meet semi-lattice. Then:
d

P exists ∈ P and is the (unique) least element in P that is
usually denoted by ⊥, i.e., ⊥=

d
P .
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Characterizing Upper and Lower Bounds (1)
...in complete semi-lattices.

Lemma A.4.1.11 (Char. u./l. Bounds in C. Semi-L.)

1. Let (P ,v) be a complete join semi-lattice, and let Q ⊆ P
be a subset of P .

If there is a lower bound for Q in P , i.e, if
{p ∈ P | p v Q} 6= ∅, then

d
Q exists ∈ P satisfying

l
Q =

⊔
{p ∈ P | p v Q}

2. Let (P ,v) be a complete meet semi-lattice, and let
Q ⊆ P be a subset of P .

If there is an upper bound for Q in P , i.e, if
{p ∈ P |Q v p} 6= ∅, then

⊔
Q exists ∈ P satisfying⊔

Q =
l
{p ∈ P |Q v p}
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Characterizing Upper and Lower Bounds (2)

Lemma A.4.1.12 (L./gr. Elements in C. Semi-L.)

If (P ,v) is a complete

1. join semi-lattice and
⊔
∅ exists ∈ P , then

⊔
∅ is the

(unique) least element in P , denoted by ⊥, i.e., ⊥=
⊔
∅.

2. meet semi-lattice and
d
∅ exists ∈ P , then

d
∅ is the

(unique) greatest element in P , denoted by >, i.e.,
>=

d
∅.
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Relating Complete Semi-Lattices and Lattices

Lemma A.4.1.13 (Complete Semi-Lattices&Lattices)

If (P ,v) is a complete

1. join semi-lattice and
⊔
∅ exists ∈ P

2. meet semi-lattice and
d
∅ exists ∈ P

then (P ,v) is a complete lattice.
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Exercise A.4.1.14

Prove or disprove:

If (P ,v) is a complete lattice, then

1. (P\{⊥},v\⊥) is a complete join semi-lattice.

2. (P\{>},v\>) is a complete meet semi-lattice.

where v\⊥ and v\> denote the restrictions of v from P to
P\{⊥} and P\{>}, respectively. Proof or counterexample.
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Relating Lattices and Complete Partial Orders

Lemma A.4.1.15 (Complete Lattices and CPOs)

If (P ,v) is a complete lattice, then (P ,v) is a CPO (i.e., a
CCPO and DCPO).

Corollary A.4.1.16 (Finite Lattices and CPOs)

If (P ,v) is a finite lattice, then (P ,v) is a CPO (i.e., a CCPO
and DCPO).

Note: Lemma A.4.1.15 does not hold for lattices.
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Examples of Complete Lattices

{a,b} {b,c}{a,c}

 {b}{a} {c}

{}

{a,b,c}
a)

True

False

0 1 2 3−3 −2 −1 ......

c) d)

b)

c

b

e

a

d
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(Anti-) Examples

I The partial order (P ,v) given by the below Hasse dia-
gram is not a lattice (whereas it is a CPO).

6

4 5

2 3

1

I (Pfin(IN),⊆) is not a complete lattice (and not a CPO).
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Exercise A.4.1.17

Which of the partial orders given by the below Hasse diagrams
are lattices? Which ones are complete lattices?

1 21

1

32

1

2

3

1

6

4 5

2 3

1

3

1

2

a)

{ }

b) d)c)

g)f) h)

1 2

3

2

4

i)

e)
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Exercise A.4.1.18

Let (IN0,v) be the partial order with v =df |, where | denotes
the divisibility relation on the natural numbers IN0, i.e., the
relation ‘· divides ·’ (w/out remainder), e.g. 5 | 35.

Prove or disprove: (IN0,v) is a

1. lattice

2. complete lattice

3. complete join semi-lattice

4. complete meet semi-lattice

Proof or counterexample.
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Summary, Overview

Corollary A.4.1.19

Let P 6= ∅ be a non-empty set, and v a relation on P . Then:

(P,v) finite lattice (L. A.4.1.5) ∨
(P,v) complete join semi-lattice and⊔

∅ exists ∈ P (L. A.4.1.13(1)) ∨
(P,v) complete meet semi-lattice and

l
∅ exists ∈ P (L. A.4.1.13(2))

⇒ (P,v) complete lattice

(D. A.4.1.2 and

L. A.4.1.14) ⇒ (P,v) lattice and complete partial order

(D. A.4.1.1 and

D. A.3.1.1/2) ⇒ (P,v) partial order

(D. A.2.1.2) ⇒ (P,v) pre-order
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Excercise A.4.1.20

Let

QO,PO,L, CPO, CL,FL, CJ SL, CJ SL⊥, CMSL, CMSL>

denote the sets of all quasi-orders QO, partial orders PO,
lattices L, complete partial orders CPO, complete lattices CL,
finite lattices FL, complete join semi-lattices without/with
least element CJ SL/CJ SL⊥, and meet semi-lattices with-
out/with greatest element CMSL/CMSL>.

1. What further implications or equivalences hold in addi-
tion to those listed in Corollary A.4.1.19? (Proof or
counterexample)

2. What inclusions or (set) equalities hold among QO, PO,
L, etc.? (Proof or counterexample)
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A.4.2

Distributive, Additive Maps on Lattices
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Distributive, Additive Maps on Lattices

Let (P ,v) be a complete lattice, and let f ∈ [P→P] be a
map on P .

Definition A.4.2.1 (Distributive, Additive Map)

f is called

I distributive (or u-continuous) iff
∀ ∅ 6= P ′ ⊆ P . f (

d
P ′) =

d
f (P ′)

(Preservation of greatest lower bounds)

I additive (or t-continuous) iff
∀ ∅ 6= P ′ ⊆ P . f (

⊔
P ′) =

⊔
f (P ′)

(Preservation of least upper bounds)

Note: ∀ S ⊆ P . f (S) =df { f (s) | s ∈ S}
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Characterizing Monotonicity

...in terms of the preservation of greatest lower and least up-
per bounds:

Lemma A.4.2.2 (Characterizing Monotonicity)

Let (P ,v) be a complete lattice, and let f ∈ [P→P] be a
map on P . Then:

f is monotonic ⇐⇒ ∀P ′ ⊆ P . f (
l

P ′) v
l

f (P ′)

⇐⇒ ∀P ′ ⊆ P . f (
⊔

P ′) w
⊔

f (P ′)

Note: ∀ S ⊆ P . f (S) =df { f (s) | s ∈ S}
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Useful Results on Mon., Distr., and Additivity

Let (P ,v) be a complete lattice, and let f ∈ [P→P] be a
map on P .

Lemma A.4.2.3

f is distributive iff f is additive.

Lemma A.4.2.4

f is monotonic, if f is distributive (or additive).

(i.e., distributivity (or additivity) implies monotonicity)
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A.4.3

Lattice Homomorphisms, Lattice
Isomorphisms
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Lattice Homomorphisms, Lattice Isomorphisms

Let (P ,vP) and (R ,vR) be two lattices, and let f ∈ [P→R]
be a map from P to R .

Definition A.4.3.1 (Lattice Homorphism)

f is called a lattice homomorphism, if

∀ p, q ∈ P . f (p tP q) = f (p) tQ f (q) ∧
f (p uP q) = f (p) uQ f (q)

Definition A.4.3.2 (Lattice Isomorphism)

1. f is called a lattice isomorphism, if f is a lattice homo-
morphism and bijective.

2. (P ,vP) and (R ,vR) are called isomorphic, if there is lat-
tice isomorphism between P and R .
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Useful Results (1)

Let (P ,vP) and (R ,vR) be two lattices, and let f ∈ [P→R]
be a map from P to R .

Lemma A.4.3.3

f ∈ [P
hom→ R] ⇒ f ∈ [P

mon→ R]

The reverse implication of Lemma A.4.3.3 does not hold, how-
ever, the following weaker relation holds:

Lemma A.4.3.4

f ∈ [P
mon→ R] ⇒
∀ p, q ∈ P . f (p tP q) wQ f (p) tQ f (q) ∧

f (p uP q) vQ f (p) uQ f (q)
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Useful Results (2)

Let (P ,vP) and (R ,vR) be two lattices, and let f ∈ [P→R]
be a map from P to R .

Lemma A.4.3.5

f ∈ [P
iso→ R] ⇒ f −1 ∈ [R

iso→ P]

Lemma A.4.3.6

f ∈ [P
iso→ R] ⇐⇒ f ∈ [P

po−hom→ R] wrt vP and vQ
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A.4.4

Modular, Distributive, and Boolean Lattices
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Modular Lattices

Let (P ,v) be a lattice with meet operation u and join opera-
tion t.

Lemma A.4.4.1

∀ p, q, r ∈ P . p v r ⇒ p t (q u r) v (p t q) u r

Definition A.4.4.2 (Modular Lattice)

(P ,v) is called modular, if

∀ p, q, r ∈ P . p v r ⇒ p t (q u r) = (p t q) u r
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Characterizing Modular Lattices

Theorem A.4.4.3 (Characterizing Modular Lattices)

A lattice (P ,v) is

1. modular iff

∀ p, q, r ∈ P . p v q, p u r = q u r , p t r = q t r ⇒ p = q

2. not modular iff (P ,v) contains a sublattice, which is iso-
morphic to the lattice:

c

b

e

a

d
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Distributive Lattices

Let (P ,v) be a lattice with meet operation u and join opera-
tion t.

Lemma A.4.4.4
1. ∀ p, q, r ∈ P . p t (q u r) v (p t q) u (p t r)

2. ∀ p, q, r ∈ P . p u (q t r) w (p u q) t (p u r)

Definition A.4.4.5 (Distributive Lattice)

(P ,v) is called distributive, if

1. ∀ p, q, r ∈ P . p t (q u r) = (p t q) u (p t r)

2. ∀ p, q, r ∈ P . p u (q t r) = (p u q) t (p u r)
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Towards Characterizing Distributive Lattices

Lemma A.4.4.6

The following two statements are equivalent:

1. ∀ p, q, r ∈ P . p t (q u r) = (p t q) u (p t r)

2. ∀ p, q, r ∈ P . p u (q t r) = (p u q) t (p u r)

Hence, it is sufficient to require the validity of property (1) or
of property (2) in Definition A.4.4.5.
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Characterizing Distributive Lattices

Let (P ,v) be a lattice.

Theorem A.4.4.7 (Characterizing Distributive Lat.)

(P ,v) is not distributive iff (P ,v) contains a sublattice that
is isomorphic to one of the below two lattices:

c

b

e

a

d

a

b c d

e
a) b)

Corollary A.4.4.8

If (P ,v) is distributive, then (P ,v) is modular.
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Boolean Lattices
Let (P ,v) be a lattice with meet operation u, join operation
t, least element ⊥, and greatest element >.

Definition A.4.4.9 (Complement)

Let p, q ∈ P . Then:

1. q is called a complement of p, if p t q => and p u q =⊥.

2. P is called complementary, if every element in P has a
complement.

Definition A.4.4.10 (Boolean Lattice)

(P ,v) is called Boolean, if it is complementary, distributive,
and ⊥ 6= >.

Note: If (P ,v) is Boolean, then every element p ∈ P has an
unambiguous unique complement in P , which is denoted by p̄.
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Useful Result

Lemma A.4.4.11
Let (P ,v) be a Boolean lattice, and let p, q, r ∈ P . Then:

1. ¯̄p = p (Involution Law)

2. p t q = p̄ u q̄, p u q = p̄ t q̄ (De Morgan Laws)

3. p v q ⇐⇒ p̄ t q => ⇐⇒ p u q̄ =⊥

4. p v q t r ⇐⇒ p u q̄ v r ⇐⇒ q̄ v p̄ t r
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Boolean Lat. Homomorphisms/Isomorphisms

Let (P ,vP) and (Q,vQ) be two Boolean lattices, and let
f ∈ [P→Q] be a function from P to Q.

Definition A.4.4.12 (Boolean Lattice Homorphism)

f is called a Boolean lattice homomorphism, if f is a lattice
homomorphism and

∀ p ∈ P . f (p̄) = f (p)

Definition A.4.4.13 (Boolean Lattice Isomorphism)

f is called a Boolean lattice isomorphism, if f is a Boolean
lattice homomorphism and bijective.
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Useful Results

Let (P ,vP) and (Q,vQ) be two Boolean lattices, and let

f ∈ [P
bhom→ Q] be a Boolean lattice homomorphism from P

to Q.

Lemma A.4.4.14

f (⊥) =⊥ ∧ f (>) =>

Lemma A.4.4.15

f is a Boolean lattice isomorphism iff f (⊥) =⊥ ∧ f (>) =>
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Summary, Overview

Corollary A.4.4.16

Let P 6= ∅ be a non-empty set, and v a relation on P . Then:

(P ,v) Boolean lattice

(Def. A.4.4.10) ⇒ (P ,v) distributive lattice

(Cor. A.4.4.8) ⇒ (P ,v) modular lattice

(Def. A.4.4.2) ⇒ (P ,v) lattice

(Def. A.4.1.1) ⇒ (P ,v) partial order

(Def. A.2.1.2) ⇒ (P ,v) pre-order

Corollary A.4.4.17

QO ⊃ PO ⊃ L ⊃ML ⊃ DL ⊃ BL
where all inclusions are proper and QO, PO, L, ML, DL,
and BL denote the sets of all quasi- (or pre-) orders, partial
orders, lattices, modular, distributive, and Boolean lattices.
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Exercise A.4.4.18

Let (IN0,v) be the partial order with v =df |, where | denotes
the divisibility relation on the natural numbers IN0, i.e., the
relation ‘· divides ·’ (w/out remainder), e.g. 5 | 35.

Prove or disprove: (IN0,v) is a

1. modular lattice

2. distributive lattice

3. Boolean lattice

Proof or counterexample.
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A.4.5

Mechanisms for Constructing Lattices
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Common Lattice Constructions: Flat Lattices

Lemma A.4.5.1 (Flat Lattice Construction)

Let C be a set. Then:

(C
.
∪ {⊥,>},vflat) with vflat defined by

∀ c , d ∈ C
.
∪ {⊥,>}. c vflat d ⇐⇒df c =⊥ ∨ c = d ∨ d =>

is a complete lattice, a so-called flat lattice (or diamond lat-
tice).

c
1

c
2

c
3

c
5

c
7

c
6

c
4
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Lattice Constructions: Products, Sums,...

Like the principle for constructing flat CPOs also the principles
for constructing

I non-strict products

I strict products

I separate sums

I coalesced sums

I continuous (here: additive, distributive) function spaces

carry over from CPOs to (complete) lattices (cf. App. A.3.3).
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A.4.6

Order-theoretic and Algebraic View of
Lattices
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Motivation

In Definition A.4.1.1, we introduced lattices as special

I ordered sets (P ,v)

which induces an

I order-theoretic view of lattices.

Alternatively, lattices can be introduced as special

I algebraic structures (P ,u,t)

which induces an

I algebraic view of lattices.

Next, we will show that both views are equivalent:

I Order-theoretically defined lattices can be considered
algebraically and vice versa.
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Lattices as Algebraic Structures

Definition A.4.6.1 (Algebraic Lattice)

An algebraic lattice is an algebraic structure (P ,u,t), where

I P 6= ∅ is a non-empty set.

I u,t : P × P→P are two maps such that for all elements
p, q, r ∈ P the following laws hold (infix notation):

I Commutative Laws: p u q = q u p
p t q = q t p

I Associative Laws: (p u q) u r = p u (q u r)
(p t q) t r = p t (q t r)

I Absorption Laws: (p u q) t p = p
(p t q) u p = p
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Properties of Algebraic Lattices

Let (P ,u,t) be an algebraic lattice.

Lemma A.4.6.2 (Idempotency Laws)

For all p ∈ P , the maps u,t : P × P→P satisfy the following
laws:

I Idempotency Laws: p u p = p
p t p = p

Lemma A.4.6.3
For all p, q ∈ P , the maps u,t : P × P→P satisfy:

1. p u q = p ⇐⇒ p t q = q

2. p u q = p t q ⇐⇒ p = q
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Induced (Partial) Order

Let (P ,u,t) be an algebraic lattice.

Lemma A.4.6.4
The relation v ⊆ P × P on P defined by

∀ p, q ∈ P . p v q ⇐⇒df p u q = p

is a partial order relation on P , i.e., v is reflexive, transitive,
and antisymmetric.

Definition A.4.6.5 (Induced Partial Order)

The relation v defined in Lemma A.4.6.4 is called the induced
(partial) order of (P ,u,t).
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Properties of the Induced Partial Order
Let (P ,u,t) be an algebraic lattice, and let v be the induced
partial order of (P ,u,t).

Lemma A.4.6.6
For all p, q ∈ P , the infimum (=̂ greatest lower bound) and
the supremum (=̂ least upper bound) of the set {p, q} exist
and are given by the images of u and t applied to p and q,
respectively, i.e.:

∀ p, q ∈ P .
l
{p, q}= p u q ∧

⊔
{p, q}= p t q

Lemma A.4.6.6 can inductively be extended yielding:

Lemma A.4.6.7
Let ∅ 6= Q ⊆ P be a non-empty finite subset of P . Then:

∃ glb, lub ∈ P . glb =
l

Q ∧ lub =
⊔

Q
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Algebraic Lattices Order-theoretically

Corollary A.4.6.8 (From (P ,u,t) to (P ,v))

Let (P ,u,t) be an algebraic lattice. Then:

(P ,v), where v is the induced partial order of (P ,u,t), is an
order-theoretic lattice in the sense of Definition A.4.1.1.
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Induced Algebraic Maps

Let (P ,v) be an order-theoretic lattice.

Definition A.4.6.9 (Induced Algebraic Maps)

The partial order v of (P ,v) induces two maps u and t from
P × P to P defined by:

1. ∀ p, q ∈ P . p u q =df

d
{p, q}

2. ∀ p, q ∈ P . p t q =df

⊔
{p, q}
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Properties of the Induced Algebraic Maps (1)

Let (P ,v) be an order-theoretic lattice, and let u and t be
the induced algebraic maps of (P ,v).

Lemma A.4.6.10
Let p, q ∈ P . Then the following statements are equivalent:

1. p v q

2. p u q = p

3. p t q = q
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Properties of the Induced Algebraic Maps (2)
Let (P ,v) be an order-theoretic lattice, and let u and t be
the induced algebraic maps of (P ,v).

Lemma A.4.6.11

For all p, q, r ∈ P , the induced maps u and t satisfy the
following laws:

I Commutative Laws: p u q = q u p
p t q = q t p

I Associative Laws: (p u q) u r = p u (q u r)
(p t q) t r = p t (q t r)

I Absorption Laws: (p u q) t p = p
(p t q) u p = p

I Idempotency Laws: p u p = p
p t p = p
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Order-theoretic Lattices Algebraically

Corollary A.4.6.12 (From (P ,v) to (P ,u,t))

Let (P ,v) be an order-theoretic lattice. Then:

(P ,u,t), where u and t are the induced maps of (P ,v), is
an algebraic lattice in the sense of Definition A.4.6.1.
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Equivalence (1)

...of the order-theoretic and the algebraic view of lattices.

From order-theoretic to algebraic lattices:

I An order-theoretic lattice (P ,v) can be considered alge-
braically by switching from (P ,v) to (P ,u,t), where u
and t are the induced maps of (P ,v).

From algebraic to order-theoretic lattices:

I An algebraic lattice (P ,u,t) can be considered order-
theoretically by switching from (P ,u,t) to (P ,v), where
v is the induced partial order of (P ,u,t).
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Equivalence (2)

Together, this allows us to simply speak of a lattice P , and to
speak only more precisely of P as an

I order-theoretic lattice (P ,v)

I algebraic lattice (P ,u,t)

if we want to emphasize that we think of P as a special or-
dered set or as a special algebraic structure.
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Bottom and Top vs. Zero and One (1)

Let P be a lattice with a least and a greatest element.

Considering P

I order-theoretically as (P ,v), it is appropriate to think of
its least and greatest element in terms of bottom ⊥ and
top > with
I Bottom ⊥ ∈ P: ⊥=

⊔
∅

I Top > ∈ P: >=
d
∅

I algebraically as (P ,u,t), it is appropriate to think of its
least and greatest element in terms of Zero 0 and One 1,
where (P ,u,t) is said to have a (if existent, uniquely de-
termined)
I Zero 0 ∈ P: ∀ p ∈ P. p t 0= p

I One 1 ∈ P: ∀ p ∈ P. p u 1= p
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Bottom and Top vs. Zero and One (2)

Lemma A.4.6.13

Let P be a lattice. Then:

I (P ,v) has a bottom element ⊥ iff (P ,u,t) has a zero
element 0, and in that case:

(
⊔
∅= ) ⊥= 0

I (P ,v) has a top element > iff (P ,u,t) has a one ele-
ment 1, and in that case:

(
l
∅= ) >= 1
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On the Adequacy of the two Lattice Views

In mathematics, usually the

I algebraic view of a lattice is more appropriate as it is in
line with other algebraic structures (‘a set together with
some maps satisfying a number of laws’), e.g., groups,
rings, fields, vector spaces, categories, etc., which are
investigated and dealt with in mathematics.

In computer science, usually the

I order-theoretic view of a lattice is more appropriate, since
the order relation can often be interpreted and under-
stood as ‘· carries more/less information than ·,’ ‘· is
more/less defined than ·,’ ‘· is stronger/weaker than ·,’
etc., which often fits naturally to problems investigated
and dealt with in computer science.
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Exercise A.4.6.14

Let (IN0,v) be the lattice with v =df |, where | denotes the
divisibility relation on the natural numbers IN0, i.e., the rela-
tion ‘· divides ·’ (w/out remainder), e.g. 5 | 35.

Provide the definition of (IN0,∧,∨), i.e., write down the alge-
braically defined counterpart of (IN0,v). To this end, provide
the definition of the meet and join operation on IN0 × IN0:

1. ∧ : IN0 × IN0 → IN0

2. ∨ : IN0 × IN0 → IN0

What is the

1. zero element 0

2. one element 1

of (IN0,∧,∨)?
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A.5

Fixed Point Theorems

342/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

A.1

A.2

A.3

A.4

A.5

A.5.1

A.5.2

A.5.3

A.6

A.7

B

A.5.1

Fixed Points, Towers
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Fixed Points of Functions

Definition A.5.1.1 (Fixed Point)

Let M be a set, let f ∈ [M→M] be a function on M , and let
m ∈ M be an element of M . Then:

m is called a fixed point of f iff f (m) = m.
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Least, Greatest Fixed Points in Partial Orders

Definition A.5.1.2 (Least, Greatest Fixed Point)

Let (P ,v) be a partial order, let f ∈ [P → P] be a function
on P , and let p be a fixed point of f , i.e., f (p) = p. Then:

p is called the

I least fixed point of f , denoted by µf ,
iff ∀ q ∈ P . f (q) = q ⇒ p v q

I greatest fixed point of f , denoted by νf ,
iff ∀ q ∈ P . f (q) = q ⇒ q v p
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Towers in Chain Complete Partial Orders

Definition A.5.1.3 (f -Tower in C )

Let (C ,v) be a CCPO, let f ∈ [C → C ] be a function on C ,
and let T ⊆ C be a subset of C . Then:

T is called an f -tower in C iff

1. ⊥ ∈ T .

2. If t ∈ T , then also f (t) ∈ T .

3. If T ′ ⊆ T is a chain in C , then
⊔

T ′ ∈ T .
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Least Towers in Chain Complete Partial Orders

Lemma A.5.1.4 (The Least f -Tower in C )

The intersection

I =df

⋂
{T |T f -tower in C}

of all f -towers in C is the least f -tower in C , i.e.,

1. I is an f -tower in C .

2. ∀T f -tower in C . I ⊆ T .

Lemma A.5.1.5 (Least f -Towers and Chains)

The least f -tower in C is a chain in C , if f is expanding.
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A.5.2

Fixed Point Theorems for Complete
Partial Orders
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Fixed Points of Exp./Monotonic Functions

Fixed Point Theorem A.5.2.1 (Expanding Function)

Let (C ,v) be a CCPO, and let f ∈ [C
exp→ C ] be an expanding

function on C . Then:

The supremum of the least f -tower in C is a fixed point of f .

Fixed Point Theorem A.5.2.2 (Monotonic Function)

Let (C ,v) be a CCPO, and let f ∈ [C
mon→ C ] be a monotonic

function on C . Then:

f has a unique least fixed point µf , which is given by the su-
premum of the least f -tower in C .
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Note

I Theorem A.5.2.1 and Theorem A.5.2.2 ensure the
existence of a fixed point for expanding functions and of a
unique least fixed point for monotonic functions, respec-
tively, but do not provide constructive procedures for
computing or approximating them.

I This is in contrast to Theorem A.5.2.3, which does so for
continuous functions. In practice, continuous functions
are thus more important and considered where possible.
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Least Fixed Points of Continuous Functions

Fixed Point Theorem A.5.2.3 (Knaster,Tarski,Kleene)

Let (C ,v) be a CCPO, and let f ∈ [C
con→ C ] be a continuous

function on C . Then:

f has a unique least fixed point µf ∈ C , which is given by the
supremum of the (so-called) Kleene chain
{⊥, f (⊥), f 2(⊥), . . .}, i.e.:

µf =
⊔

i∈IN0

f i (⊥) =
⊔
{⊥, f (⊥), f 2(⊥), . . .}

Note: f 0 =df IdC ; f i =df f ◦ f i−1, i > 0.
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Proof of Fixed Point Theorem A.5.2.3 (1)

We have to prove:

µf =
⊔

i∈IN0

f i (⊥) =
⊔
{f i (⊥) | i ≥ 0}

1. exists,

2. is a fixed point of f ,

3. is the least fixed point of f .
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Proof of Fixed Point Theorem A.5.2.3 (2)

1. Existence

I By definition of ⊥ as the least element of C and of f 0 as
the identity on C we have: ⊥= f 0(⊥) v f 1(⊥) = f (⊥).

I Since f is continuous and hence monotonic, we obtain by
means of (natural) induction:
∀ i , j ∈ IN0. i < j ⇒ f i (⊥) v f i+1(⊥) v f j (⊥).

I Hence, the set {f i (⊥) | i ≥ 0} is a (possibly infinite)
chain in C .

I Since (C ,v) is a CCPO and {f i (⊥) | i ≥ 0} a chain in
C , this implies by definition of a CCPO that the least
upper bound of the chain {f i (⊥) | i ≥ 0}⊔

{f i (⊥) | i ≥ 0}=
⊔

i∈IN0

f i (⊥) exists.
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Proof of Fixed Point Theorem A.5.2.3 (3)

2. Fixed point property

f (
⊔

i∈IN0

f i (⊥))

(f continuous) =
⊔

i∈IN0

f (f i (⊥))

=
⊔

i∈IN1

f i (⊥)

(C ′=df {f i⊥ | i ≥ 1} is a chain ⇒⊔
C ′ exists =⊥ t

⊔
C ′) = ⊥ t

⊔
i∈IN1

f i (⊥)

(f 0(⊥)=df ⊥) =
⊔

i∈IN0

f i (⊥)
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Proof of Fixed Point Theorem A.5.2.3 (4)
3. Least fixed point property

I Let c be an arbitrary fixed point of f . Then: ⊥ v c .

I Since f is continuous and hence monotonic, we obtain by
means of (natural) induction:
∀ i ∈ IN0. f i (⊥) v f i (c) ( = c).

I Since c is a fixed point of f , this implies:
∀ i ∈ IN0. f i (⊥) v c ( = f i (c)).

I Thus, c is an upper bound of the set {f i (⊥) | i ∈ IN0}.
I Since {f i (⊥) | i ∈ IN0} is a chain, and

⊔
i∈IN0

f i (⊥) is by
definition the least upper bound of this chain, we obtain
the desired inclusion ⊔

i∈IN0

f i (⊥) v c .

�
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Least Conditional Fixed Points

Let (C ,v) be a CCPO, let f ∈ [C → C ] be a function on C ,
and let d , cd ∈ C be elements of C .

Definition A.5.2.4 (Least Conditional Fixed Point)

cd is called the least conditional fixed point of f wrt d (in Ger-
man: kleinster bedingter Fixpunkt) iff cd is the least fixed
point of C with d v cd , i.e.:

∀ x ∈ C . f (x) = x ∧ d v x ⇒ cd v x
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Least Cond. Fixed Points of Cont. Functions

Theorem A.5.2.5 (Conditional Fixed Point Theorem)

Let (C ,v) be a CCPO, let d ∈ C , and let f ∈ [C
con→ C ] be a

continuous function on C which is expanding for d , i.e.,
d v f (d). Then:

f has a least conditional fixed point µfd ∈ C , which is given by
the supremum of the (generalized) Kleene chain
{d , f (d), f 2(d), . . .}, i.e.:

µfd =
⊔

i∈IN0

f i (d) =
⊔
{d , f (d), f 2(d), . . .}
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Finite Fixed Points
Let (C ,v) be a CCPO, let d ∈ C , and let f ∈ [C

mon→ C ] be a
monotonic function on C .

Theorem A.5.2.6 (Finite Fixed Point Theorem)

If two succeeding elements in the Kleene chain of f are equal,
i.e., if there is some i ∈ IN with f i (⊥) = f i+1(⊥), then we
have: µf = f i (⊥).

Theorem A.5.2.7 (Finite Conditional FP Theorem)

If f is expanding for d , i.e., d v f (d), and two succeeding
elements in the (generalized) Kleene chain of f wrt d are
equal, i.e., if there is some i ∈ IN with f i (d) = f i+1(d), then
we have: µfd = f i (d).

Note: Theorems A.5.2.6 and A.5.2.7 do not require continuity
of f . Monotonicity (and expandingness) of f suffice(s).
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Towards the Existence of Finite Fixed Points

Let (P ,v) be a partial order, and let p, r ∈ P .

Definition A.5.2.8 (Chain-finite Partial Order)

(P ,v) is called chain-finite (in German: kettenendlich) iff P
does not contain an infinite chain.

Definition A.5.2.9 (Finite Element)

p is called

I finite iff the set Q =df {q ∈ P | q v p} does not contain
an infinite chain.

I finite relative to r iff the set Q =df {q ∈ P | r v q v p}
does not contain an infinite chain.
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Existence of Finite Fixed Points

...there are numerous sufficient conditions ensuring the
existence of a least finite fixed point of a function f , which
often hold in practice (cf. Nielson/Nielson 1992), e.g.:

I the domain or the range of f are finite or chain-finite,

I the least fixed point of f is finite,

I f is of the form f (c) = c t g(c) with g a monotonic
function on a chain-finite (data) domain.
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Fixed Point Theorems, Lattices, and DCPOs

Note: Complete lattices (cf. Lemma A.4.1.13) and DCPOs
with a least element (cf. Lemma A.3.1.5) are CCPOs, too.

Thus, we can conclude:

Corollary A.5.2.10 (Fixed Points, Lattices, DCPOs)

The fixed point theorems of Chapter A.5.2 hold for functions
on complete lattices and on DCPOs with a least element, too.
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A.5.3

Fixed Point Theorems for Lattices
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Fixed Points of Monotonic Functions

Fixed Point Theorem A.5.3.1 (Knaster, Tarski)

Let (P ,v) be a complete lattice, and let f ∈ [P
mon→ P] be a

monotonic function on P . Then:

1. f has a unique least fixed point µf ∈ P , which is given by
µf =

d
{p ∈ P | f (p) v p}.

2. f has a unique greatest fixed point νf ∈ P , which is
given by νf =

⊔
{p ∈ P | p v f (p)}.

Characterization Theorem A.5.3.2 (Davis)

Let (P ,v) be a lattice. Then:

(P ,v) is complete iff every f ∈ [P
mon→ P] has a fixed point.
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The Fixed Point Lattice of Mon. Functions

Theorem A.5.3.3 (Lattice of Fixed Points)

Let (P ,v) be a complete lattice, let f ∈ [P
mon→ P] be a mono-

tonic function on P , and let Fix(f ) =df {p ∈ P | f (p) = p} be
the set of all fixed points of f . Then:

Every subset F ⊆ Fix(f ) has a supremum and an infimum in
Fix(f ), i.e., (Fix(f ),v |Fix(f )) is a complete lattice.

Theorem A.5.3.4 (Ordering of Fixed Points)

Let (P ,v) be a complete lattice, and let f ∈ [P
mon→ P] be a

monotonic function on P . Then:⊔
i∈IN0

f i (⊥) v µf v νf v
l

i∈IN0

f i (>)
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Fixed Points of Add./Distributive Functions

For additive and distributive functions, the leftmost and the
rightmost inequality of Theorem A.5.3.4 become equalities:

Fixed Point Theorem A.5.3.5 (Knaster,Tarski,Kleene)

Let (P ,v) be a complete lattice, and let f ∈ [P → P] be a
function on P . Then: f has a unique

1. least fixed point µf ∈ P given by µf =
⊔

i∈IN0
f i (⊥), if f

is additive, i.e., f ∈ [P
add→ P].

2. greatest fixed point νf ∈ P given by νf =
d

i∈IN0
f i (>), if

f is distributive, i.e., f ∈ [P
dis→ P].

Recall: f 0 =df IdC ; f i =df f ◦ f i−1, i > 0.
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A.6

Fixed Point Induction
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Admissible Predicates
Fixed point induction allows proving properties of fixed points.
Essential is the notion of admissible predicates:

Definition A.6.1 (Admissible Predicate)

Let (P ,v) be a complete lattice, and let φ : P→ IB be a pre-
dicate on P . Then:

φ is called admissible (or t-admissible) iff for every chain
C ⊆ P holds:

(∀ c ∈ C . φ(c)) ⇒ φ(
⊔

C )

Lemma A.6.2
Let (P ,v) be a complete lattice, and let φ : P→ IB be an ad-
missible predicate on P . Then: φ(⊥) =wahr.

Proof. The admissibility of φ implies φ(
⊔
∅) =wahr.

Moreover, we have ⊥=
⊔
∅, which completes the proof.
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Sufficient Conditions for Admissibility

Theorem A.6.3 (Admissibility Condition 1)

Let (P ,v) be a complete lattice, and let φ : P→ IB be a
predicate on P . Then:

φ is admissible, if there is a complete lattice (Q,vQ) and two

additive functions f , g ∈ [P
add→ Q], such that

∀ p ∈ P . φ(p) ⇐⇒ f (p) vQ g(p)

Theorem A.6.4 (Admissibility Condition 2)

Let (P ,v) be a complete lattice, and let φ, ψ : P→ IB be two
admissible predicates on P . Then:

The conjunction of φ and ψ, the predicate φ ∧ ψ defined by

∀ p ∈ P . (φ ∧ ψ)(p) =df φ(p) ∧ ψ(p)

is admissible.
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Fixed Point Induction on Complete Lattices

Theorem A.6.5 (Fixed Point Induction on C. Lat.)

Let (P ,v) be a complete lattice, let f ∈ [P
add→ P] be an

additive function on P , and let φ : P→ IB be an admissible
predicate on P . Then:

The validity of

I ∀ p ∈ P . φ(p) ⇒ φ(f (p)) (Induction step)

implies the validity of φ(µf ).

Note: The induction base, i.e., the validity of φ(⊥), is implied
by the admissibility of φ (cf. Lemma A.6.2) and proved when
verifying the admissibility of φ.
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Fixed Point Induction on CCPOs

The notion of admissibility of a predicate carries over from
complete lattices to CCPOs.

Theorem A.6.6 (Fixed Point Induction on CCPOs)

Let (C ,v) be a CCPO, let f ∈ [C
mon→ C ] be a monotonic

function on C , and let φ : C→ IB be an admissible predicate
on C . Then:

The validity of

I ∀ c ∈ C . φ(c) ⇒ φ(f (c)) (Induction step)

implies the validity of φ(µf ).

Note: Theorem A.6.6 holds (of course still), if we replace the
CCPO (C ,v) by a complete lattice (P ,v).
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A.7

References, Further Reading
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bände; Kapitel 3, Fixpunkttheorie mit Anwendungen; Ka-
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Bernhard Steffen, Oliver Rüthing, Michael Huth. Mathe-
matical Foundations of Advanced Informatics: Inductive
Approaches. Springer-V., 2018. (Chapter 5.1, Order
Relations; Chapter 5.2, Orders and Substructures)

Alfred Tarski. A Lattice-theoretical Fixpoint Theorem and
its Applications. Pacific Journal of Mathematics
5(2):285-309, 1955.

Franklyn Turbak, David Gifford with Mark A. Sheldon.
Design Concepts in Programming Languages. MIT Press,
2008. (Chapter 5, Fixed Points; Chapter 105, Software
Testing; Chapter 106, Formal Methods; Chapter 107,
Verification and Validation)

380/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

B

B.1

B.2

B.3

B.4

B.5

B.6

B.7

Appendix B

Pragmatics: Variants of Flow Graphs
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Representing Instructions in Flow Graphs

...representing programs by flow graphs, instructions (assign-
ments, tests) can be attached to:

I nodes

I edges

as

I single instructions

I basic blocks (i.e., sequential sequences of instructions)
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Flow Graph Variants

This leads to four flow graph variants:

I Node-labelled flow graphs
(in the style of Kripke structures)

1) Single instruction graphs (SI graphs)
2) Basic block graphs (BB graphs)

I Edge-labelled flow graphs
(in the style of transition systems)

3) Single instruction graphs (SI graphs)
4) Basic block graphs (BB graphs)
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Node-labelled Flow Graph Variants
a) Single instruction vs. b) basic block flow graphs:

x := a+b

y := a+b

a := x

s=1

e=7

3

2 4

5

6

x := y+z

c := b+c

y := y+z

d := b+c

e := c+d

d := a+b

a := b+c

Node−labelled SI Flow Graph

a) b)

Node−labelled BB Flow Graph
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Edge-labelled Flow Graph Variants
a), b) Single instruction vs. c) basic block flow graphs:

2 4

x := a+b

3

y := a+b

5

a := x

s=1

e=6

b)

Edge−labelled SI Flow Graphs

e := c+d

d := a+b

a := b+c

d := b+c

x := y+z

c := b+c

y := y+z

x := a+b

2 4

3

6

7

5

1

2

3 5

64

y := a+b

a := x

s=1

e=7

a) c)

Edge−labelled BB Flow Graph
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Which Flow Graph Variant shall We Select?

Conceptually, there is

I no difference between the various flow graph variants ma-
king the choice of a particular one essentially a matter of
taste.

Pragmatically, however,

I the flow graph variants differ in the ease and hence ade-
quacy of use for specifying and implementing program
analyses and optimizations.

This will be considered in more detail next.
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Flow Graph Variants: Which One to Select?
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Basic Block or Single Instruction Graphs
...node or edge-labelled, these are the questions.

We will investigate these questions by comparing the adequacy
of different flow graph variants for program analysis and opti-
mization.

To this end we consider node and edge-labelled flow graphs
annototated with basic blocks and single instructions, respec-
tively, and investigate their

I advantages and disadvantages for program analysis

from a pragmatical perspective addressing thereby especially
the question:

I BB or SI graphs: Just a matter of taste?

On the fly we will learn some new data flow analyses such as

I Faint variable analysis, example of a non-separable real
world data flow analysis problem.
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Basic Block Graphs: Expected Advantages

Advantages commonly attributed to basic block graphs by
‘folk knowledge:’

Better scalability and performance because

I less nodes (edges) are involved in the (potentially)
computationally costly fixed point iteration

I larger programs fit into the main memory.

391/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

B

B.1

B.1.1

B.1.2

B.2

B.3

B.4

B.5

B.6

B.7

Basic Block Graphs: Definite Disadvantages

Definite disadvantages of basic block graphs in practice:

I Higher conceptual complexity: Basic blocks introduce an un-
desired hierarchy into flow graphs making both theoretical
reasoning and practical implementations more difficult.

I Need for pre- and post-processes: These are usually required
in order to cope with the additional problems introduced by
the hierarchical structure of basic block flow graphs (e.g., in
dead code elimination, constant propagation,...); or which
necessitate ‘tricky’ formulations to avoid them (e.g., in partial
redundancy elimination).

I Limited generality: Some practically relevant program analy-
ses and optimizations are difficult or not at all expressible on
the level of basic block flow graphs (e.g., faint variable elimi-
nation).

392/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

B

B.1

B.1.1

B.1.2

B.2

B.3

B.4

B.5

B.6

B.7

Core Issue
...basic blocks cause a hierarchical graph structure:

a := b+c

d := a+b

e := c+d

ι

ι

ι

X−I

X−BB

=

N−I

X−I

N−I

X−I

N−I

N−BB

=

β
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In the following

...we oppose advantages and disadvantages of

I basic block (BB) and single instructions (SI) graphs

considering DFA problems already discussed:

I Available expressions

I Simple constants

and new DFA problems:

I Faint variables
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B.2

MOP and MaxFP Approach
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Edge-labelled Instruction Graphs
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Fixing the Setting

Let

I G = (N ,E , s, e) be an edge-labelled SI flow graph.

I SG =df (Ĉ, [[ ]]E ,ι, cs, fw) be a DFA specification.
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The MOP Approach and MOP Solution

...for an edge-labelled single instruction flow graph.

Definition B.2.1.1 (The MOP Solution)

The MOPE ,ι solution of SG is defined by:

MOPSG
E ,ι : N→C

∀ n ∈ N . MOPSG
E ,ι(n) =df

l
{ [[ p ]]E ,ι(cs) | p ∈ P[s, n] }
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The MaxFP Approach and MaxFP Solution

...for an edge-labelled single instruction flow graph.

Definition B.2.1.2 (The MaxFP Solution)

The MaxFPE ,ι solution of SG is defined by:

MaxFPSG
E ,ι : N→C

∀ n ∈ N . MaxFPSG
E ,ι(n) =df ν-inf cs(n)

where ν-inf cs denotes the greatest solution of the MaxFP
Equation System for instruction graphs:

inf (n) =

{
cs if n = sd
{ [[ (m, n) ]]E ,ι(inf (m)) |m ∈ pred(n) } otherwise
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Fixing the Setting (1)

In the following we denote:

I basic block nodes by boldface letters (m, n,...)

I single instruction nodes by normalface letters (m, n,...)

We start from:

I G = (N ,E , s, e), a node-labelled SI flow graph

I SG = (Ĉ, [[ ]]N,ι, cs, fw), a DFA specification

which induce a node-labelled BB flow graph G and a corres-
ponding DFA specification SG.
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Fixing the Setting (2)
Given G and SG , let

I G= (N,E, sG, eG)

I SG = (Ĉ, [[ ]]N,β, cs, fw)

denote the node-labelled BB flow graph and the DFA speci-
fication induced by G and SG , respectively, where

I [[ ]]N,β : N→C→C
denotes the extension of the SI DFA functional [[ ]]N,ι from
nodes to basic blocks defined by

I ∀n= 〈nι1 , . . . , nιk 〉 ∈ N. [[ n ]]N,β =df [[ 〈n1, . . . , nk〉 ]]N,ι

Auxiliary Mappings

I bb: maps a node n to the basic block n it is included in.
I start: maps a basic block node n to its entry node n.
I end : maps a basic block node n to its exit node n.
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The MOP Approach and MOP Solution (1)

...for a node-labelled basic block flow graph.

Definition B.2.2.1 (The MOP Solution, Part 1)

The MOPN,β solution of SG is defined by

MOPSGN,β : N→ (C, C)

∀n ∈ N. MOPSGN,β(n) =df ( N-MOPSGN,β(n), X -MOPSGN,β(n) )

where

N-MOPSGN,β(n) =df

l
{ [[ p ]]N,β(cs) | p ∈ PG[s,n[ }

X -MOPSGN,β(n) =df

l
{ [[ p ]]N,β(cs) | p ∈ PG[s,n] }
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The MOP Approach and MOP Solution (2)
Entry (N) and exit (X) information for basic block nodes must
be pushed inside of the basic blocks:

X

X

N

N

N

N

N

N

N

X

X

X

X

X

X

X

N

N

x := y+z

c := b+c

y := y+z

d := b+c

e := c+d

d := a+b

a := b+c
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The MOP Approach and MOP Solution (3)

...and their push to the instruction level:

Definition B.2.2.1 (The MOP Solution, Part 2)

The MOPN,ι solution of SG is defined by

MOPSG
N,ι : N→ (C, C)

∀ n ∈ N . MOPSG
N,ι(n) =df ( N-MOPSG

N,ι(n), X -MOPSG
N,ι(n) )
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The MOP Approach and MOP Solution (4)

where

N-MOPSG
N,ι(n) =df



N-MOPSGN,β(bb(n))

if n= start(bb(n))

[[ p ]]N,ι(N-MOPSGN,β(bb(n)))

otherwise (p is the prefix path from
start(bb(n)) up to but exclusive of n)

X -MOPSG
N,ι(n) =df [[ p ]]N,ι(N-MOPSGN,β(bb(n)))

(p is the prefix path from start(bb(n)) up

to and inclusive of n)

406/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

B

B.1

B.2

B.2.1

B.2.2

B.3

B.4

B.5

B.6

B.7

The MaxFP Approach and MaxFP Solution (1)
...for a node-labelled basic block flow graph.

Definition B.2.2.2 (The MaxFP Solution, Part 1)

The MaxFPN,β solution of SG is defined by

∀n ∈ N. MaxFPSGN,β(n) =df ( N-MaxFPSGN,β(n), X -MaxFPSGN,β(n) )

with

N-MaxFPSGN,β(n) =df ν-precs,β(n)

X -MaxFPSGN,β(n) =df ν-postcs,β(n)

where ν-precs,β and ν-postcs,β denote the greatest solution of
the MaxFP Equation System for basic block graphs:

pre(n) =

{
cs if n = sd
{ post(m) |m ∈ predG(n) } otherwise

post(n) = [[ n ]]N,β(pre(n)) 407/444
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The MaxFP Approach and MaxFP Solution (2)
Entry (N) and exit (X) information for basic block nodes must
be pushed inside of the basic blocks:

X

X

N

N

N

N

N

N

N

X

X

X

X

X

X

X

N

N

x := y+z

c := b+c

y := y+z

d := b+c

e := c+d

d := a+b

a := b+c
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The MaxFP Approach and MaxFP Solution (3)

...and their push to the instruction level:

Definition B.2.2.2 (The MaxFP Solution, Part 2)

The MaxFPN,ι solution of SG is defined by

∀ n ∈ N . MaxFPSG
N,ι(n) =df ( N-MaxFPSG

N,ι(n), X -MaxFPSG
N,ι(n) )

with

N-MaxFPSG
N,ι(n) =df ν-precs,ι(n)

X -MaxFPSG
N,ι(n) =df ν-postcs,ι(n)
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The MaxFP Approach and MaxFP Solution (4)

...where ν-precs,ι and ν-postcs,ι denote the greatest solution of
the MaxFP Equation System for instruction graphs:

pre(n) =


ν-precs,β(bb(n)) if n = start(bb(n))

post(m) otherwise, where m is the
unique predecessor of n
in bb(n)

post(n) =

{
ν-postcs,β(bb(n)) if n = end(bb(n))

[[ n ]]N,ι(pre(n))
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412/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

B

B.1

B.2

B.3

B.3.1

B.3.2

B.3.3

B.3.4

B.4

B.5

B.6

B.7

Available Expressions (1)
...for node-labelled basic block graphs and a single term t.

Stage I: The Basic Block Level

Local Predicates (associated with basic block nodes):

I BB-XCompt
β: β contains a statement ι computing t, and

neither ι nor a statement following ι in β modifies an

operand of t.
I BB-Transpt

β: β does not contain a statement which mo-
difies an operand of t.

The Basic Block MaxFP Equation System of Stage I:

BB-N-Availβ =

 cs if β = sG∧
β̂∈pred(β)

BB-X-Availβ̂ otherwise

BB-X-Availβ = (BB-N-Availβ ∧ BB-Transpt
β) ∨ BB-XCompt

β
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Available Expressions (2)

Stage II: The Instruction Level

Local Predicates (associated with instruction nodes):

I Compt
ι : ι computes t.

I Transpt
ι : ι does not modify an operand of t.

I ν-BB-N-Avail, ν-BB-X-Avail: the greatest solution of the
MaxFP Equation System of Stage I.

Auxiliary Mappings

I bb: maps an instruction ι to the basic block β it is inclu-
ded in.

I start: maps a basic block β to its entry instruction ι.

I end : maps a basic block β to its exit instruction ι.
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Available Expressions (3)

The Instruction MaxFP Equation System of Stage II:

N-Availι =

{
ν-BB-N-Availbb(ι) if ι= start(bb(ι))
X-Availpred(ι) otherwise (note: | pred(ι) | = 1)

X-Availι =


ν-BB-X-Availbb(ι) if ι= end(bb(ι))

(N-Availι ∨ Compt
ι) ∧ Transpt

ι otherwise
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Available Expressions

...for node-labelled instruction graphs and a single term t.

Local Predicates (associated with instruction nodes):

I Compt
ι : ι computes t.

I Transpt
ι : ι does not modify an operand of t.

The Instruction MaxFP Equation System:

N-Availι =

{
cs if ι= s∧
ι̂∈pred(ι)

X-Availι̂ otherwise

X-Availι = (N-Availι ∨ Compt
ι) ∧ Transpt

ι
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Available Expressions

...edge-labelled instruction graphs and a single term t.

Locale Predicates (associated with instruction edges):

I Compt
ε: Instruction ι of edge ε computes t.

I Transpt
ε: Instruction ι of edge ε does not modify an ope-

rand of t.

The Instruction MaxFP Equation System:

Availn =


cs if n = s∧
m∈pred(n)

(Availm ∨ Compt
(m,n)) ∧ Transpt

(m,n)

otherwise
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Findings

...edge-labelled instruction graphs are conceptually and nota-
tionally the most

I convenient ones.

...node-labelled basic block graphs the most

I inconvenient ones.
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in the following

...we consider two more examples to illustrate the impact of
selecting a flow graph variant on the conceptual and practical
complexity of data flow analysis:

I Simple constants analysis (cf. Chap. B.4)

I Faint variables analysis (cf. Chap. B.5)

To this end we will oppose and investigate MaxFP formula-
tions of these problems for

I node-labelled basic blcok graphs

I edge-labelled instruction graphs

which are the antipodes of each other.
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Simple Constants Analysis

...for the formal problem formulation we require two auxiliary
functions:

I Backward substitution δ

I State transformation θ

together with their extensions to (path) instruction sequences.
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Backward Substitution, State Transformation

Let ι ≡ (x := t) be an instruction. We define:

I Backward substitution δι

δι : T→T defined by

∀ s ∈ T. δι(s) =df s[t/x ]

where s[t/x ] denotes the simultaneous replacement of all
occurrences of x by t in s.

I State transformation θι

θι : Σ→Σ defined by

∀σ ∈ Σ ∀ v ∈ V. θι(σ)(v) =df

{
E(t)(σ) if v = x
σ(v) otherwise
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The Relationship of δ and θ

Let I denote the set of all instructions.

Lemma B.4.1 (Substitution Lemma for Instructions)

∀ ι ∈ I ∀ t ∈ T ∀σ ∈ Σ. E(δι(t))(σ) = E(t)(θι(σ))

Proof by induction on the structure of t.
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Simple Constants Analysis

...for an edge-labelled instruction graph.

The MaxFP Equation System for edge-lab. instruction graphs:

SCn =

{
σs falls n = s
λ v .

d
{ E(δ(m,n)(v))(SCm) |m ∈ pred(n) } sonst

where σs ∈ Σ start information.

The Solution of the Simple Constants Analysis is given by:

I ν-SC : N→Σ, the greatest solution of the above EQS.

428/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

B

B.1

B.2

B.3

B.4

B.4.1

B.4.2

B.5

B.6

B.7

B.4.2

Node-labelled Basic Block Graphs

429/444



Contents

Part III

Chap. 7

Chap. 10

Appendices

A

B

B.1

B.2

B.3

B.4

B.4.1

B.4.2

B.5

B.6

B.7

Backward Substitution, State Transformation

...for paths.

Adapting and extending δ and θ from instructions to sequen-
ces of instructions on paths (and hence basic blocks) of node-
labelled flow graphs:

I Backward Substitution on Path Instruction Sequences

∆p : T→T

∆p =df

{
δnq if q = 1
∆(n1,...,nq−1) ◦ δnq if q > 1

I State Transformation on Path Instruction Sequences

Θp : Σ→Σ

Θp =df

{
θn1 if q = 1
Θ(n2,...,nq) ◦ θn1 if q > 1
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The Relationship of ∆ and Θ

Let B denote the set of all basic blocks.

Lemma B.4.2.1 (Substitution L. for Basic Blocks)

∀ β ∈ B ∀ t ∈ T ∀σ ∈ Σ. E(∆β(t))(σ) = E(t)(Θβ(σ))

Proof by induction on the length of β.
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Simple Constants Analysis (1)

...for a node-labelled basic block graph.

Stage I: The Basic Block Level

The BBN MaxFP Equation System of Stage I:

BB-N-SCβ =

{
σs if β = sd
{BB-X-SCβ̂ | β̂ ∈ pred(β)} otherwise

BB-X-SCβ = λv . E(∆β(v))(BB-N-SCβ)

where σs ∈ Σ start information.

The Solution of the BBN SC Analysis is given by:

I ν-BB-N-SCβ, ν-BB-X-SCβ : N→Σ, the greatest solu-
tions of the above equation system.
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Simple Constants Analysis (2)

Stage II: The Instruction Level

Auxiliary Mappings

I bb: maps an instruction ι to the basic block β it is inclu-
ded in.

I start: maps a basic block β to its entry instruction ι.

I end : maps a basic block β to its exit instruction ι.

The SIN MaxFP Equation System of Stage II:

N-SCι =


ν-BB-N-SCbb(ι) if ι= start(bb(ι))
X-SCpred(ι) otherwise (because

| pred(ι) | = 1)

X-SCι =

{
ν-BB-X-SCbb(ι) if ι= end(bb(ι))
λv . E(δι(v))(N-CPι) otherwise
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Simple Constants Analysis (3)

The Solution of the SIN SC Analysis is given by:

I ν-N-SC, ν-X-SC : N→Σ, the greatest solution of the pre-
ceding equation system.
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Faint Variables: Between Life and Death

...consider the program:

2

3

4

s=1

e=5

out(l)

f2 := f1

f1 := f2

f := f+1

d := b+c
l := l+1

Note: Instruction

I l := l + 1 is live,

I d := b + c is dead,

I f := f + 1, f 1 := f 2, and f 2 := f 1 are live but faint
(in German: geisterhaft, schattenhaft).
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Faint Variables Analysis (1)

...for an edge-labelled instruction graphs.

Local Predicates (associated with instruction edges):

I LifeEnforcingUsev
ε : Variable v is used by the instruction ι

associated with edge ε and ‘forced to live’ by it (i.e., ι is
an output or test operation).

I MODv
ε : The instruction ι at edge ε modifies variable v .

I Ass-Usedv
ε : Variable v , occurs in the right-hand side

expression of the instruction ι associated with edge ε.

Auxiliary Mapping

I LhsVar : Maps an edge ε to the left-hand side variable of
the instruction ι associated with it.
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Faint Variables Analysis (2)

The SIE MaxFP Equation System:

FAINTv
n =

fve if n = e∧
m∈succ(n)

¬LifeEnforcingUsev
(n,m) ∧

(FAINTv
m ∨ MODv

(n,m)) ∧
(FAINT

LhsVar (n,m)
m ∨ ¬Ass-Usedv

(n,m)) otherwise

where fve ∈ IB |V | start information.

The Solution of the SIE Faint Variables Analysis is given by:

I ν-FAINT : N→ IB |V | , the greatest solution of the above
equation system.
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Informally

...a variable v ist faint at node n, if v

I is not forced to live by an instruction at an incoming edge
of n (1-st conjunction term).

I is already faint at node n or modified by an instruction at
an incoming edge of n and thereby made faint (2-nd con-
junction term).

I is not used by an instruction at an incoming edge of n or
(at most) used to assign a new value to a variable which
is faint itself (3-rd conjunction term).
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Summing up

Faint variables are an example of a (so-called) non-separable
DFA problem, where a formulation leading to an efficient
implementation is

I obvious for (node and edge-labelled) instruction graphs,

I not at all obvious, if not impossible at all, for (node and
edge-labelled) basis block graphs.

(Note that the naive straightforward extension to basic
block graphs would require for every basic block n to
compute the full semantic function [[ n ]]faint : IBkn→ IBkn ,
where kn is the number of variables occuring in n, a func-
tion with 2kn arguments. In the worst case, kn coincides
even with the number of all variables in the program
under consideration.)
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Conclusion
All 4 flow graph variants are conceptually essentially equivalent
with in most cases only minor pragmatic advantages and dis-
advantages.

Thus the general holistic framework and tool kit view of DFA

Equivalence EffectivityObligations:

Proof

Optimality/Conservativity

Completeness

Soundness
Coincidence Theorem 

Safety Theorem 

Theory

Interface

DFA
Framework

MOP−Solution

3 1b) 1a)2

ToolkitPractice

MaxFP−Solution

Parallel
Object−oriented

Conditional
...

Intraprocedural

Generic

MaxFP Alg.(s)

Computed Solution

Termination Theorem

Termination Theorem

Specification

DFA

Program
Property

φ

Interprocedural

is conceptually adequate and sufficient when being aware of
the differences and their impact on specification, implementa-
tion, and proof obligation accomplishment.
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Jens Knoop. From DFA-Frameworks to DFA-Generators:
A Unifying Multiparadigm Approach. In Proceedings of the
5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’99),
Springer-V., LNCS 1579, 360-374, 1999.
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