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Sometimes, the elegant implementation is a function.
Not a method. Not a class. Not a framework.
Just a function.

John Carmack
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Motivation
Contents
The preceding, a quote from a recent article by Yaron Minsky:
» OCaml for the Masses
...why the next language you learn should be functional.
Communications of the ACM 54(11):53-58, 2011.

The next, a quote from a classical article by John Hughes:

» Why Functional Programming Matters
...an attempt to demonstrate to the “real world” that
functional programming is vitally important, and also to
help functional programmers exploit its advantages to the
full by making it clear what those advantages are.

Computer Journal 32(2):98-107, 1989.
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Chap. 1

Chapter 1

Why Functional Programming Matters
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Why Functional Programming Matters

Reconsidering a position statement by John Hughes that is Chap. 1
based on an internal 1984 memo at Chalmers University, and
has slightly revised been published in:

» Computer Journal 32(2):98-107, 1989.

» Research Topics in Functional Programming. David Turner
(Ed.), Addison-Wesley, 1990.

» http://www.cs.chalmers.se/~rjmh/Papers/whyfp.html

“...an attempt to demonstrate to the “real world” that
functional programming is vitally important, and also to help
functional programmers exploit its advantages to the full by
making it clear what those advantages are.”
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Chapter 1.1
Setting the Stage
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Introductory Statement
A matter of fact:

» Software is becoming more and more complex
» Hence: Structuring software well becomes paramount

» Well-structured software is more easily to write, to debug,
and to be re-used

Claim:
» Conventional languages place conceptual limits on the
way problems can be modularized
» Functional languages push these limits back

» Fundamental: Higher-order functions and lazy evaluation

Next:
» Providing evidence for this claim
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Background

Functional programming owes its name to the facts that

» programs are composed of only functions

» the main program is itself a function

» it accepts the program'’s input as its arguments and
delivers the program’s output as its result

» it is defined in terms of other functions, which them-
selves are defined in terms of still more functions
(eventually by primitive functions)
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Folk Knowledge: Soft Facts

...of characteristics & advantages of functional programming:

Functional programs are

> free of assignments and side-effects
» function calls have no effect except of computing their result
= functional programs are thus free of a major source of bugs

» the evaluation order of expressions is irrelevant, expressions
can be evaluated any time

» programmers are free from specifying the control flow
explicitly
> expressions can be replaced by their value and vice versa;

programs are referentially transparent

= functional programs are thus easier to cope with mathemati-
cally (e.g. for proving their correctness)
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Observation

...the commonly found previous list of characteristics and
advantages of functional programming is

» essentially a negative “is-not”-characterization
» “It says a lot about what functional programming is not
(it has no assignments, no side effects, no explicit
specification of flow of control) but not much about
what it is.”
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Folk Knowledge: Hard(er) Facts

Aren't there any hard(er) facts providing evidence for
substantial and “real” advantages?

Yes, there are, e.g.:

» Functional programs are
» a magnitude of order smaller than conventional programs
= functional programmers are thus much more productive

Open lIssue:
» Why?
» Can it be concluded from the advantages of the
“standard catalogue,” i.e., by dropping features?
Hardly.

This is not convincing. Overall, it reminds more to a medieval
monk who denies himself the pleasures of life in the hope of

getting virtuous.
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Summing up: Lesson learnt

» The “standard catalogue” is not satisfying

» It does not provide any help in exploiting the power of

functional languages
» Programs cannot be written which are particularly
lacking in assignment statements, or which are
particularly referentially transparent

» It does not provide a yardstick of program quality, thus
no model to strive for

» We need a positive characterization of the vital nature of

» functional programming, of its strengths
» what makes a “good” functional program, of what a
functional programmer should strive for
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Towards a Positive Characterization

Structured vs. non-structured programming 11

...provides an analogue to compare with:

Structured programs are
» free of goto-statements ( “goto considered harmful”)

» blocks in structured programs are free of multiple entries
and exits

= easier to mathematically cope with than unstructured
programs

Note: This is essentially a negative “is-not”-characterization,
too.
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Towards a Positive Characterization (Cont'd)

Conceptually more important:

Structured programs are:
» designed modularly in contrast to non-structured programs
» Structured programming is more efficient/productive for this
reason

» Small modules are easier and faster to write and to
maintain

» Re-use becomes easier

» Modules can be tested independently

Note: Dropping goto-statements is not an essential source of
productivity gain.

» Absence of gotos supports “programming in the small”

» Modularity supports “programming in the large”
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Thesis

» The expressiveness of a language that supports modular
design depends much on the power of the concepts and
primitives allowing to combine solutions of subproblems
to the solution of the overall problem (keyword: glue;
example: making of a chair)

» Functional programming provides two new, especially
powerful glues:

1. Higher-order functions

2. Lazy evaluation
They offer conceptually new opportunities for modulari-
zation and re-use (beyond the more technical ones of
lexical scoping, separate compilation, etc.), and make
them more easily to achieve.

» Modularization (smaller, simpler, more general) is the
guideline, which should be followed by functional pro-

grammers in the course of programming
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In the following

11
1.2
18

» Glueing functions together

~~ The clou: Higher-order functions

» Glueing programs together

~» The clou: Lazy evaluation
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Chapter 1.2

Glueing Functions Together
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Glueing Functions Together

Syntax (in the flavour of Miranda™):

» Lists 2
listof X ::= nil | cons X (listof X)

» Abbreviations (for convenience)
(] means nil
[1] means cons 1 nil

[1,2,3] means cons 1 (cons 2 (cons 3 nil)))

Example:

Adding the elements of a list

sum nil =0
sum (cons num list) = num + sum list
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Observation
Only the framed parts are specific to computing a sum:

+———+

| O |
+-——+

sum nil

+-——+

num | + | sum list
f——t

sum (cons num list)

...l.e., computing a sum of values can be modularly decom-
posed by properly combining

» a general recursion pattern and
» a set of more specific operations

(see framed parts above).
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Exploiting the Observation

1. Adding the elements of a list
sum = reduce add O
where

add x y = xty

This reveals the definition of reduce almost immediately:

(reduce f x) nil = x
(reduce f x) (cons a 1) = f a ((reduce f x) 1)

Recall
R
sum nil =] 0|
ot
-t
sum (cons num list) = num | + | sum list

+———+
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Immediate Benefit: Re-use

Without any further programming effort we obtain implemen- e

tations for other functions, e.g.:

2. Computing the product of the elements of a list

product = reduce multiply 1
where multiply x y = xX*y

3. Test, if some element of a list equals “true”
anytrue = reduce or false
4. Test, if all elements of a list equal “true”

alltrue = reduce and true
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Intuition

The call (reduce f a) can be understood such that in a list
of elements all occurrences of

» cons are replaced by f

» nil by a

Examples:

reduce add O:
cons 1 (cons 2 (cons 3 nil))
->> add 1 (add 2 (add 3 0))
->> 6

reduce multiply 1:
cons 1 (cons 2 (cons 3 nil))
->> multiply 1 (multiply 2 (multiply 3 1))
->> 6
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More Applications 1(5)

Observation: reduce cons nil copies a list of elements

This allows: 12
5. Concatenation of lists

append a b = reduce cons b a

Example:

append [1,2] [3,4]

->> reduce cons [3,4] [1,2]

->> (reduce cons [3,4]) (cons 1 (cons 2 nil))

->> { replacing cons by cons and nil by [3,4] }
cons 1 (cons 2 [3,4])

->> cons 1 (cons 2 (cons 3 (cons 4 nil)))

->> [1,2,3,4]
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More Applications 2(5)

6. Doubling each element of a list

doubleall = reduce doubleandcons nil
where doubleandcons num list
= cons (2%num) list
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More Applications 3(5)
The function doubleandcons can be modularized further:

» First step i
doubleandcons = fandcons double
where double n = 2*n
fandcons f el list = cons (f el) list
» Second step
fandcons f = cons . £
where “." denotes the composition of functions:
(f . g h=1£f (gh

Note: For checking correctness consider:

fandcons f el = (cons . f) el
= cons (f el)

which yields as desired:

fandcons f el list = cons (f el) list
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More Applications 4(5)

Putting things together, we obtain:

6a. Doubling each element of a list

doubleall = reduce (cons . double) nil

Another step of modularization using map leads us to:

6b. Doubling each element of a list

doubleall = map double
map f = reduce (cons . f ) nil

where map applies any function f to all the elements of a list.
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More Applications 5(5)

After these preparative steps it is just as well possible:

7. Adding the elements of a matrix

summatrix = sum . map sum

Homework: Think about how summatrix works.
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Summing up

By decomposing (modularizing) and representing a simple
function (sum in the example) as a combination of

» a higher-order function and

» some simple specific functions as arguments

we obtained a program frame (reduce) that allows us to
implement many functions on lists without any further
programming effort!
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Generalization

...to more complex data structures:

Trees:

treeof X ::= node X (listof (treeof X))

Example:

node 1 1
(cons (node 2 nil) /\

(cons (node 3 2 3
(cons (node 4 nil) nil)) |
nil)) 4
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Generalization (Cont'd)

Analogously to reduce on lists we introduce a functional
redtree on trees:

redtree f g a (node label subtrees)

= f label (redtree’ f g a subtrees)

where

redtree’ f g a (cons subtree rest)
= g (redtree f g a subtree) (redtree’ f g a rest)
redtree’ f g a nil = a

Note: redtree takes 3 arguments (£, g, a)
» The first one to replace node with
» The second one to replace cons with

» The third one to replace nil with
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Applications 1(4)

1. Adding the labels of the leaves of a tree
2. Generating a list of all labels occurring in a tree

3. A function maptree on trees replicating the function map
on lists
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Applications 2(4)

1. Adding the labels of the leaves of a tree

sumtree = redtree add add O

Example:

Using the tree introduced previously, we obtain:

add 1
(add (add 2 0)
(add (add 3
(add (add 4 0) 0))
0))
->> 10
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Applications 3(4)

2. Generating a list of all labels occurring in a tree 12

labels = redtree cons append nil

Example:

cons 1
(append (cons 2 nil)
(append (cons 3
(append (cons 4 nil) nil))
nil))
->> [1,2,3,4]
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Applications 4(4)

3. A function maptree on trees replicating the function map
on lists

maptree f = redtree (node . f) cons nil
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Summing up

» The elegance of the preceding examples is a consequence
of combining

» a higher-order function and
» a specific specializing function

» Once the higher order function is implemented, lots of
further functions can be implemented almost without any
further effort!
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Summing up (Cont'd)

» Lesson learnt: Whenever a new data type is introduced, s
implement first a higher-order function allowing to process
values of this type (e.g., visiting each component of a
structured data value such as nodes in a graph or tree).

» Benefits: Manipulating elements of this data type be-
comes easy; knowledge about this data type is locally
concentrated and encapsulated.

» Look&feel: Whenever a new data structure demands a
new control structure, then this control structure can
easily be added following the methodology used above (to
some extent this resembles the concepts known from
conventional extensible languages).
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Reminder to initial Thesis

> The expressiveness of a language that supports modular
design depends much on the power of the concepts and
primitives allowing to combine solutions of subproblems to 12
the solution of the overall problem (keyword: glue; example:
making of a chair).

» Functional programming provides two new, especially power-
ful glues:

1. Higher-order functions
2. Lazy evaluation

They offer conceptually new opportunities for modularization
and re-use (beyond the more technical ones of lexical scoping,
separate compilation, etc.), and make them more easily to
achieve.

» Modularization (smaller, simpler, more general) is the guide-
line, which should be followed by functional programmers in
the course of programming. e



Reminder (Cont'd)

So far, we talked about:

» Higher-order functions as glue for glueing functions
together

Next we will talk about:

» Lazy evaluation as glue for glueing programs together
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Chapter 1.3
Glueing Programs Together
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Glueing Programs Together

Recall: A complete functional program is a function from its
input to its output.

» If £ and g are (such) programs, then also

g . f
is a program. Applied to input as input, it yields the
output

g (f input)

» A possible implementation using conventional glue:
~~» Communication via files
» Possible problems

» Temporary files can be too large
» f might not terminate
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Functional Glue

Lazy evaluation allows a more elegant approach:

» Decomposing a problem into a

» generator
» selector

component, which are then glued together.

Intuition:

» The generator component “runs as little as possible” until
it is terminated by the selector component.

52/1653



Example 1: Computing Square Roots

Computing Square Roots (according to Newton-Raphson)
Given: N Wanted: squareRoot (N)

[teration formula:

a(n+1) = (a(n) + N/a(n)) / 2

Justification: If the approximations converge to some limit a,
we have:

a=(a+Na) /2
=> 2a = a + N/a

a = N/a

axa = N

a = squareRoot (N)

l.e., a stores the value of the square root of N.
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For later comparison we consider first

...a typical imperative (Fortran-) implementation:

C N is called ZN here so that it has -
C the right type
X = A0
Y = A0 + 2.*EPS
C The value of Y does not matter so long
C as ABS(X-Y).GT.EPS
100 IF (ABS(X-Y).LE.EPS) GOTO 200
Y =X
X=X+ ZN/X) / 2.
GOTO 100
200 CONTINUE
C The square root of ZN is now in X

~ essentially monolithic, not decomposable.
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The Functional Version 1(4)

Computing the next approximation from the previous one:

next N x = (x + N/x) / 2

Introducing function £ for the above computation, we are
interested in computing the sequence of approximations:

[a0, f a0, f(f a0), f(£(f a0)),...
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The Functional Version 2(4)

The function repeat computes this (possibly infinite) se-
quence of approximations. It is the generator component in
this example:

Generator:

repeat f a = cons a (repeat f (f a))

Applying repeat to the arguments next N and a0 yields the
desired sequence of approximations:

repeat (next N) a0
->> [a0, f a0, f(f a0), f(£f(f a0)),...
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The Functional Version 3(4)

Note: The evaluation of
repeat (next N) a0

does not terminate!

Remedy: Computing squareroot N up to a given tolerance
eps > 0. Crucial: The selector component implemented by:

Selector:

within eps (cons a (cons b rest))
= b, if abs(a-b) <= eps
= within eps (cons b rest), otherwise

Final step: Combining the components/modules:

sqrt a0 eps N = within eps (repeat (next N) a0)

~s We are donel
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The Functional Version 4(4)

Summing up:

» repeat: generator component:
[a0, f a0, f(f a0), f(£f(f a0)),...]
...potentially infinite, no limit on the length.
» within: selector component:
f' a0 with abs(f’ a0 - f'*1 a0) <= eps
...lazy evaluation ensures that the selector function
is applied eventually = termination!

Note: Lazy evaluation ensures that both programs (generator
and selector) run strictly synchronized.
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Re-Use of Modules

Next, we want to provide evidence that
> generator
» selector

can indeed be considered modules that can easily be re-used.

We are going to start with the re-use of the module generator.
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Evidence of Generator-Modularity

Consider a new criterion for termination:
» Instead of awaiting the difference of successive
approximations to approach zero (<= eps), await their
ratio to approach one (<= 1+eps)

13

New Selector:

relative eps (cons a (cons b rest))
= b, if abs(a-b) <= eps * abs b
relative eps (cons b rest), otherwise

Final step: (Re-)combining the components/modules:

relativesqrt a0 eps N
= relative eps (repeat (next N) a0)

~ We are donel
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Note the Re-Use

...of the module generator in the previous example:

» The generator, i.e., the “module” computing the
sequence of approximations has been re-used unchanged.

Next, we want to re-use the module selector.
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Example 2: Numerical Integration

Numerical Integration

Given: A real valued function £ of one real argument; two
end-points a und b of an interval

Wanted: The area under £ between a and b

Naive Implementation:
...supposed that the function £ is roughly linear between a und b.

easyintegrate f a b = (f a + £ b) * (b-a) / 2

This is sufficiently precise, however, at most for very small
intervals.
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[[lustration

b-a
y e
A }f(a) £ 1
B
B £(b)
w -
a b X

b
% f(x) dx = A+B = (f(a) + f(b))*(b—a) / 2
a
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Refinements 1(3)

Idea
» Halve the interval, compute the areas for both sub-
intervals according to the previous formula, and add the
two results
» Continue the previous step repeatedly

The function integrate implements this strategy:

Generator:

integrate f a b
= cons (easyintegrate f a b)
map addpair (zip (integrate f a mid)
(integrate f mid b)))
where mid = (at+b)/2

Reminder:

zip (cons a s) (cons b t) = cons (pair a b) (zip s t)
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Refinements 2(3)

Obviously, the evaluation of
integrate f a b

does not terminate!

Remedy: Computing integrate f a b up to some
limit eps > 0.

Two Selectors:

Variant A: within eps (integrate f a b)
Variant B: relative eps (integrate f a b)
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Refinements 3(3)

Summing up:

» Generator component:
integrate
...potentially infinite, no limit on the length.

» Selector component:
within, relative
...lazy evaluation ensures that the selector function
is applied eventually = termination!
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Note the Re-Use

...of the module selector in the previous example:

» The selector, i.e., the “module” picking the solution from
the stream of approximate solutions has been re-used
unchanged.

Again, lazy evaluation is the key to synchronize the generator
and selector module!
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Remark on Efficiency

» integrate as given previously is sound but inefficient
(many redundant computations of £ a, f b, and £ mid) 13

Introducing locally defined values as shown below removes this
deficiency:

integrate f a b = integ f a b (f a) (f b)
integ £ a b fa fb
= cons ((fa+fb)*(b-a)/2)
(map addpair (zip (integ f a m fa fm)
(integ f m b fm fb)))
where m = (a+b)/2
fm=fm
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Example 3: Numerical Differentiation

Numerical Differentiation

Given: A real valued function £ of one real argument; a point
X

Wanted: The slope of f at point x

Naive Implementation:
...supposed that the function £ between x and x+h does not “curve
much”

easydiff f x h = (f (x+th) - fx) / h

This is sufficiently precise, however, at most for very small values
of h.
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Refinements

Generate a sequence of approximations getting successively
“better”:

Generator:
differentiate hO f x

map (easydiff f x) (repeat halve hO)
x/2

halve x

Select a sufficiently precise approximation:

Selector:

within eps (differentiate hO f x)

Combining the generator with other selectors: Homework
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The Generator/Selector Principle at a Glance

Generator

[EOrE—

Selector/Filter
select p
(X, Y, 2, [qlq<-[xy,2.], |

o select p q == True

Combining Generator and Selector/Filter

{ iterate f x]‘% select p }%

X EXHEN, o [alg<-[x X X,
e ‘ select p g == True ]
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The Generator/Transformer Princ. at a Glance

Generator

(e}

X, X, f(EX), ...

Transformer
s

X YeZyeo | EX 2V, 87 .

Combining Generator and Transformer

iterate f X}»‘{ map g }“—’

x, T x, f(f x), g x, g(f x), g(f(f x)),
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Summary of Findings (1)

The composition pattern, which in fact is common to all three
examples becomes again obvious. It consists of a

» generator (usually looping!) and

» selector (ensuring termination thanks to lazy evaluation!)
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Summary of Findings (2)

Thesis
» Modularity is the key to programming in the large

Observation

» Just modules (i.e., the capability of decomposing a
problem) do not suffice

» The benefit of modularly decomposing a problem into
subproblems depends much on the capabilities for glueing
the modules together

» The availability of proper glue is essential!
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Summary of Findings (3)

Facts

» Functional programming offers two new kinds of glue:
» Higher-order functions (glueing functions)
» Lazy evaluation (glueing programs)

» Higher-order functions and lazy evaluation allow substan-
tially new exciting modular decompositions of problems
(by offering elegant composition means) as here given
evidence by an array of simple, yet impressive examples

» In essence, it is the superior glue, which makes functional
programs to be written so concisely and elegantly (not
the absence of assignments, etc.)
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Summary of Findings (4)

Guidelines 13

» Functional programmers shall strive for adequate
modularization and generalization

» Especially, if a portion of a program looks ugly or
appears to be too complex

» Functional programmers shall expect that

» higher-order functions and
» lazy evaluation

are the tools for achieving this!
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Chapter 1.4
Summing Up
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Summing Up: Lazy or Eager Evaluation

The final conclusion of John Hughes: 14

» In view of the previous arguments:

» The benefits of lazy evaluation as a glue are so evident
that lazy evaluation is too important to make it a
second-class citizen.

» Lazy evaluation is possibly the most powerful glue
functional programming has to offer.

» Access to such a powerful means should not airily be
dropped.
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Outlook

John Hughes identifies

» higher-order functions
» lazy evaluation

as of vital importance for the power of the functional
programming style.

In Chapter 2 and in Chapter 3 we will discuss the power they
provide the programmer with in more detail:

» Stream programming: thanks to lazy evaluation.

» Algorithm patterns: thanks to higher-order functions.
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Chap. 2

Chapter 2

Programming with Streams
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Motivation

Streams = Infinite Lists
Chap. 2

Programming with streams

» Applications
» Streams plus lazy evaluation yield new modularization
principles
» Generator/selector
» Generator/filter
» Generator /transformer
as instances of the Generator/Prune Paradigm
» Pitfalls and remedies

» Foundations
» Well-definedness

» Proving properties of programs with streams
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Chapter 2.1

Streams
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Streams

21

Jargon

Stream ...synonymous to infinite list and lazy list.

Streams

» (combined with lazy evaluation) allow to solve many
problems elegantly, concisely, and efficiently

» are a source of hassle if applied inappropriately

More on this in this chapter.

88/1653



Streams

Streams could be introduced in terms of a new polymorphic

data type Stream such as:
21

data Stream a = a :* Stream a

Convention

For pragmatic reasons, however, we will model streams as
ordinary lists waiving the usage of the empty list [ ].

This is motivated by:

» Convenience/adequacy because many pre-defined
(polymorphic) functions on lists can be reused this way,
which otherwise would have to be defined from scratch on
the new data type Stream
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Simple Examples of Streams

» Built-in streams in Haskell

[2..] ->> [2,3,4,5,6,7,...

[3,5..]1 ->> [3,5,7,9,11,... 21
» User-defined streams in Haskell

The infinite lists of “twos”
2,2,2,...

In Haskell this can be realized:
» using list comprehension: [2,2..]
> (co-) recursively: twos = 2 : twos
Illustration
twos ->> 2 : twos

=>> 2 : 2 : twos
=>> 2 : 2 : 2 : twos
=>> ...

twos represents an infinite list; synonymously, a stream.
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Corecursive Definitions

» Definitions of the form .

ones = 1 : ones
twos = 2 : twos
threes = 3 : threes

defining the streams of “ones,” “twos,” and “threes” look

like recursive definitions.
» However, they lack a base case.

» Definitions of the above form are called
» corecursive

» Corecursive definitions always yield infinite objects.
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More corecursively defined Streams

21
» The stream of natural numbers nats

nats = 0 : map (+1) nats

» The stream of even natural numbers evens

evens = 0 : map (+2) evens

» The stream of odd natural numbers odds
odds = 1 : map (+2) odds
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More Streams

» The stream of natural numbers
theNats = 0 : zipWith (+) ones theNats

21
» The stream of powers of an integer

powers :: Int -> [Int]
powers n = [n"x | x <= [0..]]

» The prelude function iterate
iterate :: (a -> a) -> a —> [al
iterate f x = x : iterate f (f x)
The function iterate generates the stream
x, fx, (f . £f) x, (£ . £ . f) x,...

Application: powers can be defined in terms of iterate
powers n = iterate (*n) 1
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More Applications of iterate

ones

twos

threes

nats

evens

odds

powers

iterate

iterate

iterate

iterate

iterate

iterate

iterate

id 1
id 2
id 3
(+1)
(+2)
(+2)

(*n)

21
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Functions on Streams

head :: [a] -> a
head (x:_) = x

21

Application

head twos ->> head (2 : twos) ->> 2

Note: Normal-order reduction (resp. its efficient implemen-
tation variant lazy evaluation) ensures termination in this
example. It excludes the infinite sequence of reductions:

head twos
->> head (2 : twos)
->> head (2 : 2 : twos)
->> head (2 : 2 : 2 : twos)
=->> ...
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Reminder

“...whenever there is a terminating reduction sequence of an

expression, then normal-order reduction terminates.”
(Church/Rosser-Theorem)

» Normal-order reduction corresponds to leftmost-
outermost evaluation

Recall: Let
ignore :: a > b -> b
ignore a b = Db

Then, both in

» ignore twos 42
» twos ’ignore’ 42

the leftmost-outermost operator is given by the call ignore.

21
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Functions on Streams (Cont'd)

21

addFirstTwo :: [Integer] -> Integer
addFirstTwo (x:y:zs) = x+y

Application
addFirstTwo twos ->> addFirstTwo (2:twos)
->> addFirstTwo (2:2:twos)

->> 242
->> 4
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Functions yielding Streams

» User-defined stream-yielding functions

from :: Int -> [Int]
fromn =n : from (n+1)

21

fromStep :: Int -> Int -> [Int]
fromStep n m = n : fromStep (nt+m) m

Applications
from 42 ->> [42, 43, 44,...
fromStep 3 2 ->> 3 : fromStep 5 2
->> 3 : b : fromStep 7 2

->>3 : 5 :7 : fromStep 9 2
=->> ...
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Primes: The Sieve of Eratosthenes 1(3)

Intuition
1. Write down the natural numbers starting at 2.
2. The smallest number not yet cancelled is a prime number.  ,;
Cancel all multiples of this number.
3. Repeat Step 2 with the smallest number not yet cancelled.

[llustration

Step 1:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17...
Step 2 ("with 2"):

2 3 5 7 9 11 13 15 17...
Step 2 ("with 3"):
2 3 5 7 11 13 17...

Step 2 ("with 5"):
2 3 5 7 11 13 17...
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Primes: The Sieve of Eratosthenes 2(3)

21

The stream of primes:

primes :: [Int]
primes = sieve [2..]

sieve :: [Int] -> [Int]
sieve (x:xs) = x : sieve [y | y <~ xs, mod y x > 0]
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Primes: The Sieve of Eratosthenes 3(3)

lllustration: By stepwise evaluation

primes 21
->> sieve [2..]
->> 2 : sieve [y | y <= [3..], mod y 2 > 0]
->> 2 : sieve 3 : [y | y <= [4..], mod y 2 > O]
->>2 :3 :sieve [z | z<- [y | y<-[4..],
mod y 2 >0 1,

mod z 3 > 0]

=>> ...

->>2 : 3 :sieve [z | z<-[5, 7, 9..1,
mod z 3 > 0]

->> ..

->> 2 : 3 : sieve [5, 7, 11,...
=>> ...
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Pitfalls in Applications

Implementing a prime number test (naively):

Let

member :: [a] -> a -> Bool

member [] y = False

member (x:xs) y = (x==y) || member xs y

member primes 7

But
member primes 6 ...does not terminate!

Homework: Why fails the above implementation? How can
primes be embedded into a calling context allowing us to
decide if some argument is prime or not?

21
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Random Numbers 1(2)

Generating a sequence of (pseudo-) random numbers:

nextRandNum :: Int -> Int
nextRandNum n = (multiplier*n + increment)
’mod’ modulus

randomSequence :: Int -> [Int]
randomSequence = iterate nextRandNum

Choosing
seed = 17489 increment = 13849
multiplier = 25173 modulus = 65536

we obtain the following sequence of (pseudo-) random
numbers

[17489, 59134, 9327, 52468, 43805, 8378,...

ranging from 0 to 65536, where all numbers of this interval
occur with the same frequency.

21
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Random Numbers 2(2)

Often one needs to have random numbers within a range from
p to q inclusive, p<q. 21

This can be achieved by scaling the sequence.

scale :: Float -> Float -> [Int] -> [Float]

scale p q randSeq = map (f p q) randSeq

where f :: Float -> Float -> Int -> Float
fpqn=p+ ((0n* (qg-p)) / (modulus-1))

Application

scale 42.0 51.0 randomSequence
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Principles of Modularization

...related to streams: 21

» The Generator/Selector Principle
...e.g. computing the square root, the n-th Fibonacci
number

» The Generator/Filter Principle
...e.g. computing all even Fibonacci numbers

» The Generator/Transformer Principle
...e.g. “scaling” random numbers

» Other combinations of generators, filters, and selectors
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The Fibonacci Numbers 1(5)

The sequence of Fibonacci Numbers 21
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...
is defined in terms of the function
fib:IN — IN

0 ifn=20
fib(n)=gr { 1 if n=1
fib(n — 1) + fib(n — 2) otherwise
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The Fibonacci Numbers 2(5)

We have already learned that a naive implementation like 21

fib :: Integer -> Integer

fib 0 = 0
fib 1 =1
fib n = fib (n-1) + fib (n-2)

...that directly exploits the recursive pattern of the underlying
mathematical function is

» inacceptably inefficient and slow!
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The Fibonacci Numbers 3(5)

lllustration: By stepwise evaluation

fib 0 ->>

fib 1 ->>

fib 2 ->>
->>
->>

fib 3 ->>
=->>
=->>
=->>

0 -- 1 call of fib >

1 -- 1 call of fib

fib 1 + fib O
1+0
1 -- 3 calls of fib

fib 2 + fib 1

(fib 1 + fib 0) + 1
(1 +0) +1

2 —-- b5 calls of fib
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The Fibonacci Numbers 4(5)

fib 4 ->> fib 3 + fib 2
->> (fib 2 + fib 1) + (fib 1 + fib 0)
->> ((fib 1 + fib 0) + 1) + (1 + 0)
=>> ((1+0) +1)+ ({1+0)
->> 3 -- 9 calls of fib

fib 5 ->> fib 4 + fib 3
->> (fib 3 + fib 2) + (fib 2 + fib 1)
->> ((fib 2 + fib 1) + (fib 1 + fib 0))
+ ((fib 1 + £fib 0) + 1)
->> (((fib 1 + fib 0) + 1)
+ (1 +0) + ((1+0)+1)
->> ((1+0)+1)+@+0))+ (1+0 +1)
->> 5 —-- 15 calls of fib
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The Fibonacci Numbers 5(5)

fib 8 ->> fib 7 + fib 6
->> (fib 6 + fib 5) + (fib 5 + fib 4)
->> ((fib 5 + fib 4) + (fib 4 + fib 3))
+ ((fib 4 + fib 3) + (fib 3 + fib 2))
->> (((fib 4 + fib 3) + (fib 3 + fib 2))
+ (fib 3 + fib 2) + (fib 2 + fib 1)))
+ (((fib 3 + fib 2) + (fib 2 + fib 1))
+ ((fib 2 + fib 1) + (fib 1 + fib 0)))

21

->> .
->> 21 -- 60 calls of fib

...tree-like recursion (with exponential growth!)
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Reminder: Complexity 1(3)

Cp. Peter Pepper. Funktionale Programmierung in OPAL, ML,
Haskell und Gofer. 2nd Edition (In German), 2003, Chapter 21
11.

Reminder: O Notation

» Let f : o — IRT be a function with some data type «
as domain and the set of positive real numbers as range.
Then the class O(f) denotes the set of all functions
which “grow slower” than f:

O(f)=qr {h| h(n) < c* f(n) for some positive

constant ¢ and all n > Ny}
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Reminder: Complexity 2(3)

Examples of typical cost functions:

Code Costs Intuition: input a thousandfold
as large means:
O(c) constant .. equal effort
O(log n) | logarithmic | ...only tenfold effort
O(n) linear ...also a thousandfold effort
O(n log n) | “n log n" ...tenthousandfold effort
O(n?) quadratic | ...millionfold effort
O(n?) cubic ..billiardfold effort
O(n°) polynomial | ... gigantic much effort (for big c)
o(2") exponential | ...hopeless

21
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Reminder: Complexity 3(3)

...and the impact of growing inputs in practice in hard

numbers:

n linear | quadratic | cubic exponential

1 1 us 1 pus 1 us 2 us

10 10 pus | 100 us 1 ms 1 ms

20 20 pus | 400 ps 8 ms ls

30 30 us | 900 us 27 ms | 18 min

40 40 us | 2 ms 64 ms | 13 days

50 50 us | 3 ms 125 ms | 36 years

60 60 us | 4 ms 216 ms | 36560 years
100 ||| 100 us | 10 ms lsec |4 x 10 years
1000 || 1 ms 1 sec 17 min | very, very long...

21
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Remedy

21

» Streams can (often) help!
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Fibonacci Numbers Efficiently 1(2)

Idea

0 1 1 2 3 5 8 13... Sequence of Fib. Numbers

21

1 1 2 3 5 8 13 21... Remainder of the S. of F. N.

1 2 3 5 8 13 21 34... Remain. of the rem. of the
sequ. of Fibonacci Numbers

This can efficiently be implemented as a (corecursive) stream:

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

zipWith :: (a -=> b -> ¢) -> [a] -> [b] -> [c]
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith £ _ =[]

...reminds to Miinchhausen's famous trick of “sich am eigenen
Schopfe aus dem Sumpf zu ziehen!” 115/165



Fibonacci Numbers Efficiently 2(2)

fibs >0 : 1 :1:2 :3:5:8:13 : 21
take 10 fibs ->> [0,1,1,2,3,5,8,13,21,34]

where

take :: Integer -> [a] -> [a]

take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs

take

= error "Preludelist.take: negative argument"

34, ..

21
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Summing up

We get a conceptually new implementation of the Fibonacci

function using corecursive streams:
21

fib :: Int -> Integer
fib n = last (take n fibs)

Even shorter:

fib :: Int -> Integer
fib n = fibs!!(n-1)

Remark:
Note the application of the

» Generator/Selector Principle
in this example.
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Naive Evaluation (no sharing)
...stepwise evaluation (with add instead of zipWith (+)):
fibs
->> Replace the call of fibs by the body of fibs 21
0 : 1 : add fibs (tail fibs)
->> Replace both calls of fibs by the body of fibs
0 :1:add (0 : 1 : add fibs (tail fibs))
(tail (0 : 1 : add fibs (tail fibs)))
->> Application of tail
0 :1:add (0 : 1 : add fibs (tail fibs))

(1 : add fibs (tail fibs))
->> ...

» Observation: The computational effort remains exponen-
tial this (naive) way!
» Clou: Lazy evaluation — common subexpressions will not
be computed multiple times (in the example this holds for
tail and fibs)! 118/165



The Benefit of Lazy Evaluation (sharing) 1(3)

fibs ->> 0 : 1 : add fibs (tail fibs)

->> Introduc. abbrev. allows sharing of results

0 : tf (tf reminds to "tail of fibs") 2]
where tf = 1 : add fibs (tail fibs)
->> 0 : tf

where tf = 1 : add fibs tf

->> Introducing abbreviations allows sharing
0 : tf
where tf = 1 : tf2 (tf2 reminds to "tail
of tail of fibs")
where tf2 = add fibs tf

->> Unfolding of add
0 : tf
where tf =1 : tf2
where tf2 = 1 : add tf tf2
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The Benefit of Lazy Evaluation (sharing) 2(3)

->> Repeating the above steps

0 : tf
where tf = 1 : tf2 21
where tf2 = 1 : tf3 (tf3 reminds to
"tail of tail of tail of fibs")
where tf3 = add tf tf2
->> 0 : tf
where tf = 1 : tf2

where tf2 =1 : tf3
where tf3 = 2 : add tf2 tf3

->> tf is only used at one place and can thus be
eliminated
0 :1: tf2
where tf2 = 1 : tf3
where tf3 = 2 : add tf2 tf3
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The Benefit of Lazy Evaluation (sharing) 3(3)

->> Finally, we obtain successsively longer
prefixes of the stream of Fibonacci numbers
0 :1: tf2 21
where tf2 = 1 : tf3
where tf3 = 2 : tf4

where tf4 = add tf2 tf3

=>>0 : 1 : tf2
where tf2 =1 : tf3
where tf3 = 2 : tf4
where tf4 = 3 : add tf3 tf4
Note: eliminating where-clauses corresponds
to garbage collection of unused memory by an
implementation
->>0:1:1: tf3
where tf3 = 2 : tf4
where tf4 = 3 : add tf3 tf4
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Pitfall

In practice, the ability of dividing/recognizing common
structures is limited.

This is demonstrated by the below variant of the Fibonacci .

function that artificially lifts fibs to a functional level:

fibsFn :: () -> [Integer]
fibsFn x =
0 : 1 : zipWith (+) (fibsFn ()) (tail (fibsFn ()))

This function again exposes

» exponential run-time and storage behaviour!

Crucial:

» Memory leak: The memory space is consumed so fast that
the performance of the program is significantly impacted.
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[[lustration

fibsFn ()

->> 0 : 1 : add (fibsFn ()) (tail (fibsFn ()))
->> 0 : tf

where
tf =1 : add (fibsFn ()) (tail (fibsFn ()))

The equality of tf and tail(fibsFn()) remains undetected.
Hence, the following simplification is not done:

->> 0 : tf
where tf = 1 : add (fibsFn ()) tf

In a special case like here, this is possible, but there is no
general means for detecting such equalities!

21
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Chapter 2.2

Stream Diagrams
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Stream Diagrams

22

Problems on streams can often be considered and visualized as

> processes.

In the following, we consider two examples:
» The stream of Fibonacci numbers

» The communication stream of a client/server application
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Fibonacci Numbers

. as a stream diagram:
fibs = 0,1,1,2,3,5,8,...
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The Client/Server Application

Interaction of a server and a client (e.g. Web server/Web
browser):

client :: [Response] -> [Request] o
server :: [Request] -> [Responsel

reqs = client resps

resps = server reqgs

Implementation

type Request
type Response

Integer
Integer

client ys = 1 : ys (issues 1 as first request and
then each integer it receives
from the server)

server xs = map (+1) xs (adds 1 to each request it

receives)
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The Client/Server Application (Cont'd)

lllustration: By stepwise evaluation

reqs —->> client resps
->> 1 : resps
->> 1 : server reqgs

22

->> Introducing abbreviations

1 : tr

where tr = server regs
->> 1 : tr

where tr = 2 : server tr
->> 1 : tr

where tr = 2 : tr2

where tr2 = server tr
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The Client/Server Application (Cont'd)

22

->> 1 : tr
where tr = 2 : tr2
where tr2 = 3 : server tr2

=>> 1 : 2 : tr2
where tr2 = 3 : server tr2
->> ...

In particular, we obtain:

take 10 reqs ->> [1,2,3,4,5,6,7,8,9,10]
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The Client/Server Application

. as a stream diagram:

reqs = 1,2,3,4,5,...

22

server

C2)

\
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Pitfall

Suppose, the client wants to check the first response:

client (y:ys) = if ok y then 1 : (y:ys)

else error "Faulty Server" 22
where
ok y = True (Obviously a trivial predicate)

The evaluation of:

reqs —>> client resps
->> client (server reqgs)
->> client (server (client resps))
->> client (server (client (server regs)))
=->> ...

...does not terminate!

The problem: Livelock! Neither the client nor the server can

be unfolded! Pattern matching is too “eager.”
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Remedy: Lazy Patterns 1(3)

Ad-hoc Remedy:

client ys = 1 : if ok (head ys) then ys
else error "Faulty Server"

» Replacing of pattern matching by an explicit usage of the
selector function head.

» Moving the conditional inside of the list.

22
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Remedy: Lazy Patterns 2(3)

Systematic remedy: Lazy patterns

» Syntax: Preceding tilde (~)

» Effect: Like using an explicit selector function;
pattern-matching is defered

client “(y:ys) = 1 : if ok y then y:ys
else error "Faulty Server"

Note: Even when using a lazy pattern the conditional must
still be moved. But: The explicit usage of the selector function
is avoided!

In practice, this can be very many selector functions that are
saved this way making the programs “more” declarative and
readable.
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Remedy: Lazy Patterns 3(3)

lllustration: By stepwise evaluation

22

reqs ->> client resps
->> 1 : if ok y then y : ys
else error "Faulty Server"
where y:ys = resps
->> 1 : (y:ys)
where y:ys = resps
->> 1 : resps
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Chapter 2.3

Memoization
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Motivation

28

Memoization

» is a means for improving the performance of (functional)
programs by avoiding costly recomputations

that benefits from

» stream programming.
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Memoization
The concept of

» memoization goes back to Donald Michie:
‘Memo’ Functions and Machine Learning. Nature, 218,
19-22, 1968.

28

Idea

» Replace, where possible, the (costly) computation of a
function according to its body by looking up its value in a
table, a so-called memo table.

Means

» A memo function is used to replace a costly to compute
function by a (memo) table look-up. Intuitively, the
original function is augmented by a cache storing
argument /result pairs.
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Memo Functions, Memo Tables

A memo function is

» an ordinary function, but stores for some or all arguments 25
it has been applied to the corresponding results in a
memo table.

A memo table allows

» to replace recomputation by table look-up.

Correctness of the overall approach:

» Referential transparency of functional programming
languages (in particular, absence of side effects!).
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Memo Functions, Memo Tables (Cont'd)

28

A memo function memo associated with a function £
memo :: (a -> b) -> (a -> b)
has to be defined such that the following equality holds:

memo f x = f x
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A Concrete Approach with Memo Lists

Memo List:

28

The (generic) memo function/table
flist = [ £ x | x <= [0..]]

...where £ is a function on integers.

Application:
Each call of £ is replaced by a look-up in flist.
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Example 1: Computing Fibonacci Numbers

Computing Fibonacci numbers with memoization:

fiblist = [ fibm x | x <- [0..]]

fibm 0 = 0 22
fibm 1 =1

fibm n = fiblist !! (n-1) + fiblist !! (n-2)

Compare this with the naive implementation of fib:

fib 0 = 0

fib1 =1

fib n = fib (n-1) + fib (n-2)
Note:

fibm n = fib n
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Example 2: Computing Powers

Computing powers (20, 2%, 22 23 .. .) with memoization:

powerlist = [ powerm x | x <- [0..]]
powerm O 1
powerm i = powerlist !! (i-1) + powerlist !! (i-1)

Compare this with the naive implementation of power:

1
power (i-1) + power (i-1)

power O
power i

Observation:

» Looking-up the result of the second call instead of
recomputing it requires only 1 + n calls of power instead
of 1427
~ Significant performance gain!

28
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Summing up

The function memo :: (a -> b) -> (a -> b):
» is essentially the identity on functions but

» memo keeps track on the arguments, it has been applied
to and the corresponding results
Motto: look-up a result that has been computed
previously instead of recomputing it!

Memo functions

» are not part of the Haskell standard, but there are
nonstandard libraries

28
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Summing up (Cont'd)

Important design decision

» when implementing memo functions: how many
argument/result pairs shall be traced? (e.g. a memo
function memo1 for one argument/result pair)

Example:

mfibsFn :: () -> [Integer]
mfibsFn x
= let mfibs = memol mfibsFn in

0 : 1 : zipWith (+) (mfibs ()) (tail (mfibs ()))

28
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Summing up (Cont'd)

More on memoization, its very idea and application, e.g. in:

28

» Chapter 19, Memoization
Anthony J. Field, Peter G. Harrison. Functional
Programming. Addison-Wesley, 1988.

» Chapter 12.3, Memoization
Max Hailperin, Barbara Kaiser, Karl Knight. Concrete
Abstractions — An Introduction to Computer Science
using Scheme. Brooks/Cole Publishing Company, 1999.
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Summing up (Cont'd)

» (Introduced streams without memoization)
P. J. Landin. A Correspondence between ALGOL60 and
Church’s Lambda-Notation: Part |. Communications of 23
the ACM, 8(2):89-101, 1965.

» (Extended Landin's streams with memoization)
Daniel P. Friedman, David S. Wise. CONS should not

Evaluate its Arguments. In Automata, Languages and
Programming, 257-281, 1976.

» (Extended Landin's streams with memoization)
Peter Henderson, James H. Morris. A Lazy Evaluator. In
Conference Record of the 3rd ACM Symposium on
Principles of Programming Languages (POPL'76), ACM,
05-103, 1976.
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Chapter 2.4

Boosting Performance
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Motivation

Recomputating values unnecessarily is a major source of
inefficiency.

24

» Avoiding recomputations of values is a major source of
improving the performance of a program.

Two techniques that can (often) help achieving this are:

» Stream programming

» Memoization
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Avoiding Recomputations using Stream Prog.

» Computing Fibonacci numbers using stream prog.:

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
24
take 10 fibs ->> [0,1,1,2,3,5,8,13,21,34]
fibs!!5 ->> 5

» Computing powers using stream programming:

powers :: [Integer]
powers =1 : 2 :
zipWith (+) (tail powers) (tail powers)

take 9 powers ->> [1,2,4,8,16,32,64,128,256]
powers!!5 ->> 32
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Avoiding Recomputations using Memoization

» Computing Fibonacci numbers with memoization:

fiblist = [ fibm x | x <~ [0..]]

fibm 0 = 0

fibm 1 = 1 25
fibm n = fiblist!!(n-1) + fiblist!!(n-2)

take 10 fiblist ->> [0,1,1,2,3,5,8,13,21,34]
fiblist!!5 ->> 5

» Computing powers with memoization:

powerlist = [ powerm x | x <- [0..]]
powerm 0 =1
powerm i = powerlist!!(i-1) + powerlist!!(i-1)

take 9 powerlist ->> [1,2,4,8,16,32,64,128,256]
powerlist!!5 ->> 32
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Summing up

Stream programming and memoization are
» no silver bullets
for improving performance by avoiding recomputations.

24

If, however, they hit they can
» significantly boost performance: from taking too long to
be feasible to be completed in an instant!

Obvious candidates
» problems that naturally wind up repeatedly computing the
the solution to identical subproblems, e.g. tree-recursive
processes.

Homework: Compare the performance of the straightforward
implementations of £ib and power with their “boosted"”

versions using stream programming and memoization.
151/165



Silver Bullets exist Sometimes

Though not in general, it is worth noting that sometimes there
is a silver bullet solving a problem:

The computation of the Fibonacci numbers is again a striking
example.

24

We can prove (cf. Chapter 6) the following theorem that
allows a recursion-free direct computation of the Fibonacci
numbers, i.e.,

(fib)iew, = 0,1,1,2,3,5,8 13,21, 34, ..

Theorem

YV n € INo. fib(n) = (
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Conclusion

The usage of streams (and lazy evaluation) is advocated by:

» Higher abstraction: limitations to finite lists are often
more complex, and — at the same time — unnatural.

» Modularization: streams together with lazy evaluation
allow for elegant possibilities of decomposing a compu-
tational problem. Most important is the

» Generator/Prune Paradigm
of which the
» Generator/selector
» Generator/filter
» Generator/transformer principle
and combinations thereof are specific instances of.

» Boosting performance: by avoiding recomputations. Most

important are
» Stream programming
» Memoization

24
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Chap. 3

Chapter 3

Programming with Higher-Order Functions:
Algorithm Patterns
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Motivation

Programming with higher-order functions

» Many powerful and general algorithmic principles can be Chap. 3
encapsulated in a suitable higher-order function (HOF).

» This allows to design a collection or a class of algorithms
(instead of designing an algorithm for only a particular
application).

Conceptually,
» this emphasises the essence of the underlying algorithmic
principle.

Pragmatically,
» this makes these algorithmic principles easily re-usable.
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Motivation (Cont'd)

In this chapter, we demonstrate this reconsidering an array of
well-known and well-established top-down and bottom-up

design principles of algorithms. s
ap.

In detail:

» Top-down: starting from the initial problem, the algorithm
works down to the solution by considering alternatives.
» Divide-and-conquer
» Backtracking search
Priority-first search
Greedy search

v

v

» Bottom-up: starting from small problem instances, the
algorithm works up to the solution of the initial problem
by combining solutions of smaller problem instances to
solutions of larger ones.

» Dynamic programming
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Chapter 3.1

Divide-and-Conquer
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Divide and Conquer

Given:

Let P be a problem specification.

&l

Solving P — The Idea:

» If the problem is simple/small (enough), solve it directly
or by means of some basic algorithm.

» Otherwise, divide the problem into smaller subproblems
applying the division strategy recursively until all
subproblems are simple enough to be directly solved.

» Combine all the solutions of the subproblems into a single
solution of the initial problem.
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lllustrating the Divide-and-Conquer Principle

Successive stages in a divide-and-conquer algorithm:

initial pr()b]clﬁ“ i

subproblems
indivisible
problems

oI
"\/ N
| \ /

solution of the
initial problem

?

divide phase

} solve phase

combine phase

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.
Addison-Wesley, 1999, page 156.
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Implementing Divide-and-Conquer as HOF (1)

The Initial Setting:

» A problem with 31

» problem instances of kind p

and solutions with
» solution instances of kind s

Objective:

» A higher-order function (HOF) divideAndConquer

» solving suitably parameterized problem instances of kind
p utilizing the “divide and conquer” principle.
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Implementing Divide-and-Conquer as HOF (2)

The ingredients of divideAndConquer:

» indiv :: p -> Bool: The function indiv yields True,
if the problem instance can/need not be divided further
(e.g., it can directly be solved by some basic algorithm).

» solve :: p —-> s: The function solve yields the
solution instance of a problem instance that cannot be
divided further.

» divide :: p -> [pl: The function divide divides a
problem instance into a list of subproblem instances.

» combine :: p -> [s] -> s: Given the original
problem instance and the list of the solutions of the
subproblem instances derived from, the function combine
yields the solution of the original problem instance.

&l
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Implementing Divide-and-Conquer as HOF (3)

The HOF-Implementation:

divideAndConquer :: 31

(p => Bool) —> (p => s) > (p -> [pl) —>
(p > 1[s] >s) >p ->s

divideAndConquer indiv solve divide combine initPb

= dAC initPb
where
dAC pb
| indiv pb = solve pb
| otherwise = combine pb (map dAC (divide pb))

170/165



Typical Applications of Divide-and-Conquer

Typical Applications:
» Application areas such as
» Numerical analysis
» cryptography
» image processing
L.

Quicksort
Mergesort

v

v

Binomial coefficients

v

&l
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Divide-and-Conquer for Quicksort

quickSort :: Ord a => [a] -> [a] 31
quickSort 1lst

= divideAndConquer indiv solve divide combine lst
where

indiv 1s = length 1s <=1

solve = id

divide (1:1s) [[ x| x <-1s, x <= 1],

[ x| x<=1s, x> 1] ]
11 ++ [1] ++ 12

combine (1:_) [11,12]
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Pitfall

Not every problem that can be modeled as a “divide and
conquer” problem is also (directly) suitable for it.

Consider:

&l

fib :: Integer -> Integer

fib n
= divideAndConquer indiv solve divide combine n
where
indiv n =(@m==0) || (n==1)
solve n
| n ==0 =0
| n==1 =1
| otherwise = error "solve: problem divisible"
divide n = [n-2,n-1]

combine [11,12] = 11 + 12

...shows exponential runtime behaviour due to recomputations! 173165



[[lustration

The divide-and-conquer computation of the Fibonacci
numbers (recomputing the solution to many subproblems!):

fib 3

fib2 ‘ fib 1 ‘ ‘ fib 1 fib 0

&l

fib 1 fib 0 ‘

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.
Addison-Wesley, 1999, page 179.
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Chapter 3.2
Backtracking Search
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Backtracking Search

Given:

Let P be a problem specification.

Solving P — The Idea

» Search for a particular solution of the problem by a
systematic trial-and-error exploration of the solution
space.

Main Problem Characteristics for Applicability

» A set of all possible situations or nodes constituting the
search (node) space; these are the potential solutions that
need to be explored.

» A set of legal moves from a node to other nodes, called
the successors of that node.

» An initial node.

» A goal node, i.e, the solution.

32
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lllustrating Backtracking Search

General stages in a backtracking algorithm:

82

Step 9 Step 10

P)

“-+ solutions

(dead ends)

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.
Addison-Wesley, 1999, page 162.
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llustrating Backtracking Search (Cont'd)
Intuitively

» When exploring the graph, each visited path can lead to
the goal node with an equal chance.
» Sometimes, however, there can be a situation, in which it oS
is known that the current path will not lead to the
solution.
» In such cases, one backtracks to the next level up the tree
and tries a different alternative.

Note

» The above process is similar to a depth-first graph
traversal; this is illustrated in the preceding figure.

» Not all backtracking algorithms stop when the first goal
node is reached

» Some backtracking algorithms work by selecting all valid

solutions in the search space. 178/168



Implementing Backtracking Search as HOF (1)

The Initial Setting:

» A problem with

32
» problem instances of kind p

and solutions with
» solution instances of kind s

Objective:

» A higher-order function (HOF) searchDfs

» solving suitably parameterized problem instances of kind
p utilizing the “backtracking” principle.
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Implementing Backtracking Search as HOF (2)

Often:
» The search space is large.

Hence, the graph representing the search space 32
» should not be stored explicitly, i.e., in its entirety in
memory (using explicit graphs)
» but be generated on-the-fly as computation proceeds
(using implicit graphs)
This reqires:

» An appropriate type node that represents node
information

» a successor function succ of type node -> [node] that
generates the list of successors of a node.
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Implementing Backtracking Search as HOF (2)

Assumptions:
» an acyclic implicit graph
» all solutions shall be computed (not only the first one)

82

Note: The HOF can be adjusted to terminate after finding the
first solution.

The ingredients of searchDfs:

» node: A type representing node information.

» succ :: node -> [node]: The function succ yields
the list of successors of a node.

» goal :: node -> Bool: The function goal determines
if a node is a solution.
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Implementing Backtracking Search as HOF (3)

The HOF-Implementation:

searchDfs ::
(Eq node) => (node -> [node]) -> (node -> Bool) s
-> node -> [nodel

searchDfs succ goal x

= (search’ (push x emptyStack) )
where
search’ s

| stackEmpty s
| goal (top s)

| otherwise

= let x = top s

in search’ (foldr push (pop s) (succ x))

(]
top s : search’ (pop s)
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The Abstract Data Type Stack (1)

The user-visible interface specification of the Abstract Data

Type (ADT) Stack:

module Stack (Stack,push,pop,top,
emptyStack,stackEmpty) where

push

pop
top

emptyStack ::
stackEmpty ::

Stack
Stack

a

PP

:: a —> Stack a -> Stack a
:: Stack
:: Stack

-> Stack a
-> a

-> Bool

82
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The Abstract Data Type Stack (2)

A user-invisible implementation of Stack as an algebraic data
type (using data):

data Stack a = EmptyStk
| Stk a (Stack a) 32

push x s = Stk x s

pop EmptyStk = error "pop from an empty stack"
pop (Stk _ s) = s

top EmptyStk = error "top from an empty stack"
top (Stk x _) = x

emptyStack = EmptyStk

stackEmpty EmptyStk = True
stackEmpty _ = False
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The Abstract Data Type Stack (3)

A user-invisible implementation of Stack as an algebraic data
type (using newtype):

Stk [a]

newtype Stack a

82

push x (Stk xs) = Stk (x:xs)

pop (Stk [1)
pop (Stk (_:xs))

error "pop from an empty stack"
Stk xs

top (Stk [1)
top (Stk (x:_.))

error "top from an empty stack"
X

emptyStack = Stk []

stackEmpty (Stk [])
stackEmpty (Stk _)

True
False
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Typical Applications of Backtracking Search

Typical Applications:

» Application areas such as 32
» game strategies

> ...

The eight-tile problem (8TP)
The n-queens problem

v

v

Towers of Hanoi

v

v

The knapsack problem
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The Eight-Tile Problem
inili«\](:;:;t)‘igum(ion/\

201 ‘ 6

4 8

7] ]3]
2 6 2 1 6 2 1 6 2 1 6 ‘
T 1 T 408 41518 418

513 7153 T T 71513 ‘

move north move west move south move east

1Bk

8 4

7]6[s]

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 160.

82

187/165



A Backtracking Search for 8TP (1)

Modeling the board:

type Position = (Int,Int)

type Board = Array Int Position

The initial board (initial configuration): |

s8T :: Board

s8T = array (0,8) [(0,(2,2)),(1,(1,2)),(2,(1,1)),
(3,(3,3))’(4,(2,1)) b (5’ (3’2)),
(6,(1,3)),(7,(3,1)),(8,(2,3))]

The final board (goal configuration):
g8T :: Board
g8T = array (0,8) [(0,(2,2)),(1,(1,1)),(2,(1,2)),

(3,(1,3)),(4,(2,3)),(5,(3,3)),
(6,(3,2)),(7,(3,1)),(8,(2,1))]
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A Backtracking Search for 8TP (2)

Computing the distance of board fields (Manhattan distance =
horizontal plus vertical distance):

mandist :: Position -> Position -> Int
mandist (x1,y1) (x2,y2) = abs (x1-x2) + abs (y1-y2)

Computing all moves (board fields are adjacent iff their
Manhattan distance equals 1):

allMoves :: Board -> [Board]
allMoves b = [b//[0,b!'i),(i,b!0)]
| i<-[1..8], mandist (b!0) (b!i)==1]

...the list of configurations reachable in one move is obtained
by placing the space at position / and indicating that tile / is

now where the space was.
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A Backtracking Search for 8TP (3)

Modeling nodes in the search graph:
data Boards = BDS [Board]

...corresponds to the intermediate configurations from the ini-
tial configuration to the current configuration in reverse order. 32

The successor function:

succ8Tile :: Boards -> [Boards]
succ8Tile (BDS(n@(b:bs)))
= filter (notIn bs) [BDS(b’:n) | b’ <- allMoves b]
where
notIn bs (BDS(b:_))
= not (elem (elems b) (map elems bs))

...computes all successors that have not been encountered
before; the notIn-test ensures that only nodes are considered

that have not been encountered before.
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A Backtracking Search for 8TP (4)

The goal function:

goal8Tile :: Boards -> Bool
goal8Tile (BDS (n:_)) = elems n == elems g8T 32

Putting things together:
A depth-first search producing the first sequence of moves (in
reverse order) that lead to the goal configuration:

dfs8Tile :: [[Position]]
dfs8Tile = map elems ls
where ((BDS 1s):_)
= searchDfs suc8Tile goal8Tile (BDS [s8T])
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Chapter 3.3

Priority-first Search
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Priority-first Search

Given:

Let P be a problem specification.

Solving P — The Idea 33

» Similar to backtracking search, i.e., search for a particular
solution of the problem by a systematic trial-and-error
exploration of the solution space but order the candidate
nodes according to the most promising node (priority-first
search /best-first search).

Note: In contrast to plain backtracking search, which proceeds
unguidedly and can thus be considered blind, priority-first
search /best-first search benefits from (hopefully correct)
information pointing it towards the “more promising” nodes.
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Priority-first Search (Cont’d)

Main Problem Characteristics for Applicability

>

v

A set of all possible situations or nodes constituting the
search (node) space; these are the potential solutions that
need to be explored.

A comparison criterion for comparing and ordering
candidate nodes wrt their (expected) “quality” to
investigate “promising” nodes before “less promising”
nodes.

A set of legal moves from a node to other nodes, called
the successors of that node.

An initial node.

A goal node, i.e, the solution.

3.3
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lllustrating Search Strategies
()

o

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.
Addison-Wesley, 1999, page 167.

Nodes are ordered according to their identifier value (“smaller”
means “more promising” ):

» Depth-first search: [1,2,5,4,6,3]

» Breadth-first search: [1,2,6,3,5,4]

» Priority-first search: [1,2,3,5,4,6]
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Implementing Priority-first Search as HOF (1)

The Initial Setting:

» A problem with
» problem instances of kind p gg

and solutions with
» solution instances of kind s

Objective:

» A higher-order function (HOF) searchPfs

» solving suitably parameterized problem instances of kind
p utilizing the “priority-first/best-first” principle.
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Implementing Priority-first Search as HOF (2)

Assumptions:

» an acyclic implicit graph

» all solutions shall be computed (not just the first one)
Note: The HOF can be adjusted to terminate after finding the
first solution.

The ingredients of searchPfs:

» node: A type representing node information.

» <=: A comparison criterion for nodes; usually, this is the
relator <= of the type class Ord. Often, the relator <= can
not exactly be defined but only in terms of a plausible

heuristic.

» succ :: node -> [node]: The function succ yields
the list of successors of a node.

» goal :: node -> Bool: The function goal determines

if a node is a solution.

3.3
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Implementing Priority-first Search as HOF (3)

The HOF-Implementation:

searchPfs ::
(0Ord node) => (node -> [node]) -> (node -> Bool)
-> node -> [node] 33

searchPfs succ goal x

= search’ (enPQ x emptyPQ)

where
search’ q
| pqEmpty q =
| goal (frontPQ q) = frontPQ q : search’ (dePQ q)
| otherwise

= let x = frontPQ q
in search’ (foldr enPQ (dePQ q) (succ x))
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The Abstract Data Type PQueue (1)

The user-visible interface specification of the Abstract Data
Type (ADT) priority queue PQueue:

3.3

module PQueue (PQueue,emptyPQ,pqEmpty,
enPQ,dePQ,frontPQ) where

emptyPQ :: PQueue a

paEmpty :: PQueue a -> Bool

enPQ :: (0rd a) => a —> PQueue a —> PQueue a
dePQ :: (0rd a) => PQueue a —> PQueue a
frontPQ :: (0Ord a) => PQueue a -> a

199/165



The Abstract Data Type PQueue (2)

A user-invisible implementation of PQueue as an algebraic

data type:

newtype PQueue a = PQ [a]

emptyPQ = PQ []
pgEmpty (PQ []1) = True
pqEmpty _ False

enPQ x (PQ q@)
where insert x []
insert x r@(e:xr’)

dePQ (PQ [1)
dePQ (PQ (_:xs))

PQ (insert x q)

| x <= e
| otherwise

[x]
X:r
e:insert x r’

error "dePQ: empty priority queue"
PQ xs

3.3

frontPQ (PQ [1) = error "frontPQ: empty priority queue"

frontPQ (PQ (x:.)) = x
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Typical Applications of Priority-first Search

Typical Applications: "
» Application areas such as
» game strategies

> ...

» The eight-tile problem (8TP)

> ...
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A Priority-first Search for 8TP

Comparing nodes heuristically: ...by summing the distance of
each square from its home position to its destination as an
estimate of the number of moves that will be required to
transform the current node into the goal node.

heur :: Board -> Int 33

heur b = sum [mandist (b!i) (g8T!'i) | i<-[0..8]]

instance Eq Boards

where BDS (bl:_) == BDS (b2:_) heur bl == heur b2

instance Ord Boards
where BDS (bl:_) <= BDS (b2:_)

pfs8Tile :: [[Position]]
pfs8Tile = map elems 1s
where ((BDS 1s):_)
= searchPfs succ8Tile goal8Tile (BDS [s8T])

heur bl <= heur b2
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Chapter 3.4
Greedy Search
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Greedy Search

Given:

Let P be a problem specification.

Solving P — The Idea

» Similar to priority-first/best-first search but limiting the
search to immediate successors of a node (greedy search/
hill climbing search).

Note: Maintaining the priority queue in priority-first search
may be costly in terms of time and memory. Greedy search
avoids this time and memory penalty by maintaining a much
smaller priority queue considering immediate successors only
(the search commits itself to each step taken during the
search). Hence, only a single path of the search space is
explored instead of its entirety what ensures efficiency.
Optimality, however, requires the absence of local minimums.

34
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Greedy Search (Cont'd)

Main Problem Characteristics for Applicability

» A set of all possible situations or nodes constituting the
search (node) space; these are the potential solutions that
need to be explored.

34

» A set of legal moves from a node to other nodes, called
the successors of that node.

» An initial node.

» A goal node, i.e, the solution.

» There shall be no local minimumes, i.e., no locally best

solutions.

Note: If local minimums exist but are known to be “close”
(enough) to the optimal solution, a greedy search might still
be reasonable giving a “good,” not necessarily optimal

solution. Greedy search then becomes a heuristic algorithm.
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lllustrating Greedy Search

Successive stages in a greedy algorithm:

Possible choice

Candidate node

O O s

Step 3

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.
Addison-Wesley, 1999, page 171.
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Implementing Greedy Search as HOF (1)

The Initial Setting:

» A problem with
» problem instances of kind p

and solutions with
» solution instances of kind s

Objective:

» A higher-order function (HOF) searchGreedy

» solving suitably parameterized problem instances of kind
p utilizing the “greedy/hill climbing” principle.
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Implementing Greedy Search as HOF (2)

Assumptions:

>

>

The

an acyclic implicit graph

no local minimums, i.e., no locally best solutions

ingredients of searchGreedy:

node: A type representing node information.

<=: A comparison criterion for nodes; usually, this is the
relator <= of the type class Ord.

succ :: node -> [node]: The function succ yields
the list of successors of a node.

goal :: node -> Bool: The function goal determines
if a node is a solution.
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Implementing Greedy Search as HOF (3)

The HOF-Implementation:

searchGreedy ::
(Ord node) => (node -> [node]) -> (node -> Bool)
-> node -> [node]

searchGreedy succ goal x

= search’ (enPQ x emptyPQ)

where
search’ q
| pqEmpty q =0
| goal (frontPQ q) = [frontPQ ql
| otherwise

= let x = frontPQ q
in search’ (foldr enPQ emptyPQ (succ x))
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Implementing Greedy Search as HOF (4)

Note:

» The most striking difference to the HOF searchPfs is
the replacement of dePQ q by emptyPQ in the recursive
call to search’ to remove old candidate nodes from the
priority queue.
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Typical Applications of Greedy Search

Typical Applications:

» Graph algorithms, e.g., Prim’'s minimum spanning tree
algorithm

» Money Change Problem (MCP)

> ...
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A Greedy Search for MCP

Problem statement: Give money change with the least number
of coins.

Modeling coins:

coins :: [Int]
coins = [1,2,5,10,20,50,100]

Modeling nodes (remaining amount of money and change used
so far, i.e., the coins that have been returned so far):

type NodeChange = (Int,SolChange)
type SolChange = [Int]

Generating successor nodes (by removing every possible coin
from the remaining amount):
succCoins :: NodeChange -> [NodeChange]

succCoins (r,p)
= [ (r-c,c:p) | ¢ <= coins, r-c >= 0 ] VI



A Greedy Search for MCP (Cont'd)

The goal function:

goalCoins :: NodeChange -> Bool
goalCoins (v,_) = v ==

Putting things together: 34

change :: Int -> SolChange

change amount

= snd (head (searchGreedy succCoins goalCoins
(amount, [1)))

Example: change 199 ->> [2,2,5,20,20,50,100]

Note: For coins = [1,3,6,12,24,30] the above algorithm
can yield suboptimal solutions: E.g., change 48 ->>
[30,12,6] instead of the optimal solution [24,24].
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Chapter 3.5

Dynamic Programming
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Dynamic Programming

Given:

Let P be a problem specification.

Solving P — The Idea

» Solve (the) smaller instances of the problem first 35
» Save the solutions of these smaller problem instances
» Use these results to solve larger problem instances

Note: Top-down algorithms as in the previous sections might
suffer from generating a large number of identical subpro-
blems. This replication of work can severely impair perfor-
mance. Dynamic programming aims at overcoming this short-
coming by systematically precomputing and reusing results in a
bottom-up fashion, i.e., from smaller to larger problem

instances.
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lllustrating Dynamic Programming for fib

The dynamic programming computation of the Fibonacci
numbers (no recomputation of the solution to subproblems!):

fib 0
fib 1 35

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.
Addison-Wesley, 1999, page 179.
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lllustrating Divide-and-Conquer for fib

The divide-and-conquer computation of the Fibonacci
numbers (recomputing the solution to many subproblems!):

fib 4

fib 3 fib 2

fib2 fib 1 fib 1 fib 0

fib 1 fib 0

Fethi Rabhi, Guy Lapalme.
Algorithms: A Functional Programming Approach.

Addison-Wesley, 1999, page 179.

85
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Implementing Dynamic Programming as HOF
(1)

The Initial Setting:

» A problem with
» problem instances of kind p 35

and solutions with
» solution instances of kind s

Objective:

» A higher-order function (HOF) dynamic

» solving suitably parameterized problem instances of kind
p utilizing the “dynamic programming” principle.

218/165



Implementing Dynamic Programming as HOF

(2)

The ingredients of the HOF dynamic:

» compute :: (Ix coord) => Table entry coord ->
coord -> entry: Given a table and an index, the
function compute computes the corresponding entry in
the table (possibly using other entries in the table).

» bnds :: (Ix coord) => (coord,coord): The
parameter bnds represents the boundaries of the table.
Since the type of the index is in the class Ix, all indices in
the table can be generated from these boundaries using
the function range.
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Implementing Dynamic Programming as HOF

(3)

The HOF-Implementation:
dynamic :: 39
(Ix coord) => (Table entry coord -> coord -> entry)

-> (coord,coord) -> (Table entry coord)

dynamic compute bnds = t

where
t = newTable (map (\coord -> (coord,compute t coord))
(range bnds))
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The Abstract Data Type Table (1)

The user-visible interface specification of the Abstract Data
Type (ADT) Table:

module Table (Table,newTable,findTable,updTable)
where

85

newTable :: (Ix b) => [(b,a)] -> Table a b
findTable :: (Ix b) => Table a b -> b -> a
updTable :: (Ix b) => (b,a) -> Table a b

-> Table a b
Note:

» The function newTable takes a list of (index,value)
pairs and returns the corresponding table.
» The functions findTable and updTable are used to

retrieve and update values in the table.
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The Abstract Data Type Table (2)

A user-invisible implementation of Table as an Array:

newtype Table a b = Tbl (Array a b)

newTable 1 = Tbl (array (lo,hi) 1) T
where indices = map fst 1

lo = minimum indices

hi = maximum indices

findTable (Tbl a) i = a ! i

updTable p@(i,x) (Tbl a) = Tbl (a // [pl)
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The Abstract Data Type Table (2)

Note:

» The function newTable determines the boundaries of the b

new table by computing the maximum and the minimum
key in the association list.

» In the function findTable, access to an invalid key
returns a system error, not a user error.
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Typical Applications of Dynamic Programming

Typical Applications:
» Fibonacci numbers 35
Chained matrix multiplication

v

v

Optimal binary search (in trees)

v

The travelling salesman problem

v

Graph algorithms, e.g., all-pairs shortest path
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Computing Fibonacci Numbers using Dynamic
Programming
Defining the problem-dependent parameters:

bndsFibs :: Int -> (Int,Int)
bndsFibs n = (0,n)

compFib :: Table Int Int -> Int -> Int
compFib t 1
| 1 <=1 =i
| otherwise = findTable t (i-1) + findTable t (i-2)

Putting things together:

fib :: Int -> Int
fib n = findTable t n
where t = dynamic compFib (bndsFib n)
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Comparing Dynamic Programming and
Memoization

Overall

» Dynamic programming and memoization enjoy very much
the same characterics and offer the programmer quite
similar benefits.

» In practice, differences in behaviour are minor and
strongly problem-dependent.

» In general, both techniques are equally powerful.

Conceptual difference

» Memoization opportunistically computes and stores argu-
ment/result pairs on a by-need basis (“lazy" approach).

» Dynamic programming systematically precomputes and
stores argument/result pairs before they are needed
(“eager” approach).

85
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Comparing Dynamic Programming and
Memoization (Cont’d)

Minor benefits of dynamic programming

» Memory efficiency: For some problems the dynamic
programming solution can be adjusted to use asympto- "
tically less memory: limited history recurrence, i.e., only a
limited number of preceding values need to be
remembered (e.g., two for the computation of Fibonacci
numbers) which allows to reuse memory during
computation.

» Run-time performance: The systematic programmer-con-
trolled computing and filling of the argument/result pairs
table allows sometimes slightly more efficient (by a
constant factor) implementations.
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Comparing Dynamic Programming and
Memoization (Cont’d)

Minor benefits of memoization

» Freedom of conceptual overhead: The programmer does
not need to think about in what order argument/result
pairs need to be computed and how to be stored in the
memo table. In dynamic programming all table entries are
computed systematically when needed.

» Freedom of computational overhead: Only
argument /result pairs are computed and stored when
needed. In dynamic programming they are systematically
precomputed before they are needed.
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Chapter 4

Equational Reasoning
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Chapter 4.1

Motivation

238/165



Functional vs. Imperative Programming (1)

Functional Programming

» The usage of = in functional definitions of the type
fxy= ...

as e.g. used in Haskell in the definition of a function f are
genuine mathematical equations.

» The equations state that the expressions on the left hand
side and the right hand side have the same value.

4.1
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Functional vs. Imperative Programming (2)
Imperative Programming

» The usage of = in imperative languages like C, Java,
etc. in (assignment) statements of the form

4.1

X = Xty

does not mean that x and x+y have the same value.

» Here, = is used to denote a command, a destructive
assignment statement meaning that the old value of x is
destroyed and replaced by the value of x+y.

Note: To avoid confusion some imperative programming
languages use thus a different notation, e.g. := such as in
Pascal, to denote the assignment operator (instead of the

conceptually misleading notation =).
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Consequence

Reasoning about
» functional definitions

is because of this difference a lot easier as about
» programs using destructive assignments

4.1
For functional definitions
» standard (algebraic) reasoning about mathematical
equations applies.

For example: The sequence of definitions in Haskell

x =1
y =2
X=X +y

raises an error "x" multiply defined since = in Haskell has
the meaning “is by definition equal to”; redefinition is for-
bidden.
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lllustrating Algebraic Reasoning

By algebraic reasoning on equations we obtain:

(a+b) * (a—b) = a*> — b

4.1

Proof:

(a+b) x (a—b)
(Distributivity of %, +) = axa — axb + bxa — bxb
(Commutativity of x) = axa — axb + axb — bxb
= axa — bxb

= 22 — B
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Extending Algebraic Reasoning to Functional
Definitions

First Example:

This allows us to conclude: The Haskell functions f and g
defined by

f :: Int -> Int -> Int
f ab = (atb) * (a-b)

g :: Int -> Int -> Int
gab=a2-b"2

denote the same function.

4.1
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Reasoning on Functional Definitions —
More Examples (1)

Second Example:

Let 41
a=3
b=4

f :: Int -> Int -> Int
fxy=x"2+y"2

By equational reasoning on the functional definition of £ and
those of a and b we can show that the Haskell expression

f a (f a b) has value 634.
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Reasoning on Functional Definitions —
More Examples (2)

Proof:

fa(fab) = fa(a® + b)
= f3(3% + #)
= f3(9 + 16)
= 325
= 3 + 25°
= 9 + 625
= 634

4.1

Note that the (Haskell) expression f a (f a b) is solely evalu-
ated by equational reasoning applying standard algebraic
mathematical laws and the Haskell definitions of a, b, and f£.
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Reasoning on Functional Definitions —
More Examples (3)

Third Example:

Let 4.1

g :: Int -> Int -> Int
gxy=x"2-y"2

h :: Int -> Int -> Int

hxy=xx*xy

By equational reasoning on the functional definitions of g and
h we can show the equality of the Haskell expressions

h (atb) (a-b) and g a b.
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Reasoning on Functional Definitions —
More Examples (4)

Proof:

h(a+b) (a—b) |
(Unfolding h) = (a+b) * (a—b)
(Distributivity of %, +) = axa — axb + bxa — bxb

(Commutativity of x) = axa — axb + axb — bxb
= axa — bxb
— 32 o b2

(Foldingg) = gab
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Remark (1)

We have: 41

In equational reasoning functions can be applied/unapplied

» from left-to-right, called unfolding
» from right-to-left, called folding

248/165



Remark (2)

Note: Some care needs to be taken though. Let

isZero :: Int -> Bool
isZero 0 = True
isZero n = False a1

The first equation isZero 0 = True

» can just be viewed as a logical property that can freely be
applied in both directions.

The second equation, however, isZero n = False can not,
since Haskell implicitly imposes an ordering on the equations:
» Application from left-to-right (i.e., replacing isZero n by
False), and from right-to-left (i.e., replacing False by
isZero n for some n) is legal only, if n is different from
0.

249/165



Reasoning on Functional Definitions —
More Examples (5)

Fourth Example:

The standard implementation of the reverse function

reverse :: [a] —> [a]
reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

(++) :: [a] > [a] > [al

(++) [1 ys = ys

(++) (x:xs) ys = x : (xs ++ ys)
requires —"("2“)
n denotes the length of the argument list.

calls of the concatenation function (++), where

4.1
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Reasoning on Functional Definitions —
More Examples (6)

A more efficient implementation of the functionality of the
reverse function is

4.1

fastReverse :: [a] -> [a]
fastReverse xs = fr xs []
where fr [] ys
fr (x:xs) ys

ys
fr xs (x:ys)
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Reasoning on Functional Definitions —
More Examples (7)

4.1

Equational reasoning on functional definitions together with
inductive proof principles, here structural induction, allows us
to prove:

The Haskell expressions

reverse xs and fastReverse xs

are equal for all finite lists xs.
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Summing up

Functional definitions are

» genuine mathematical equations.

This allows us to prove "
» equality and other relations of functional expressions

by applying standard algebraic mathematical reasoning.

In particular, this can be used to replace

» less efficient (called specification) by more efficient (called
implementation) implementations of some functionality.

Examples:
» Basic: Replace (x*y)+(x*z) by x*x(y+z)
» Advanced: Replace reverse by fastReverse
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Chapter 4.2

Functional Pearls
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Functional Pearls — The Very Idea (1)

The design of functional pearls, i.e., functional programs

» evolves from calculation!

In more detail:
4.2

Starting from a problem with a
» simple, intuitive but often inefficient specification

we shall arrive at an

» efficient though often more complex and possibly less
intuitive implementation

by means of
» mathematical reasoning, i.e., by equational and inductive
reasoning, by theorems and laws.

Example: From reverse to fastReverse.
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Functional Pearls — The Very Idea (2)

It is important to note: a1

The functional pearl

» is not the final (efficient) implementation

» but the calculation process leading to it!
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Functional Pearls — Origin and Background (1)

In the course of founding the
» Journal of Functional Programming

in 1990, Richard Bird was asked by the designated
editors-in-chief Simon Peyton Jones and Philip Wadler to
contribute a regular column called

» Functional Pearls

In spirit, this column should follow and emulate the successful
series of essays written by Jon Bentley in the 1980s under the
title

» Programming Pearls
in the
» Communications of the ACM

4.2
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Functional Pearls — Origin and Background (2)

Since 1990, some

» 80 pearls have appeared in the Journal of Functional
Programming related to
» Divide-and-conquer
» Greedy
» Exhaustive search

> L.

4.2

and other problems.

Some more appeared in proceedings of conferences including
editions of the

» International Conference of Functional Programming

» Mathematics of Program Construction
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Functional Pearls — Origin and Background (3)

Roughly,

» a quarter of these pearls have been written by Richard
Bird e

In his recent monograph

» Pearls of Functional Algorithm Design. Cambridge Uni-
versity Press, 2011

Richard Bird presents a collection of 30 “revised, polished, and
re-polished functional pearls” written by him and others.
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Outline

In this chapter, we will consider some of these functional
pearls for illustration: 42

» The Smallest Free Number
» Not the Maximum Segment Sum

» A Simple Sudoku Solver

260/165



Last but not least

It is worth noting:

The name of the functional programming language
» GoFER

is an acronym for

Go F(or) E(quational) R(easoning)

4.2
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Chapter 4.3

The Smallest Free Number
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The Smallest Free Number (SFN) Problem

The SFN-Problem:

» Let X be a finite set of natural numbers.

» Compute the smallest natural number y that is not in X. .

Examples:

The smallest free number for
» {0,1,5,9,2} is 3
» {0,1,2,3,18,19,22,25,42, 71} is 4
» {8,23,9,12,11,1,10,0,13,7,41,4,21,5,17,3,19,2,6} is
not immediately obvious!
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Analyzing the Problem
Obviously

» The SFN-problem can easily be solved, if the set X is

represented as an increasingly ordered list xs of numbers
without duplicates.

» If so, just look for the first gap in xs.

Example:

Computing the smallest free number for the set X
» {8,23,9,12,11,1,10,0,13,7,41,4,21,5,17,3,19,2,6}
» After sorting (and removing duplicates):
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,17,19,21, 23, 41]
» Looking for the first gap yields:
The smallest free number is 14!

43
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Simple Algorithm for solving the SFN-Problem

This suggests the following simple algorithm for solving the
SFN-problem:

43

The simple SFNP-Algorithm:

1. Represent X as a list of integers xs.
2. Sort xs increasingly, while removing all duplicates.

3. Compute the first gap in the list obtained from the
previous step.
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Possible Implementation of the Simple Algo-
rithm
...by means of a system of functions

» ssfn (reminding to “simple sfn") and

» sap (reminding to “search and pick”)

ssfn :: [Integer] -> Integer
ssfn = (sap 0) . removeDuplicates . quickSort

sap :: Integer -> [Integer] -> Integer
sap n [] =n
sap n (x:xs)

| n /= x =n

| otherwise = sap (n+1) xs

43
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The Advanced Algorithmic Problem

The simple SEFNP-Algorithm is sound but inefficient:

» Sorting is not of linear time complexity.

43

The Advanced SFNP-Algorithm Problem:

Develop an algorithm LinSFNP for solving the SFN-problem
that is of

» linear time complexity, i.e., that is linear in the number of
the elements of the inital set X of natural numbers.
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Towards the Linear Time Algorithm

The SFN-problem can be specified as a function minfree,
defined by

minfree :: [Nat] -> Nat
minfree xs = head $ ([0..]) \\ xs

43

with

(\\) :: Eq a => [a] -> [a] -> [a]
xs \\ ys = filter (‘notElem‘ ys) xs

denoting difference on sets (i.e., xs\\ys is the list of those
elements of xs that remain after removing any elements in ys)
and

type Nat = Int

the type of natural numbers starting from 0.
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Analysing minfree

The function minfree solves the SFN-problem but its
evaluation requires on a list of length n

» O(n?) steps in the worst case.

43

For illustration consider:

Evaluating

» minfree [n-1,n-2..0] requires evaluating
i is not an element in [n—1,n—2 .. Q]

for 0 </ < n, and thus n(n + 1)/2 equality tests.

269/165



Outline

Starting from minfree we will develop an
» array based and a
» divide-and-conquer based
linear time algorithm for the SFN-problem. us

The key fact (KF) both algorithms rely on is:
» There is a number in [0..length xs] that is not in xs

where xs denotes the initial list of natural numbers.
This implies:

» The smallest number not in filter (<=n) xs,
n == length xs, is the smallest number not in xs!
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Towards the Array-Based Algorithm

The array-based algorithm uses KF to build a
» checklist of those numbers present in filter (<=n) xs.

The checklist is a
4.3
» Boolean array with n+ 1 slots, numbered from 0 to n,
whose initial entries are set to False.

Algorithmic idea:

» For each element x in xs with x <= n the array element
at position x is set to True.

» The smallest free number is then found as the position of
the first False entry.
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The Array-Based Algorithm
The array-based algorithm LinSFNP:

minfree = search . checklist

search :: Array Int Bool -> Int
search = length . takeWhile id . elems =
checklist :: [Int] -> Array Int Bool

checklist xs = accumArray (||) False (0,n)
(zip (filter (<=n) xs) (repeat True))
where n = length xs

Note: This algorithm
» does not require the elements of xs to be distinct

» but does require them to be natural numbers
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Two Variants of the Array-Based Algorithm (1)

1st Variant: The function accumArray can be used to
» sort a list of numbers in linear time, provided the
elements of the list all lie in some known range.

This allows
» replacing of checklist by countlist. 43

countlist [Int] -> Array Int Int

countlist xs
accumArray (+) 0 (0,n) (zip xs (repeat 1))

sort xs =
concat [replicate k x | (x,k) <- countlist xs]

Replacing checklist by countlist and sort, the

implementation of minfree
» boils down to finding the first O entry.
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Two Variants of the Array-Based Algorithm (2)

2nd Variant: Instead of using a smart library function as in the
1st variant, checklist can be implemented
» using a constant-time array update operation.

In Haskell, this can be done using a suitable monad, such as
the 43
» state monad (cf. Data.Array.ST)

checklist xs =
runSTArray (do
{a <- newArray (0,n) False;
sequence [writeArray a x True | x<-xs, x<=n];
return a})
where n = length xs

Note, however: This variant is essentially

» a procedural program in functional clothing.
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Towards the Divide-and-Conquer Algorithm (1)

Algorithmic idea:
» Express minfree (xs++ys) in terms of minfree (xs)

and minfree (ys).

First, we collect some properties satisfied by the set difference
operation:

(as ++ bs) \\ cs = (as \\ cs) ++ (bs \\ cs)
as \\ (bs ++ cs) = (as \\ bs) \\ cs
(as \\ bs) \\ cs = (as \\ ¢s) \\ bs

If as and vs are disjoint (i.e., as\\vs == as), and bs and us
are disjoint (i.e., bs\\us == bs), we also have:

(as ++ bs) \\ (us ++ vs) = (as \\ us) ++ (bs \\ vs)

43
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Towards the Divide-and-Conquer Algorithm (2)

Going on, choose any natural number b, and let

» as = [0..b-1],

» bs = [b..],

» us = filter (<b) xs,

» vs = filter (>=b) xs a3
then

» as and vs are disjoint, and bs and us are disjoint.

This implies:
[0..1 \\ xs = ([0..b-1] \\ us) ++ ([b..] \\ vs)

where (us,vs) = partition (<b) xs

where partition is a Haskell library function that partitions a
list into those elements satisfying some property and those
that do not.
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The Divide-and-Conquer Algorithm

Moreover, because of

head (xs++ys) = if null xs
then head ys else head xs

43

we obtain (still for any natural number b):

The Basic Divide-and-Conquer Algorithm:

minfree xs = if (null ([0..b-1]) \\ us)
then (head ([b..]) \\ vs)
else (head ([0..]) \\ us)
where (us,vs) = partition (<b) xs
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Refining the Divide-and-Conquer Algorithm (1)

Note, the straightforward evaluation of the test

» (null ([0..b-1]) \\ us) takes quadratic time in the
length of us.

Note also, the lists [0..b-1] and us are lists of
» distinct natural numbers, and

43

» every element of us is less than b.

This allows us to replace the test by a test on the length of us:

null ([0..b-1] \\ us) = length us ==

Note, unlike for the array-based algorithm, it is crucial that the
argument list does not contain duplicates to obtain an efficient

» divide-and-conquer algorithm.
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Refining the Divide-and-Conquer Algorithm (2)

Inspecting minfree in more detail reveals that it can be
generalized to a function minfrom:

43

minfrom :: Nat -> [Nat] -> Nat
minfrom a xs = head ([a..] \\ xs)

where every element of xs is assumed to be

» greater than or equal to a.
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Refining the Divide-and-Conquer Algorithm (3)

Provided b is chosen so that both
» length us and length vs are less than length xs
the below recursive definition of minfree is well-founded:

43

minfree xs = minfrom 0 xs

minfrom a xs | null xs
| length us == b-a
| otherwise minfrom a us
where (us,vs) = partition (<b) xs

a
minfrom b vs
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Refining the Divide-and-Conquer Algorithm (4)

It remains to choose b.

This choice shall ensure:
»b > a
» The maximum of the lengths of us and vs is minimum.

43

This is achieved by choosing b as
b=a+1+mn ‘div‘ 2

where n = length xs.
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Refining the Divide-and-Conquer Algorithm (5)

If n /= 0 and length us < b-a, then
» (length us) <= (n div 2) < n

And, if length us = b-a, then 43

» (length vs) = (n - (n div 2) - 1) <= n div 2

With this choice, the number of steps for evaluating
minfrom O xs

is linear in the number of elements of xs.
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The Optimized Divide-and-Conquer Algorithm

As a final optimization, we represent xs by a pair (length
xs, xs) in order to avoid to repeatedly compute length.

The Optimized Divide-and-Conquer Algorithm:

43

minfree xs = minfrom O (length xs, xs)
minfrom a (n,xs)
| n == = a
| m == b-a minfrom b (n-m,vs)
| otherwise = minfrom a (m,us)
where (us,vs) partition (<b) xs
b =a+1+mndiv 2
m length us
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Summing up

The optimized divide-and-conquer algorithm is about

» twice as fast as the incremental array-based program, and
» 20% faster than the accumArray-based program.

43

It is worth noting, the SFN-problem is not artificial:

» |t can be considered a simplification of the common

programming task to find some object not in use:

Numbers then name objects, and X the set of objects
that are currently in use.
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Summing up (Cont'd)

For a “procedural” programmer

» an array-update operation takes constant time in the size
of the array.

For a “pure functional” programmer

» an array-update operation takes logarithmic time in the
size of the array.

This explains

» why there sometimes seems to be a logarithmic gap
between the best functional and the best procedural
solutions to a problem.

Sometimes, however, this gap

» vanishes as for the SFN-problem.

43
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Chapter 4.4

Not the Maximum Segment Sum
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Background and Motivation

A segment of a list

» is a contiguous subsequence.

The Maximum Segment Sum (MSS) Problem:
» Let L be a list of (positive and negative) integers.

4.4

» Compute the maximum of the sums of all possible
segments of L.

Example:
Let L be the list
» [-4,-3,-7,2,1,-2,-1,-4].

The maximum segment sum of L is
» 3 (from the segment [2,1]).
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Background and Motivation (Cont'd)

The MSS-problem
» had been considered quite often in the late 1980s mostly
as a showcase for programmers to illustrate and
demonstrate their favorite style of program development
or their particular theorem prover.

4.4

In this pearl, however,
» we consider the “Maximum Non-Segment Sum (MNSS)
Problem™.
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The Maximum Non-Segment Sum (MNSS)
Problem

A non-segment of a list
» is a subsequence that is not a segment, i.e., a
non-segment has one or more “holes” in it.

The Maximum Non-Segment Sum (MNSS) Problem: By

» Let L be a list of (positive and negative) integers.
» Compute the maximum of the sums of all possible
non-segments of L.

Example:
Let L be the list
» [-4,-3,-7,2,1,-2,-1,-4].

The maximum non-segment sum of L is
» 2 (from the non-segment [2,1,-1]).
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What does MNSS qualify a Pearl Problem?

It is worth noting:

Let L be a list of length n.
» There are ©(n?) segments of L.
» There are ©(2") subsequences of L.

Hence

» There are many more non-segments of a list than
segments.

This raises the problem

» Can the maximum non-segment sum be computed in
linear time?

This (pearl) problem will be tackled in this chapter.

4.4
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Specifying Solution of the MNSS-Problem

The Specifying (Initial) Solution of the MNSS-Problem:

mnss :: [Int] -> [Int]
mnss = maximum . map sum . nonsegs

4.4

Intuition:
» First, nonsegs computes a list of all non-segments of the
argument list,
» map sum then computes the sum of all these non-seg-
ments, and
» maximum, finally, picks those whose sum is maximum.
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The Implementation of nonsegs

The implementation of the function nonsegs

nonsegs :: [a] -> [[a]l
nonsegs = extract . filter nonseg . markings

relies on the supporting functions
» extract
» markings
which itself relies on the supporting function

» booleans

4.4
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The Implementation of nonsegs (Cont'd)

The implementation of the supporting functions:

markings :: [a] -> [[(a,Bool)]]
markings xs = [zip xs bs |
bs <- booleans (length xs)] 44

booleans 0 = [[]]
booleans (n+1) = [b:bs | b <- [True,False],
bs <- booleans n]

extract :: [[(a,Bool)]] -> [[a]]
extract = map (map fst . filter snd)
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The Implementation of nonsegs (Cont'd)

Intuition underlying the supporting functions:

To define the function nonsegs

» each element of the argument list is marked with a Bool-
ean value: True indicates that the element is included in
the non-segment; False indicates that it is not.

This marking

» takes place in all possible ways, done by the function
marking (Note: Markings are in one-to-one correspon-
dence with subsequences.)

Then

» the function extract filters for those markings that
correspond to a non-segment, and then extracts those
whose elements are marked True.

4.4
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The Implementation of nonsegs (Cont'd)

The function

» nonseg :: [(a,Bool)] -> Bool, finally, returns True
on a list xms iff map snd xsm describes a non-segment
marking (its implementation is given later).

Last but not least: v

The Boolean list ms is a non-segment marking iff it is an
element of the set represented by the regular expression

F*TTF*T(T + F)*
where True and False are abbreviated by T and F, respec-
tively.

Note: The regular expression identifies the leftmost gap

TTF*T that makes the segment a non-segment.
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The Finite State Automaton

...for recognizing members of the corresponding regular set:

data State =E | S| M | N

Intuition:

The 4 states of the above automaton are used as follows:

>

State E (for Empty), starting state: if in E, markings only ~ **
in the set F* have been recognized.

State S (for Suffix): if in state S, one or more Ts have

been processed; hence, this indicates markings in the set
F*TT, i.e., a non-empty suffix of Ts.

State M (for Middle): if in state M, this indicates the pro-
cessing of markings in the set F*TTF™ ie., a middle
segment.

State N (for Non-segment): if in state N, this indicates

the processing of non-segments markings.
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The Finite State Automaton (Cont'd)

This allows us to define:
nonseg = (== N) . foldl step E . map snd

where the middle term foldl step E executes the step of
the finite automaton:

step E False = E step M False = M
step E True =S step M True =N .
step S False = M step N False = N
step S True =S step N True =N

It is worth noting:
» Finite automata process their input from left to right.
This leads to the use of foldl.
» The input could have been processed from right to left as
well, looking for the rightmost gap. This, however, would
be less conventional without any benefit from breaking

the left to right processing convention. 207165



Towards Deriving the Linear Time Algorithm

Recall first the specifying (initial) solution of the MNSS-Pro-
blem with nonsegs replaced by its supporting functions:

mnss = maximum . map sum .
extract . filter nonseg . markings

extract = map (map fst . filter snd)
nonseg = (== N) . foldl step E . map snd
Work plan:

» Express extract . filter nonseg . markings as an
instance of foldl.

» Apply then the fusion law of foldl to arrive at a better
algorithm.

4.4
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Deriving the Linear Time Algorithm (1)

First, we introduce the function pick:

pick :: State -> [a] -> [[al]

pick q I
= extract .

filter ((== q) . foldl step E . map snd)
markings

We have:

» nonsegs == pick N
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Properties of pick

Moreover, we can prove
» either by calculation from the definition of pick q (which
is tedious!)
» or by referring to the definition of step
the equalities:

(0] b
[]
map (++[x])

(pick S xs) ++ pick E xs)

pick E xs
pick S []
pick S (xs++[x])

pick M [] =[]
pick M (xs++[x]) = pick M xs ++ pick S xs
pick N [] =[]

pick N (xs++ys) pick N xs ++
map (++[x])
(pick N xs) ++ pick M xs)
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Deriving the Linear Time Algorithm (2)

Second, we recast the definition of pick as an instance of
foldl.

To this end, let pickall be specified by:

pickall xs = (pick E xs, pick S xs,
pick M xs, pick N xs) o

This allows us to express pickall as an instance of foldl:

pickall = foldl step ([[1],[1,01,[1)
step (ess, nss, mss, sss) X
= (ess,
map (++[x]) (sss++ess),
mss ++ sss,
nss ++ map (++[x]) (nss++mss))
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Two new Solutions of the MNSS-Problem
The 1st new Solution of the MNSS-Problem:
mnss = maximum . map sum . fourth . pickall

where fourth returns the fourth element of a quadruple.

By means of function tuple

tuple f (w,x,y,z) = (f w, £ x, £y, f2)

fourth can be moved to the front of the defining expression
of mnss:

maximum . map sum . fourth
= fourth . tuple (maximum . map sum)

This allows the 2nd new Solution of the MNSS-Problem:

mnss = fourth . tuple (maximum . map sum) . pickall
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The Fusion Law of foldl

The Fusion Law of foldl:

f (foldl g a xs) = foldl h b xs

4.4

for all finite lists xs provided that for all x and y holds:

f a
f(gxy)=h ( x)y
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Towards the Application of the Fusion Law (1)

...in our scenario to the instantiations:

f = tuple (maximum . map sum)
g = step
a = ([0, 00,00, D

4.4

We are now left with finding h and b to satisfy the conditions
of the fusion law.

Because the maximum of an empty set of numbers is -0o, we
have:

tuple (maximum . map sum) ([[1], 00,01, [1)
= (0, -o00, -00, -00)

...which gives the definition of b.
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Towards the Application of the Fusion Law (2)

The definition of h needs to satisfy the equation:

tuple (maximum . map sum) (step (ess,sss,mss,nss) x)
= h (tuple (maximum . map sum) (ess,sss,mss,nss)) X

Next, we derive h by investigating each component in turn.
This is demonstrated for the fourth component in detail. The
reasoning for the three components is similar.
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Towards the Application of the Fusion Law (3)

max is used as an abbreviation for maximum:

max (map sum (nss dpl map (++ [x]) (nss ++ mss)))
= (definition of map)

max (map sum nss ++ map (sum . (4++[x]))(nss ++ mss))
= (since sum . (++[x]) = (4+x) . sum) i

max (map sum nss ++ map ((+x) . sum) nss ++ mss))
= (since max (xs++ys) = (max xs) max (max ys))

max (map sum nss) max max (map ((+x) . sum) (nss++mss))
= (since max . map (+x) = (+x) . max)

max (map sum nss) max (max (map sum (nss++mss)) + x)
= (introducing n = max (map sum nss) and

m = max (map sum mss)

n max ((n max m) + x)
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Towards the Application of the Fusion Law (4)

Finally, we arrive at the implementation of h:

h (e, s, m, n) x g
= (e, (s max e)+x, m max s, n max ((n max m) + x))

4

This allows the 3rd new Solution of the MNSS-Problem:

mnss = fourth . foldl h (0,-o00,-00,-00)
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The Linear Time Algorithm

We are left with dealing with the fictitious oo values.

Here, we eliminate them entirely by considering the first three
elements of the list separately, which gives us:

4.4

The Linear Time Algorithm for the MNSS-Problem:

mnss xs
= fourth (foldl h (start (take 3 xs)) (drop 3 xs))

start [x,y,z]
= (0, max [x+y+z,y+z,z], max [x,x+y,y], x+z)
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Concluding Remarks (1)

The MSS problem goes back to Bentley:

» Jon R. Bentley. Programming Pearls. Addison-Wesley,
1987.
Gries and Bird later on presented an invariant assertions and :
algebraic approach, respectively.

» David Gries. The Maximum Segment Sum Problem. In
Formal Development of Programs and Proofs. Edsger W.
Dijkstra (Ed.), Addison-Wesley, 43-45, 1990.

» Richard Bird. Algebraic Identities for Program Calcula-
tion. Computer Journal 32(2):122-126, 1989.
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Concluding Remarks (2)

Recent results on the MSS-problem can be found in:

» Shin-Cheng Mu. The Maximum Segment Sum is Back. as
In Proceedings of the ACM SIGPLAN Symposium on

Partial Evaluation and Program Manipulation (PEPM
2008), 31-39, 2008.
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Chapter 4.5
A Simple Sudoku Solver
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Sudoku Puzzles

4.5

Fill in the grid so that every row, every column,
and every 3 x 3 box contains the digits 1 — 9.
There's no maths involved. You solve the
puzzle with reasoning and logic.

The Independent Newspaper
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Towards the Specifying Solution (1)
Preliminary definitions:

m x n-matrix: A list of m rows of the same length n.

type Matrix a = [Row al]
type Row a = [a]

4.5

Grid: A 9 x 9-matrix of digits.

type Grid = Matrix Digit
type Digit = Char

Valid digits: '1" to '9’; '0’ stands for a blank.

[’12..79’]
(= 0"

digits
blank
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Towards the Specifying Solution (2)

We assume that the input grid is valid, i.e.,

4.5

» it contains only digits and blanks

» no digit is repeated in any row, column or box.
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Towards the Specifying Solution (3)

There are two straigthforward (brute force) approaches to
solving a Sudoku puzzle:

1. 1st Approach:
» Construct a list of all correctly completed grids.
» Then test the input grid against them to identify those
whose non-blank entries match the given ones.
2. 2nd Approach:
» Start with the input grid and construct all possible
choices for the blank entries.
» Then compute all grids that arise from making every
possible choice and filter the result for the valid ones.

In the following we follow the 2nd approach to define the
specifying initial solution of the Sudoku-problem.

4.5
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Specifying Solution of the Sudoku-Problem (1)

The Specifying (Initial) Solution of the Sudoku-Problem:

solve = filter valid . expand . choices

choices :: Grid -> Matrix Choices

expand :: Matrix Choices -> [Grid]

valid :: Grid -> Bool “‘5
Intuition:

» choices constructs all choices for the blank entries of
the input grid,

» expand then computes all grids that arise from making
every possible choice,

» filter valid finally selects all the valid grids.
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Specifying Solution of the Sudoku-Problem (2)

To represent the set of choices we introduce the data type:

type Choices = [Digit]
.5
This allows us to define the subsidiary functions of solve, i.e.,
» choices
» expand

» valid
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Specifying Solution of the Sudoku-Problem (3)

The implementation of choices:

choices :: Grid -> Matrix Choices

choices = map (map choice)

choice d = if blank d then digits else [d] 45
Intuition:

» If the cell is blank, then all digits are installed as possible
choices.

» Otherwise there is no choice and a singleton is returned.
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Specifying Solution of the Sudoku-Problem (4)

The implementation of expand:

expand :: Matrix Choices -> [Grid]

expand :: cp . map cp

cp :: [[a]] —> [[a]]

cp [1 = [[]

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss] 45
Intuition:

» Expansion is a Cartesian product, i.e., a list of lists given
by the function cp, e.g., cp[[1,2],[3],[4,5]] ->>
[[1,3,4],[1,3,5],[2,3,4],[2,3,5]]

» map cp then returns a list of all possible choices for each
row.

» cp . map cp, finally, installs each choice for the rows in

all possible ways.
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Specifying Solution of the Sudoku-Problem (5)

The implementation of valid:

valid :: Grid -> Bool
valid g = all nodups (rows g) &&
all nodups (cols g) &&
all nodups (boxs g) ue

nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (x/=) xs && nodups xs

Intuition:

» A grid is valid, if no row, column or box contains
duplicates.
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Specifying Solution of the Sudoku-Problem (6)

The implementation of rows and columns:

rows :: Matrix a -> Matrix a

rows = id

cols :: Matrix a -> Matrix a 45
cols [xs] = [ [x] | x <- xs]

cols (xs:xss) = zipWith (:) xs (cols xss)

[ntuition:

» rows is the identity function, since the grid is already
given as a list of rows.

» columns computes the transpose of a matrix.
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Specifying Solution of the Sudoku-Problem (7)

The implementation of boxs:

boxs :: Matrix a -> Matrix a
boxs = map ungroup . ungroup . map cols .
group . map group

group :: [a]l -> [[all
group [] = [] 45
group xs = take 3 xs : group (drop 3 xs)

ungroup :: [[al]l -> [al]
ungroup = concat

Intuition:
» group splits a list into groups of three.
» ungroup takes a grouped list and ungroups it.
» group . map group produces a list of matrices; trans-

posing each matrix and ungrouping them yields the boxes.
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Specifying Solution of the Sudoku-Problem (8)

[llustrating the action of boxs for the 4 x 4-case, when group
splits a list into groups of two:

a b c d (ab cd) (ab ef
e f g h ef gh cd gh s
P ki -
o p op kI  op
Note:

» Eventually, the elements of the 4 boxes show up as the
elements of the 4 rows, where they can easily be accessed.
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Wholemeal Programming

Instead of
» thinking about matrices in terms of indices, and

» doing arithmetic on indices to identify rows, columns, and
boxes
the present approach has gone for functions that

4.5

» treat the matrix as a complete entity in itself.

Geraint Jones coined the notion
» wholemeal programming

for this style of programming.

Wholemeal programming helps
» avoiding indexitis and

» encourages lawful program construction.
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Lawful Programming

Example:

» The 3 laws (A), (B), and (C) hold on arbitrary
N x N-matrices, in particular on 9 x 9-grids:

rows . rows = id (p)
cols . cols = id (B) 4
boxs . boxs = id (®))

This means, all 3 functions are involutions.

» The 3 laws (D), (E), and (F) hold on N? x N2-matrices:

map rows . expand = expand . rows (D)
map cols . expand = expand . cols (E)
map boxs . expand = expand . boxs (F)
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A Quick Analysis of the Specifying Solution

Suppose that half of the entries (cells) of the input grid are
fixed.

Then there are about 9%°, or

4.5

147.808.829.414.345.923.316.083.210.206.383.297.601

grids to be constructed and checked for validity!

This is hopeless!
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Towards a Better Performing Algorithm
Pruning the matrix of choices:

ldea
» Remove any choices from a cell ¢ that occurs as a

singleton entry in the row, column or box containing c.

Hence, we are seeking for a function
prune :: Matrix Choices -> Matrix Choices
that satisfies

filter valid . expand
= filter valid . expand . prune

and realizes the above idea.

4.5

327/165



Towards defining prune

Pruning a row

pruneRow :: Row Choices -> Row Choices
pruneRow row = map (remove fixed) row
where fixed = [d | [d] <- row]

4.5

where

remove xs ds
= if singleton ds then ds else ds \\ xs

Intuition:

» remove removes choices from any choice that is not fixed.
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Laws for pruneRow, nodeups, and cp

» The function pruneRow satisfies law (G):

filter nodups . cp
= filter nodups . cp . pruneRow (®

4.5

» The functions nodeups and cp satisfy laws (H) and (I):

If £ is an involution, i.e., £ . £ = id, then
filter (p.f) = map f . filter p . map f (H)

filter (all p) . cp = cp . map (filter p) (I)
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Rewriting filter valid . expand
We can prove:

filter valid . expand
= filter (all nodups . boxs)
filter (all nodups . cols)
filter (all nodups . rows) . expand

Note:

» The order of the 3 filters on the right hand side above is
not relevant.

Work plan:
» Apply each of the filters to expand.

This requires some reasoning which we exemplify for the boxs
case.

4.5
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Reasoning in the boxs Case (1)

filter (all nodups . boxs) . expand
= {(H), since boxs . boxs = id}

map boxs . filter (all nodups) . map boxs . expand
= {(F)}

map boxs . filter (all nodups) . expand boxs .
= {definition of expand}

map boxs . filter (all nodups) . cp . map cp . boxs
= {(I),and map f . mapg = map (f . g)}

map boxs . cp . map (filter nodups . cp) . boxs
= {(6)}

map boxs . cp . map (filter nodups . cp . pruneRow) . boxs
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Reasoning in the boxs Case (2)

= {()}
map boxs . filter (all nodups) . cp .
map cp . map pruneRow . boxs
= {definition of expand}
map boxs . filter (all nodups) . expand . o
map pruneRow . boxs
= {(H) in the form map f . filter p = filter (p . f) . map f}
filter (all nodups . boxs) . map boxs . expand .
map pruneRow . boxs
= {(A)}
filter (all nodups . boxs) . expand . boxs .

map pruneRow . boxs
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Summing up

» We have shown:

filter (all nodups . boxs) . expand
= filter (all nodups . boxs)
expand . pruneBy boxs

where

pruneBy f = f . map pruneRow . f 4

» Repeating the same calculation for rows and cols we
get:
filter valid . expand
= filter valid . expand . prune

where

prune
= pruneBy boxs . pruneBy cols . pruneBy rows
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2nd and Improved Implementation of solve

The Pruning-improved Implementation of solve:

solve = filter valid . expand . prune . choices

Note:

Pruning can be done more than once.

» After each round of pruning some choices might be
resolved into singletons allowing the next round of
pruning to remove even more impossible choices.

» For simple Sudoku problems repeated rounds of pruning
will eventually yield the solution of the input Sudoku
problem.

4.5
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Tuning the Solver Further

Idea

» Combine pruning with expanding the choices for a single
cell only at a time:

~> single-cell expansion

To this end we replace the function expand by a new version
expand = concat . map expand . expandl @)

where expandl (defined next) expands the choices of a single
cell only.

4.5
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Towards defining expand1

Which cell to expand?

» Any cell with the smallest number of choices for which
there are at least 2 choices.

4.5

Note:
» If there is a cell with no choices then the Sudoku problem
is unsolvable.

(From a pragmatic point of view, such cells should be
identified quickly.)
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Defining expand1

Think of a cell containing cs choices as sitting in the middle of
arow row, i.e., row = rowl ++ [cs] ++ row2, in the matrix
of choices, with rows rows1 above it and row rows?2 below it:

expandl :: Matrix Choices -> [Matrix Choices]
expandl rows

= [rowsl ++ [rowl ++ [c] : row2] ++ rows2 | c<-cs]
where

(rowsl,row:rows2) = break (any smallest) rows

(rowl, cs:row2) break smallest row

smallest cs length cs == n

n minimum (counts rows)

counts = filter (/=1) . map length . concat

break p xs
= (takeWhile (not . p) xs, dropWhile (not . p) xs)
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Remarks on expandl

>

The value n is the smallest number of choices, not equal
to 1 in any cell of the matrix of choices.

If the matrix contains only singleton choices, then n is the
minimum of the empty list, which is not defined.

The standard function break p splits a list into two.
break (any smallest) rows thus breaks the matrix
into two lists of rows with the head of the second list
being some row that contains a cell with the smallest
number of choices.

4.5

Another application of break then breaks this row into
two sub-rows, with the head of the second being the
element cs with the smallest number of choices.

Each possible choice is installed and the matrix recon-
structed.

If there are no choices, expandl returns an empty list.
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Completeness and Safety of a Matrix

The definition of n implies that (J) only holds when

» applied to matrices with at least one non-singleton choice.

This suggests:

A matrix is
» complete, if all choices are singletons, 45

» unsafe, if the singleton choices in any row, column or box
contain duplicates.

It is worth noting:

» Incomplete and unsafe matrices can never lead to valid
grids.

» A complete and safe matrix of choices determines a
unique valid grid.
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Completeness and Safety Tests

Completeness and safety can be tested as follows.

» Completeness Test:
complete = all (all single)

where single is the test for a singleton list.

» Safety Test:

safe m
= all ok (rows m) &&
all ok (cols m) &&
all ok (boxs m)

where
ok row = nodups [d | [d] <- row]
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We can show

If a matrix is safe but incomplete, we can calculate:

filter valid . expand

= {since expand = concat . map expand . expandl
on incomplete matrices} .
filter valid . concat . map expand . expand1l

= {since filter p . concat = concat . map (filter p)}
concat . map (filter valid . expand) . expandl

= {since filter valid . expand =filter valid . expand . prune}

concat . map (filter valid . expand . prune) . expand1
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3rd and Final Implementation of solve
Introducing

search = filter valid . expand . prune

we have on safe but incomplete matrices that

search . prune = concat . map search . expandl

4.5

This allows:

The Final Implementation of solve:

solve = search . choices

search m
| not (safe m) = []
| complete m> = [map (map head) m’]
| otherwise = concat (map search (expandl m’))

where m’ = prune m
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Quality and Performance Assessment

The final version of the Sudoku solver has been tested on
various Sudoku puzzles available at

» haskell.org/haskellwiki/Sudoku

It is reported that the solver
» turned out to be most useful, and

» competitive to (many) of the about a dozen different
Haskell Sudoku solvers available at this site.

While many of the other solvers use arrays and monads, and
reduce or transform the problem to

» Boolean satisfiability, constraint satisfaction, model-
checking, etc.

the solver presented here seems unique in terms of length,
conceptual simplicity and that it has been derived in part by
» equational reasoning.

4.5
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Chapter 5
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Objective

How can we gain (sufficiently much) confidence that

» ours and

1 Chap.
» other people’s programs hep 9

are sound?

Essentially, there are two means at our disposal:

» Verification

» Testing
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Verification vs. Testing

» Verification

» Formal soundness proof (soundness of the specification,
soundness of the implementation). Chap. 5

» High confidence but often high effort.

» Testing

» Two Variants
» Ad hoc: Controllable effort but usually unquantifiable,
questionable quality statement.
» Systematically: Controllable effort with quantifiable
quality statement.
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Testing can only show the presence of errors.
Not their absence.

Edsger W. Dijkstra (11.5.1930-6.8.2002)
1972 Recipient of the ACM Turing Award

Chap. 5

On the other hand, testing is often

» amazingly successful in revealing errors.
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Minimum Requirements of Testing

(Systematic) testing of programs should be Chap. 5

» Specification-based
» Tool-supported

» Automatically
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Minimum Requirements of Testing (Cont'd)

There shall be reporting on

» What has been tested? o s
» How thoroughly, how comprehensively has been tested?
» How was success defined?

Desirable, too

» Reproducibility of tests

» Repeated testing after program modifications
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Program Specification

Inevitable

» Specification of the meaning of the program Chap. 5

» Informally (e.g., as commentary in the program, in a
separate documentation)
~ disadvantage: often ambiguous, open to interpre-

tation
» Formally (e.g., in terms of pre- and post-conditions, in a

formal specification language)
~ advantage: precise and rigorous, unambiguous
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In this chapter

Specification-based, tool-supported testing in Haskell with
QuickCheck:

» QuickCheck (a combinator library)

» defines a formal specification language
...that allows property definitions inside of the (Haskell)
source code.

» defines a test data generator language
...that allows a simple and concise description of a large
number of tests.

» allows tests to be repeated at will
...which ensures reproducibility.

» allows automatic testing of all properties specified in a
module, including failure reports
...that are automatically generated.

Chap. 5
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Note

QuickCheck and its specification and test data generator
languages are:

» Examples of so-called domain-specific embedded lan- I
guages
~~ special strength of functional programming.

» Implemented as a combinator library in Haskell
~> allows us to make use of the full expressiveness of
Haskell when defining properties and test data generators.

» Part of the standard Haskell-distribution (for both GHC
and Hugs; see module QuickCheck)
~~ ensures easy and direct usability.
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Chapter 5.1

Property Definitions
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Simple Property Definition w/ QuickCheck (1)

In the simplest cases properties are defined in terms of predi-
cates, i.e., as Boolean valued functions.

Example:

[E81

Define inside of the program the property
prop_PlusAssociative :: Int -> Int -> Int -> Bool
prop_PlusAssociative x y z = (x+y)+z == x+(y+z)
Double-checking the property with Hugs yields:

Main>quickCheck prop_PlusAssociative
0K, passed 100 tests
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Simple Property Definition w/ QuickCheck (2)

Note:

» The type specification for prop_PlusAssociative is required 51
because of the overloading of (+) (otherwise there will be an
error message on ambiguous overloading: QuickCheck needs
to know which test data to generate).

> The type specification allows a type-specific generation of test
data.
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Simple Property Definition w/ QuickCheck (3)

The same example slightly varied:

Define inside of the program the property

prop_PlusAssociative :: Float -> Float -> Float
-> Bool >
prop_PlusAssociative x y z = (x+y)+z == x+(y+z)

Double-checking the property with Hugs yields:

Main>quickCheck prop_PlusAssociative
Falsifiable, after 13 tests:

1.0

-5.16667

-3.71429
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Simple Property Definition w/ QuickCheck (4)

Note:

» The property is falsifiable for type Float: think e.g. of
rounding errors.

[E81

The error report contains:

» The number of tests successfully passed

» A counter example
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Advanced Property Definition (1)

Given:
» A function insert
» A predicate ordered

Property under test:
» Insertion into a sorted list

[E81

A straightforward property definition to double-check the
correctness of the insertion function were:

prop_InsertOrdered :: Int -> [Int] -> Bool
prop_InsertOrdered x xs = ordered (insert x xs)

However, this property is falsifiable.
» The definition is naive and too strong

(note that xs is not supposed to be sorted).
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Advanced Property Definition (2)
First fix (trial-and-error):

prop_InsertOrdered :: Int -> [Int] -> Property
prop_InsertOrdered x xs = ordered xs
==> ordered (insert x xs)

Note: 51
» ordered xs ==>: This adds a precondition to the pro-
perty definition.
~~ Generated test data that do not match the precon-
dition, are dropped.
» ==>: is not a simple Boolean operator but affects the
selection of test data.
~~ Property definitions that rely on such operators always
have the result type Property in QuickCheck.
» Overall: A trial-and-error approach to generating test

data: Generate, then check if usable; if not, drop.
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Advanced Property Definition (3)

Second fix (systematic):

prop_InsertOrdered :: Int -> Property
prop_InsertOrdered x =
forAll orderedLists $ \xs -> ordered (insert x xs)

[E81

Note:

» This fix works by direct quantifying (in the running exam-
ple: direct quantifying over sorted lists)

» Overall: A systematic approach to generating test data:
Only useful test data are generated.
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The Operator ($) — A Quick Reminder

Standard Prelude:

($) :: (a->b) ->a->0bD
f$x=1Ffx >

Remark:
» The operator ($) is Haskell's infix function application.

» It is useful to avoid the usage of parentheses:

Example: £ (g x) can be writtenas f $ g x.
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Note

Expressiveness:

QuickCheck supports also the specification of more sophisti-
cated properties, e.g.

> 5.1

Testing multiple properties:

A (small) program (also called quickCheck) can be run from
the command line

» >quickCheck Module.hs
in order to test all properties defined in Module.hs at once.
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Chapter 5.2
Testing against Abstract Models
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ldea

Testing the correctness of an implementation against a
reference implementation, a so-called

52

» abstract model (reference model)

In the following:

» Demonstrating this by an extended example: Developing
an abstract data type for queues.
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Abstract Model of Queues

An abstract data type for first-in-first-out (FIFO) queues.

Specification:

type Queue a = [a]

empty = [] B
add x q = q ++ [x] -- inefficient due to ++!
isEmpty q = null q

front (x:q) = x

remove (x:q) = q

This is a simple (but inefficient) implementation that we con-
sider the abstract model of a FIFO queue; it is our reference
model of a FIFO queue.
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The Concrete Model of Queues (1)

...the implementation of interest, a more efficient implemen-
tation than the one of the abstract model.

Basic Idea:

» Split the list into two portions (a list front and a list back)
» Store the back of the list in reverse order

5.2
Together this ensures:

» Efficient access to list front and list back
~~ +-+ for addition boils down to : (strength reduction)
Example:
» Abstract queue: [7,2,9,4,1,6,8,3]++[5]
» Possible concrete queues:

» ([7,2,9,4],5:[3,8,6,1])
» ([7,2],5:[3,8,6,1,4,9])

LN

373/165



The Concrete Model of Queues (2)

Implementation:

type Queuel a = ([al,[al)

emptyl = ([1,[D

addI x (f,b) = (f,x:b) 52
isEmptyI (f,b) = null f

frontI (x:f,b) = x
removel (x:f,b) flipQ (f,b)
where
flipQ ([1,b) = (reverse b, [1)

flipQ q q
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In the following

We think of
» Queue and
» Queuel
in terms of
» specification and =
» implementation

of FIFO queues, respectively.

Next we want to double-check/test if operations defined on
QueueI (implementation / queues) behave in the same way as
the operations defined on Queue (specification / abstract
queues).
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Relating Queues and Abstract Queues

...by means of a retrieve function:

retrieve :: Queuel Integer -> [Integer]
retrieve (f,b) = f ++ reverse b

The function retrieve

» transforms each of the (usually many) concrete represen-
tations, i.e., values of Queuel, of an abstract queue, i.e.,
a value of Queue, into their unique canonical representa-
tion of an abstract queue.

52
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Soundness Properties for Operations on
Queuel

The understanding of QueueI and Queue as lists on integers

» allows us to omit type specifications in the definitions of 52
properties defined next.

By means of retrieve we can double-check, if

» the results of applying the efficient operations on Queuel
coincide with those of the abstract operations on Queue.
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Soundness Properties: Initial Definitions (1)

The below properties can reasonably be expected to hold:

retrieve emptyl == empty
retrieve (addI x q)

== add x (retrieve q)
isEmptyl q == isEmpty (retrieve q)
frontI q == front (retrieve q)
retrieve (removel q)

== remove (retrieve q)

prop_empty
prop_add x q

52

prop_isEmpty q
prop_front q
prop_remove q

However, this is not true!
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Soundness Properties: Initial Definitions (2)

Testing e.g. prop_isEmpty using QuickCheck yields:

Main>quickCheck prop_isEmpty
Falsifiable, after 4 tests:
(1, -1

Problem:
» The specification of isEmpty assumes implicitly that the
following invariant holds:

» The front of the list is only empty, if the back of the list
is empty, too:

isEmptyI (f,b) = null f

52
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Soundness Properties: Initial Definitions (3)

In fact:

» prop-isEmpty, prop_front, and prop_remove are all
falsifiable because of this!

» The implementations of isEmptyI, frontI, and
removel assume implicitly that the front of a queue will
only be empty if the back also is.

This silent assumption has to be made explicit in terms of an
invariant.

52
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Soundness Properties: Refined Definitions (1)

We define the invariant as follows:

invariant :: Queuel Integer -> Bool

invariant (f,b)

not (null f) || null b

...and add them to the relevant property definitions:

prop_empty =
prop_add x q
retrieve
prop_isEmpty q =
isEmptyl
prop_front q =
frontl q

prop_remove q
retrieve

retrieve emptyl == empty

invariant q ==>

(addI x q) == add x (retrieve q)
invariant q ==>

q == isEmpty (retrieve q)
invariant q ==>

== front (retrieve q)

invariant q ==>

(removel q) == remove (retrieve q)
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Soundness Properties: Refined Definitions (2)
Now, testing prop_isEmpty using QuickCheck yields:

Main>quickCheck prop_isEmpty
0K, passed 100 tests

52

However, testing prop_front still fails:

Main>quickCheck prop_front
Program error: front ([],[])

Problem:

» frontI (as well as removeI) may only be applied to
non-empty lists. So far, we did not take care of this.
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Soundness Properties: Final Definitions
Fix:
» Add not (isEmptyI q) to the preconditions of the
relevant properties.

This leads to:

prop_empty = retrieve emptyl == empty

prop_add x q = invariant q ==> 5
retrieve (addI x q) == add x (retrieve q)

prop_isEmpty q = invariant q ==>
isEmptyl q == isEmpty (retrieve q)

prop_front q = invariant q && not (isEmptyIl q) ==>
frontI q == front (retrieve q)

prop_remove q = invariant q && not (isEmptyI q) ==>
retrieve (removel q) == remove (retrieve q)

Now:

. |
» All properties pass the test successfully! 453 /165



Soundness Considerations Continued

We are not yet done — we still need to check:

» Operations producing queues do only produce queues that
satisfy this invariant.

52

Note:

So far we only tested that

» operations on queues behave correctly on representations
of queues that satisfy the invariant

invariant (f,b) = not (null f) || null b
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Adding Missing Soundness Properties (1)

Defining properties for operations producing queues:

prop_inv_empty = invariant emptyl
prop_inv_add x q = invariant q ==>
invariant (addI x q)
prop_inv_remove q = invariant q &&
not (isEmptyI q) ==>
invariant (removel q)

52
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Adding Missing Soundness Properties (2)

Testing by means of QuickCheck yields:

Main>quickCheck prop_inv_add
Falsifiable, after 0 tests:
0

(a1,

52

Problem:
» The invariant must hold

» not only after applying removel,
» but also after applying addI to the empty list; adding to
the back of a queue breaks the invariant in this case.

386/165



Soundness Properties: Completed Now!

To overcome the last and final problem:
» Adjust the function addI as follows:

addI x (f,b) = flipQ (f,x:b)
-— instead of: addI x (f,b) = (f,x:b)

with £1ipQ as defined previously.

Now:

» All properties pass the test successfully!

52
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Summing up

In the course of developing this example it turned out:

» Testing revealed (only) one bug in the implementation
(this was in function addI).

» But: Several missing preconditions and a missing invari-

ant in the original definitions of properties were found and
added.

Both is typical and valuable:

» The additional conditions and invariants are now explicitly
given in the program text.

» They add to understanding the program and are valuable
as documentation, both for the program developer and
for future users (think e.g. of program maintainance!).

52
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Chapter 5.3

Testing against Algebraic Specifications
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Algebraic Specifications

Testing against algebraic specifications is (often) a useful
alternative to testing against an abstract model.

53

An algebraic specification

» provides equational constraints the operations ought to
satisfy.
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Algebraic Specifications

For FIFO queues, e.g., we might start with the following alge-
braic specifications:

prop_isEmpty q = invariant q ==>
isEmptyIl q == (q == emptyIl)
prop_front_empty x = frontI (addI x emptyl) == x
prop_front_add x q = invariant q &&
not (isEmptyI q) ==>
frontI (addI x q) == frontI q
prop_remove_empty x =
removel (addI x emptyl) == emptyl
prop_remove_add x q = invariant q &&
not (isEmptyI q) ==>
removel (addIl x q) == addIl x (removel q)

53
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Testing Algebraic Specifications (1)
Testing prop_remove_add using QuickCheck yields:

Main>quickCheck prop_remove_add
Falsifiable, after 1 tests:
0
([1], [o])
Problem:
» The left hand side, i.e., removel (addI x q), yields:
(fo,o01, 1)
» The right hand side, i.e., addI x (removel q), yields:
(fol, ol
» The queue representations ([0,0],[]) and ([0], [0])
are equivalent (representing both the abstract queue
[0,0]) but are not equall
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Testing Algebraic Specifications (2)

Fix:
» Consider “equivalent” instead of “equal”:
q ’equiv’ q’ = invariant q && invariant q’ &&
retrieve q == retrieve q’

In fact: Replacing

prop_remove_add x q = invariant q && 53

not (isEmptyIl q) ==>
removel (addI x q) == addI x (removel q)
by

prop_remove_add x q

invariant q &&
not (isEmptyI q) ==>

removel (addI x q) ’equiv’ addl x (removel q)
yields as desired:

» The test of prop_remove_add passes successfully!
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Testing Algebraic Specifications (3)

Similar to the setup in Chapter 5.1, we have to check:

» All operations producing queues yield results that are
equivalent, if the arguments are.

53

Example:

For the operation addI this can be expressed by:

prop_add_equiv q g’ x = q ’equiv’ g’ ==
addI x q ’equiv’ addl x q’
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Summing up

Though mathematically sound, the definition of
prop_add_equiv is inappropriate for fully automatic testing.

We might observe:

Main>quickCheck prop_add_equiv Arguments exhausted
after 58 tests. 5.3

Problem and background:
» QuickCheck generates the lists g und q’ randomly.
» Most of the generated pairs of lists will not be equivalent,
and hence be discarded for the actual test.
» QuickCheck generates a maximum number of candidate

arguments only (default: 1.000), and then stops, possibly

before the number of 100 test cases is met.
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Outlook

Enhancing usability of QuickCheck by adding support for

» Quantifying over subsets

» by means of filters
» by means of generators (type-based, weighted, size
controlled,...)

> ...

» Test case monitoring

In the following:

» lllustrating this support by means of examples!

53

306/165



Chapter 5.4

Quantifying over Subsets
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Background and Motivation

For QuickCheck holds:

» By default, parameters are quantified over the values of
the underlying type

(e.g., all integer lists) 54

Often, however, it is required:
» A quantification over subsets of these values

(e.g., all sorted integer lists)
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Quantifying over Subsets

QuickCheck offers several means for achieving this:

Representation of subsets in terms of

» Boolean functions that act as a filter for test cases
» Adequate, if many elements of the underlying set are
members of the relevant subset, too. 54

» Inadequate, if only a few elements of the underlying set
are members of the relevant subset.

» generators

» A generator of type Gen a yields a random sequence of
values of type a.

» The property forall set p successively checks p on
randomly generated elements of set.
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Support by QuickCheck

For the effective usage of generators QuickCheck supports:

» different variants for the specification of relations such as
equiv
» As a Boolean function
» easy to check equivalence of two values (but difficult to
generate values that are equivalent).
» As a function from a value to a set of related (e.g., equi-
valent) values (generator!)
» easy to generate equivalent values (but difficult to check
if two values are equivalent).
The latter option will be considered in more detail in the
following chapter.
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Chapter 5.5

Generating Test Data
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Generators

The fundamental function to make a choice:

choose :: Random a => (a,a) -> Gen a

Note: 55

» The function choose generates “randomly” an element of
the specified domain.
» choose (1,n) represents the set {1,...,n}.

» The type Gen is a monad (cp. Chapter 11).
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Using choose
...we can define equivQ:

equivQ :: Queuel a -> Gen(Queuel a)
equivQ q = do k <- choose (0,0 ’max’ (n-1))
return (take (n-k) els,
reverse (drop (n-k) els))

where
els = retrieve q 55
n = length els

» Generates a random queue that contains the same
elements as q.

» The number k of elements in the back of the queue will
be chosen such that it is properly smaller than the total
number of elements of the queue (under the assumption
that the total number is different from 0).
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Application (1)
This allows us to check that

» generated elements are related, i.e., equivalent.

To this end check:

prop_EquivQ q = invariant q ==>
forAll (equivQ q) $ \q’ -> q ’equiv’ q’

Note:

» Recall that $ means function application. Using $ allows
the omission of parentheses (see the A expression in the
example).

» The property which is dual to prop_EquivQ, i.e., that all
related elements can be generated, cannot be checked by
testing.

55
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Application (2)

This allows:

» Reformulating the property that addI maps equivalent
queues to equivalent queues

prop_add_equiv q x = invariant q ==>

forAll (equivQ q) $ \q’ —> 55
addI x q ’equiv’ addIl x q’

Remark:

» Other properties analogously

Next we consider: How to define generators.
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Defining Generators

...is eased because of the monadic type of Gen.

It holds:

» return a always yields (generates) a and represents the 55
singleton set {a}

» do {x <- s; e} can be considered the (generated) set
{e | x € s}
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Type-based Generators (1)

...by means of the overloaded generator arbitrary, e.g. for
the generation of arguments of properties:

Example 1:
prop_max_le x y = x <= X ’max’ y s

is equivalent to

prop_max_le = forAll arbitrary $ \x ->
forAll arbitrary $§ \y -> x <= x ’max’ y
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Type-based Generators (2)

Example 2:
Theset {y | y > x} can be generated by
atLeast x = do diff <- arbitrary

return (x + abs diff)

55

because of the equality
{yly>x}={x+absd|d e Z}
that holds for numerical types.

Note: Similar definitions are possible for other types, too.
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Selection

...between several generators can be achieved by means of a
generator oneof that can be thought of as set union.

Example: Constructing a sorted list

orderedLists = do x <- arbitrary

listsFrom x

where o
listsFrom x
= oneof [return [], do y <- atleast x

1iftM (x:) (listsFrom y)]

Underlying intuition:
» A sorted list is either empty or the addition of a new head
element to a sorted list of larger elements.

409/165



Weighted Selection (1)

» The oneof combinator picks with equal probability one of
the alternatives.

» This often has an unduly impact on the test case
generation (in the previous example the empty set will be
selected too often).

55

» Remedy: A weight function frequency that assigns
different weights to the alternatives.

frequency :: [(Int,Gen a)] -> Gen a
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Weighted Selection (2)

Application:

listsFrom x
= frequency [(1,return []),
(4,do y <- atLeast x
1iftM (x:) (listsFrom y)) ] ss

» A QuickCheck generator corresponds to a probability
distribution over a set, not the set itself.

» The impact of the above assignment of weights is that on
average the length of generated lists is 4.
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The Type Class Arbitrary

If non-standard generators such as orderedLists are used
frequently, it is advisable to make this type an instance of type
class Arbitrary:

newtype OrderedList a = OL [a]

instance (Num a, Arbitrary a) =>
Arbitrary (OrderedList a) where
arbitrary = 1iftM OL orderedLists

55

Together with re-defining insert with the type

insert :: Ord a => a -> OrderedlList a
-> OrderedlList a

arguments generated for it will automatically be ordered.
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Controlling the Size of Generated Test Data

» This is usually wise for type-based test data generation

55

» |t is explicitly supported by QuickCheck
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Controlling the Size of Generated Test Data

Generators that depend on the size can be defined by:

sized :: (Int -> Gen a) -> Gen

a

-- For defining size-aware generators

sized $ \n -> do len <- choose (0,n)
vector len -- Application of sized

-- in the Def. of the

-- default list generator 55
vector n = sequence [arbitrary | i <- [1..n]]

-- generates random list

-- of length n
resize :: Int -> Gen a —> Gen a

sized $ \n -> resize (round

for controlling the size
of generated values

(sqrt (fromInt n))) arbitrary

Application of resize
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Generators for User-defined Types

Test data generators for

» predefined (“built-in") types of Haskell

» are provided by QuickCheck

» for user-defined types, this is not possible
5.5

» user-defined types
» have to be provided by the user in terms of defining a
suitable instance of the type class Arbitrary
» require usually, especially in case of recursive types, to
control the size of generated test data
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Example: Binary Trees (1)

Consider type (Tree a):

data Tree a = Leaf | Branch (Tree a) a (Tree a)

The following definition of the test-data generator is obvious:

55

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary =
frequency [(1,return Leaf),
(3,1iftM3 Branch
arbitrary arbitrary arbitrary)]
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Example: Binary Trees (2)

Note:

» The assignment of weights (1 vs. 3) has been done in
order to avoid the generation of all too many trivial trees
of size 1.

» Problem: The likelihood that a generator comes up with
a finite tree, is only one third.

55

~> this is because termination is possible only, if all
subtrees generated are finite. With increasing breadth of
the trees, the requirement of always selecting the
“terminating” branch has to be satisfied at ever more
places simultaneously.
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Example: Binary Trees (3)

Remedy:

» Usage of the parameter size in order to ensure

» termination and 55
» “reasonable” size

of the generated trees.
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Example: Binary Trees (4)

Implementation:

instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = sized arbTree

arbTree 0 = return Leaf
arbTree n | n>0 =
frequency [(1,return Leaf),
(3,1iftM3 Branch shrub arbitrary shrub)]

55

where
shrub = arbTree (n ’div’ 2)

Note: shrub is a generator for small(er) trees.
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Example: Binary Trees (5)

Remark:

» shrub is a generator for “small(er)” trees.

» shrub is not bounded to a special tree; the two
occurrences of shrub will usually generate different trees.

55

» Since the size limit for subtrees is halved, the total size is
bounded by the parameter size.

» Defining generators for recursive types must usually be
handled specifically as in this example.
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Chapter 5.6

Monitoring, Reporting, and Coverage
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Test-Data Monitoring

In practice, it is useful

» to monitor the generated test cases in order to obtain a
hint on the quality and the coverage of test cases

of a QuickCheck run. 56

For this purpose QuickCheck provides

» an array of monitoring and reporting possibilities.
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Usefulness of Test-Data Monitoring

Why is test-data monitoring meaningful?
Reconsider the example of inserting into a sorted list:

prop_InsertOrdered :: Integer -> [Integer]
-> Property
prop_InsertOrdered x xs = ordered xs ==>
ordered (insert x xs)

5.6
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Test-Data Monitoring and Test Coverage

QuickCheck performs the check of prop_InsertOrdered
such that:

» lists are generated randomly

» each generated list will be checked, if it is sorted (used
test case) or not (discarded test case)

Obviously, it holds:

» the likelihood that a randomly generated list is sorted is
the higher the shorter the list is

5.6

This introduces the danger that

» the property prop_InsertOrdered is mostly tested with
lists of length one or two

» even a successful test is not meaningful
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Test-Data Monitoring using trivial (1)
For monitoring purposes QuickCheck provides a

» combinator trivial, where the meaning of “trivial” is
user-definable.

Example:

prop_InsertOrdered :: Integer -> [Integer]

-> Property >0
prop_InsertOrdered x xs = ordered xs ==>

trivial (length xs <= 2) $ ordered (insert x xs)
with

Main>quickCheck prop_InsertOrdered
0K, passed 100 tests (91% trivial)
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Test-Data Monitoring using trivial (2)

Observation:

» 91% are too many trivial test cases in order to ensure
that the total test is meaningful

» The operator ==> should be used with care in test-case
generators

Remedy:

» User-defined generators
~> as in the example of prop_InsertOrdered in Chapter
5.1 (“Second Fix (systematic)").
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Test-Data Monitoring using classify (1)

The combinator trivial is

» instance of a more general combinator classify
5.6

trivial p = classify p "trivial"
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Test-Data Monitoring using classify (2)

Multiple applications of classify allow an even more refined
test-case monitoring:

prop_InsertOrdered x xs = ordered xs =>
classify (null xs) "empty lists" $
classify (length xs == 1) "unit lists" $
ordered (insert x xs)

This yields:

Main>quickCheck prop_InsertOrdered
0K, passed 100 tests.

42% unit lists.

40% empty lists.

5.6
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Test-Data Monitoring using collect

Going beyond, the combinator collect allows us to keep
track on all test cases:

prop_InsertOrdered x xs = ordered xs =>
collect (length xs) $ ordered (insert x xs)

This yields a histogram of values: 56

Main>quickCheck prop_InsertOrdered
0K, passed 100 tests.

46% 0.

34% 1.

15% 2.

5h 3.
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Chapter 5.7

Implementation of QuickCheck
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On the Implementation of QuickCheck (1)
A glimpse into the implementation:

class Testable a where
property :: a —> Property

newtype Property = Prop (Gen Result)

instance Testable Bool where
property b = Prop (return (resultBool b))

instance (Arbitrary a, Show a, Testable b) =>
Testable (a->b) where
property f = forAll arbitrary f

instance Testable Property where
property p = p

quickCheck :: Testable a => a -> 10 (O

5.7
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On the Implementation of QuickCheck (2)

QuickCheck

» consists in total of about 300 lines of code.

» has initially been presented by Koen Claessen and John
Hughes:

Koen Claessen, John Hughes. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Procee-
dings of the 5th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2000), 268-279, 2000.

5.7
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Summing up (1)

In general, it holds:

» Formalizing specifications is meaningful (even without a
subsequent formal proof of soundness).

Experience shows: o7

» Specifications provided are often (initially) faulty them-
selves.
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Summing up (2)

QuickCheck is an effective tool

» to disclose bugs in

» programs and

» specifications
with little effort.

» to reduce
> test costs
while simultaneously

» testing more thoroughly.

5.7
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Summing up (3)

Investigations of Richard Hamlet

» Richard Hamlet. Random Testing. In J. Marciniak (Ed.),
Encyclopedia of Software Engineering, Wiley, 970-978,
1994

indicate that

» a high number of test cases yields meaningful results even

in the case of random testing. o

Moreover

» The generation of random test cases is often “cheap.”

Hence, there are many reasons advising

» the routine usage of a tool like QuickCheck!
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Summing up (4)

Besides QuickCheck there are various other combinator
libraries supporting the lightweight testing of Haskell
programs, e.g.:

v

EasyCheck

SmallCheck i
Lazy SmallCheck

Hat (for tracing Haskell programs)

v

v

v
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Summing up (5)

The presentation of this chapter is closely based on:

» Koen Claessen, John Hughes. Specification-based Testing
with QuickCheck. In Jeremy Gibbons, Oege de Moor
(Eds.), The Fun of Programming. Palgrave MacMillan,
17-39, 2003.

For implementation details and applications refer to:
5.7

» Koen Claessen, John Hughes. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Procee-
dings of the 5th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2000), 268-279, 2000.

» Koen Claessen, John Hughes. Testing Monadic Code with
QuickCheck. In Proceedings of the ACM SIGPLAN 2002
Haskell Workshop (Haskell 2002), 65-77, 2002.
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Chapter 5.8

References, Further Reading
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Chapter 6

Verification
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Motivation

Though often amazingly effective, testing is limited to

» showing the presence of errors. Chap. 6
It can not show their absence!

By contrast, verification is able to

» proving the absence of errors!
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In this chapter

...we will consider important proof techniques for verifying
properties of functional (and other) programs that may
operate on

» elementary data such as Chap. 6
> integers
> strings
L
» composed data (in Haskell: algebraic data types) such as
> trees
» lists (which are finite by definition)
» streams (which are infinite by definition)

> ...
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Outline of the Proof Techniques
We already considered (cf. Chapter 4):

» Equational reasoning

We will consider in this chapter:

» Basic inductive proof principles
» Natural (or mathematical) induction
» Strong induction
» Structural induction

» Specialized inductive proof principles
» Induction on lists
» Induction on streams

» Coinduction

» Fixed point induction

Chap. 6
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Before going into details (1)

...it is worth noting:

Chap. 6
Though of different rigor, testing and verification are both

instances of approaches that aim at

» ensuring the correctness of a program or system.
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Before going into details (2)

Conceptually, we can distinguish between approaches that
strive for ensuring correctness by

» Construction Chap. 6

~~ applied a priori/on-the-fly of the program development

» Checking
~~ applied a posteriori of the program development

» Verification
» Testing (only to a limited extent if not exhaustive)
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Before going into details (3)

With this in mind, we may loosely conclude:

» Correctness by Construction Chap. 6
» Equational Reasoning

» Correctness by Checking

» Verification
» Testing
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Chapter 6.1

Equational Reasoning — Correctness by
Construction

6.1
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Equational Reasoning

...Is sometimes also called

» proof by program calculation. 61

It has been considered and demonstrated previously. Consider
Chapter 4 for details.
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Chapter 6.1: Further Reading (2)
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Chapter 6.2

Basic Inductive Proof Principles

6.2
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Outline

Basic inductive proof principles are:

» Natural or mathematical induction (dtsch. vollstandige
Induktion)

6.2

» Strong induction (dtsch. verallgemeinerte Induktion)

» Structural induction (dtsch. strukturelle Induktion)
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Basic Inductive Proof Principles

Let P be a property; let S be a set of values s that are (induc-
tively) constructed from a set of (structurally simpler) values
subs(s); let IN denote the set of natural numbers.

The principles of
» Natural (mathematical) induction
(P(L)A(Yn € IN.P(n) = P(n+1))) = VnelN.P(n) .
» Strong induction
(VneIN.(Vm < n.P(m))= P(n)) = ¥nelN.P(n)

» Structural induction

(Vs € S.Vs' € subs(s). P(s")) = P(s)) = VseS. P(s)
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Note

The proof principles of

» natural (mathematical)
» strong "
» structural

induction are equally expressive and powerful.
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lllustrating Examples

Next we provide some typical examples illustrating the usage
of these three basic inductive principles of

» natural (mathematical) o2
> strong

» structural

induction.

457/165



Chapter 6.2.1

Natural Induction
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Example A

Theorem 6.2.1.1

VnelN. Z,— ”H)

6.2
6.2.1
622

Proof: By means of natural (mathematical) induction.

459/165



Proof of Theorem 6.2.1.1 (1)

Base case: n = 1. In this case we obtain the desired equality
by a straightforward calculation:

n

> -

i=1

-

Il
M

6.2.1

NN
*
N

N

1x(1+1) nx(n+1)
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Proof of Theorem 6.2.1.1 (2)

Inductive case: Applying the induction hypothesis (IH) once,
we obtain as desired:

n+1 n

di= (n+1)+ ) i

i=1 i=1 61
n x n+1 621

(H) = (s Y

= (1) (5+1)

2
(n+1)x(n+2) (n+1)x((n+1)+1)

*
2 2
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Example B

Theorem 6.2.1.2

VnelN. Z(2>|<i—1):n2

6.2
6.2.1
i=1 622

Proof: By means of natural (mathematical) induction.
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Proof of Theorem 6.2.1.2 (1)

Base case: n = 1. In this case we obtain the desired equality
by a straightforward calculation:

n

> (@xi-1) = 21:2*,—1

i=1

— 2*1_1 6.2.1
= 2-1
=1

—= 12:[72
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Proof of Theorem 6.2.1.2 (2)

Inductive case: Applying the induction hypothesis (IH) once,
we obtain as desired:

n+1 n
d@wi—1) = 2x(n+1)—1+ ) (2%i—1)
i=1 i=1
(IH) = @*(n+1)—=1)+n’
= n42-14n? .
= 2n+1+n?
= n’4+2n+1
= nP+n+n+1

= (n+D)x(n+1)=(n+1)>
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Chapter 6.2.2

Strong Induction
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Fibonacci Function

The Fibonacci function is defined by:
fib : INg — INg

0 ifn=20
fib(n):d,c 1 ifn=1
fib(n — 1) + fib(n — 2) otherwise
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Example

Theorem 6.2.2.1

YV n € INo. fib(n) = (

€
6.2.2
V5 623
6.3
6.4
6.5

Proof: By means of strong induction.
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Key Idea for proving Theorem 6.2.2.1

Using the induction hypothesis (IH) that for all k < n,

n € INg, the equality
) ()
2

V5

holds, we can prove the premise underlying the implication of
the principle of strong induction for all natural numbers n by
investigating the following basic and inductive cases.

S

1+

v ‘

fib(k) = <

6.2.2
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Proof of Theorem 6.2.2.1 (2)

Base case 1: n = 0. In this case, a straightforward calculation
yields the desired equality:

fib(0) =0 =

Base case 2: n = 1. Again, a straightforward calculation yields
as desired:

6.2.2
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Proof of Theorem 6.2.2.1 (3)

Inductive case: n > 2. Applying the IH for n—2, n—1 yields as desired:

fib(n) = fib(n — 2) + fib(n — 1)

115 n727 ﬂ n—2 145 n717 1B n—1
(2x H) = (2> 5<2> +(2) \/§<2>
) [(”2‘6)"2—1-(:”2‘/5)”1}—[(12‘6)’724-(12‘/5)”1]
- NG 622
(55) o ] () 1]
B V5
o - (1+2\/§) <1+2\/§> _(172\6) (172\/§>
V5
_ () (%)
5
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Proof of Theorem 6.2.2.1 (4)

The equality marked by (x) follows from the below two calculations
that make use of the binomial formulae.

We have:

=1
5 +

2
<1+\/§> 142V5+5 6425 3445 145
B 4 42 2

6.2.2

Similarly we get:

2 4 4 2 2

(1—\/§>2:1—2\£+5:6—2\/§:3—\/§ 1-5
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Excursus: Which Rectangle looks ‘nicest’?

Rectangle 1

Rectangle 2

Rectangle 3
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Most People say ‘Rectangle 3'!

Rectangle 3
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Why?

8 UoL

6.1
5 UoL 6.2
6.2.1
6.2.2
6.2.3

6.4

6.5

6.6
6.7

8 UoL/5 UoL=1.6
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The value 1.6 comes close to

...the Golden Ratio:

1++5
2

O=df — 1.61803398874989...

Intuitively:

» The ratio of section A and section B is the same as the
ratio of section B and section C

A/B=B/C

The value of this ratio is denoted by ¢.
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The Golden Ratio

...Is perceived as harmonious:

8 UoL

6.2.1

5 UoL 622

8 UoL/5 UoL=1.6
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What is the value of ¢?

Thus:

é+1
-1

¢ =145 —1618...

(¢ =125 = —0.618...

2

=X

¢2

6.2.2
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The Golden Ratio

...not only in terms of the ratios of sections but also in terms

of the ratios of the areas of e.g. rectangles:

1 UoL

1 UoL

(6 - 1) UoL

12 UoL? =1 Uol?

1%(6 - 1) UoI?
=(¢ - 1) Uol®

6.2.2
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The Golden Ratio and Fibonacci Numbers (1)

The Golden Ratio, rectangles and the Fibonacci numbers:

6.2.2

21
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The Golden Ratio and Fibonacci Numbers (2)

The sequence of Fibonacci numbers:

0,1,1,2,3,5,8,13,21,34,55, 89, 144, 233,377, . ..

The sequence of the ratios of the Fibonacci numbers:

1/1
2/1
3/2
5/3
8/5
13/8
21/13
34/21

1,346,269/832,040

1

2

1.5

1.6

1.6

1.625
1.615384615384615
1.619047619047619

1.618033988750541

6.2.2
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The Golden Ratio and Fibonacci Numbers (3)

...as the limit of the ratios of the Fibonacci numbers.

We have:

6.2
6.2.2
6.2.3
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Chapter 6.2.3

Structural Induction

6.2.3
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Arithmetic Expressions

The set AE of (simple) arithmetic expressions is defined by
the BNF rule:

e i== n|v](ate)l(a-e)|(axe)l(a/e)

6.2.3
where n and v stand for an (integer) numeral and variable,
respectively.
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Example A

Theorem 6.2.3.1

Let e € AE, let Ip. and rp. denote the number of left and
right parentheses of e. Then we have:

6.2.3

lpe = IPe

Proof: By means of structural induction.
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Proof of Theorem 6.2.3.1 (1)

Base case 1: Let e = n, n a numeral.

In this case e does not contain any parentheses. This means
Ipe =0 = rp. which yields the desired equality of Ip. and rp..

6.2.3

Base case 2: Let e = v, v a variable.

As above, we conclude Ip, =0 = rp. obtaining the desired
equality of /p. and rp. also in this case.
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Proof of Theorem 6.2.3.1 (2)

Inductive case: Let e1, e € AE, let o € {4, —, %, /}, and let
e = (e 06).

By means of the induction hypothesis (IH) we can assume
Ipe, = rpe, and Ip., = rp.,. This allows us to prove the desired
equality of Ip. and rp. thereby completing the proof as follows:

Ipe
(e = (el o 62) ) = /p(e1oez) 2
- 1 + /Pe1 + /p(:‘Q
(2x IH) = rpe, + rpe, + 1
= Pleroe)
(e=eoe)) = rpe
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Example B

Theorem 6.2.3.2

Let e € AE, let p. and op. denote the number of parentheses
and of operators of e, respectively. Then we have:
6.2.3

Pe = 2% 0pe

Proof: By means of structural induction.
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Proof of Theorem 6.2.3.2 (1)

Base case 1: Let e = n, n a numeral.
In this case e does not contain any parentheses or operators.
This means p. =0 = op., which yields as desired
pe=0=2%0=2x op
6.2.3
Base case 2: Let e = v, v a variable.

As above, we conclude p. =0 = op. obtaining the desired
equality
pe=0=2%0=2% op

in this case, too.
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Proof of Theorem 6.2.3.2 (2)

Inductive case: Let e;, e, € AE, let o € {+, —,*,/}, and let
e = (e 0e).

By means of the induction hypothesis (IH) we can assume that
Pe, =2 % 0pe, and po, =2 * op.,. With these equalities we
obtain as desired:

Pe

(e=(e10e@)) = P(eroer)
= 1+p81+p€2+1

6.2.3

(2x IH) = 2% 0pe +2+ 2% 0pe,
= 2%0pe +2%1+2%o0p,,
= 2% (0ope +1+o0pe,)
= 2% OP(eroer)

(e=(ace)) = 2xope

OJ
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Example C

Theorem 6.2.3.3

Let e € AE be an arithmetic expression of depth n, let opd.
denote the number of of operands of e. Then we have:

opd, < 2" 2

Proof: By means of structural induction.
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Proof of Theorem 6.2.3.3 (1)

Base case 1: Let e = n, n a numeral.

In this case e has depth 0 and contains 1 operand. This yields

as desired:
opd. =opd,=1=2° < 2°

Base case 2: Let e = v, v a variable. 623

As in the previous case e has depth 0 and contains 1 operand.
Again we obtain as desired:

opds =opd, =1=2°0 < 29
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Proof of Theorem 6.2.3.3 (2)

Inductive case: Let e, e, € AE be arithmetic expressions of
depth n and m, respectively. Without losing generality let
m<n. Letoe {+,—, %/}, and let e = (&, 0 &).

In this case expression e has depth n + 1. By means of the
induction hypothesis (IH) we can assume opd,, < 2" and
opd., < 2™. Using these inequalities the proof can be comple-
ted as follows:

opd, 623
(e=(e10e)) = o0pdeoe)
= opd., + opd.,
(2xIH) < 27427
(m<n) < 2"42"
= 2x%x2"

2n+1
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Chapter 6.3
Inductive Proofs on Algebraic Data Types
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Chapter 6.3.1

Induction and Recursion

494/165



Induction and Recursion
...are closely related.

Intuitively:

» Induction describes things starting from something very
simple, and building up from there: It is a bottom-up

principle. o

» Recursion starts from the whole thing, working backward
to the simple case(s): It is a top-down principle.

Thus:

» Induction (bottom-up) and recursion (top-down) can be
considered the two sides of the same coin.
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In fact

The preferred usage of

» induction over recursion in some contexts (e.g., defining
data structures) resp. vice versa in others (e.g., defining
algorithms) is often mostly due to historical reasons.

Data types:

IS

data Tree = Leaf Integer
| Node Tree Tree

Algorithms:

fac :: Integer -> Integer
fac n = if n == 0 then 1 else n * fac (n-1)
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Examples

» Inductive definition of (simple) arithmetic expressions:
(rl) Each numeral n and variable v is an (elementary)
arithmetic expression.
(r2) If e; and ey are arithmetic expressions, then also
(e1 + ), (e1 — &), (e1 x e2), and (e1/e2).
(r3) Every arithmetic expression is inductively constructed by
means of rules (r1) and (r2).

IS

» Recursive definition of merge sort:
A list of integers [ is sorted by the following 3 steps:

(ms1) Split / into two sublists /; and k.

(ms2) Sort the sublists /1 and k recursively obtaining the sor-
ted sublists s/ and sbh.

(ms3) Merge the sorted sublists s and sk into the sorted list
sl of I.

497/165



Summing up

» Definitions of data structures often follow an inductive
definition pattern, e.g.:

» A list is either empty or a pair consisting of an element
and another list.

» A tree is either empty or consists of a node and a set of
subtrees.

» An arithmetic expression is either a numeral or a vari-
able, or is composed of (two) arithmetic expressions by 631
means of a (binary) arithmetic operator.

» Algorithms (functions) on data structures often follow a
recursive definition pattern, e.g.:
» The function length computing the length of a list.
» The function depth computing the depth of a tree.
» The function evaluate computing the value of an
arithmetic expression (given a valuation of its variables).
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Chapter 6.3.2

Inductive Proofs on Trees

6.3.2
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Inductive Proofs on Trees

Let

data Tree = Leaf Integer
| Node Tree Tree

Theorem 6.3.2.1

Let t be a value, i.e., a tree, of type Tree of depth n, let
leaves(t) denote the number of leafs of t.
Then we have:

6.3.2

leaves(t) < 2"

Proof: By means of structural induction.
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Proof of Theorem 6.3.2.1 (1)

Base case: Let t = Leaf k for some integer k.

In this case t has depth 0 and contains 1 leaf. This yields as
desired:

leaves(t) = leaves(Leaf k) =1=20< 20

6.3.2
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Proof of Theorem 6.3.2.1 (2)

Inductive case: Let t1 and t2 be two values of type Tree of
depth n and m, respectively. Without losing generality let
m < n, and let t = Node t1 t2.

In this case t is a tree of depth n+ 1. By means of the induc-
tive hypothesis (IH) we can assume leaves(t1) < 2" and
leaves (t2) < 2". Using these inequalities the proof can be
completed as follows:
leaves(t) 632
(t =Node t1 t2) = Lleaves(Node tl1 t2)

= leaves(tl) + leaves(t2)
2" 427
2" 42"
2% 2"
— 2n+1

—

2x IH)

(m < n)

ININA

0J
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Chapter 6.3.3

Inductive Proofs on Lists
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Preliminaries

Recall:

» A list is by definition finite.

Given a list, it is called

» partial, if it is built from the undefined list
» defined, if it is not partial and all its elements are defined
6.3.3
Note:
» For inductively proving properties on lists we have to
distinguish the two cases of

» defined lists (cf. Chapter 6.3.3)
» partial lists with possibly undefined elements
(cf. Chapter 6.3.4)
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Inductive Proofs on Defined Lists
The inductive proof pattern for defined lists:

Let P be a property on lists.

1. Base case: Prove that P is true for the empty list, i.e.
prove P([]).

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(x : xs) is true (induction step).

6.3.3

Note:

» The above pattern is an instance of the more general
pattern of structural induction.

» A property P proved using this pattern is true for lists
with only defined elements of any finite length.
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Example A: Induction on Lists (1)

Let

length :: [a] -> Int
length [] 0
length (_:xs) = 1 + length xs

Lemma 6.3.3.1 633

For all defined lists xs, ys holds:

length (xs +-+ys) = length xs + length ys

Proof by induction on the structure of xs.
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Example A: Induction on Lists (2)
Base case:
length([] ++ys)
= length ys
= 0 + length ys
length [] + length ys

Inductive case: |
length((x : xs) ++s)
length (x : (xs ++ys)) o
= 1 + length (xs ++ys)
(IH) = 1 4 (length xs + length ys)
= (1 + length xs) + length ys
length (x : xs) + length ys
]
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Example B: Induction on Lists (1)

Let

listSum :: Num a => [a] -> a
listSum [] =0
listSum (x:xs) = x + listSum xs

Lemma 6.3.3.2 635

For all defined lists xs holds:

listSum xs = foldr (+) 0 xs

Proof by induction on the structure of xs.
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Example B: Induction on Lists (2)
Base case:

listSum []
= 0
= foldr (+) 0 []

Inductive case: o

listSum (x : xs) Y

= x + listSum xs o
(IH) = x + foldr (+) 0 xs
= foldr (+) 0 (x : xs)
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Example C: Induction on Lists w/ map (1)

Properties of map that can be proved by induction on lists.

map (f.g) =map f . map g

map f.tail = tail . map £

reverse . map f
concat . map (map f)
map f xs ++ map f ys

map f . reverse
map £ . concat
map f (xs++ys)

6.3.3

\y >y
Note: \x => x :: a -> a
\y >y :: [a]l -> [a]

map (\x -> x)
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Example C: Induction on Lists w/ map (2)

Lemma 6.3.3.3
If £ is strict, it is true:
f . head = head . map f b{";]
6.3.3

Proof by induction on the structure of lists.
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Example C: Induction on Lists w/ map (3)

Base case: (f . head) []
(Def. of ") = f (head [])
= 1l
(f strict) = L
= head []
(Def. of map) = head (map f [])
(Def. of ") = (head . map f) []
Inductive case: f . head (x : xs)
(Def. of ") = f (head (x : xs))
= fx
= head (f x : map f xs)
(Def. of map) = head (map f (x : xs))

(Def. of ") = (head . map f) (x : xs) O
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Example D: Induction on Lists w/ fold
Properties of fold that can be proved by induction on lists.

» If op is associative with e op’ x = xand x ’op’ e =
x for all x, then for all finite xs
foldr op e xs = foldl op e xs
is true.
» If x 2opl’ (y ’0p2’ z) = (x ’opl’ y) ’op2’ z
and x ’opl’ e = e ’op2’ x, then for all finite xs 633
foldr opl e xs = foldl op2 e xs

is true.

» For all finite xs
foldr op e xs = foldl (flip op) e (reverse xs)

is true.
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Example D: Induction on Lists w/ (++)

Properties of (++) that can be proved by induction on lists.

» For all xs, ys, and zs it is true:

(XS‘H‘YS) ++ z8 = xXs ++ (YS++ZS)
(Associativity of (++))

xs ++ [] = [] ++ xs
([] is neutral element of (++))

6.3.3
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Example E: Induction on Lists w/ take/drop

Properties of take and drop that can be proved by induction
on lists.

» For all m, n with m,n > 0 and finite xs it is true:

take n xs ++ drop n xs = xs
take m . take n
dropm . drop n
take m . drop n

take (min m n)
drop (m+n) 6.3.3
drop n . take (m+n)

» If n > m, it is additionally true:

drop m . take n = take (n-m) . drop m

515/165



Example F: Induction on Lists w/ reverse

Properties of reverse that can be proved by induction on
lists.

» For all finite xs it is true:

head (reverse xs) = last xs
last (reverse xs) = head xs oas

» For all finite xs with only defined elements it is true:

reverse (reverse xs) = XS
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Chapter 6.3.4

Inductive Proofs on Partial Lists
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Preliminaries

Computations that

» fail to terminate
» are faulty, i.e., produce an error

do not give a proper, i.e., a defined value.

The value of such computations is called the 634
» undefined value.

The undefined value is usually denoted by L (“bottom™).
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Examples

The function

buggy_fac :: Integer -> Integer
buggy_fac n = (n-1) * buggy_fac n
buggy_fac 0 =1

...induces for every argument a non-terminating computation.

The function

buggy_div :: Integer -> Integer
buggy_div n = divn O

...produces an error for each argument called with.

6.3.4
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The Undefined Value in Haskell

The undefined value L

» is an element of every data type of Haskell representing
the value of a

» faulty or non-terminating computation.

L can be considered the “least accurate” approximation
of (ordinary) values of the corresponding data type.

The definition

» Polymorphic Concrete
bottom :: a bottom :: Integer
bottom = bottom bottom = bottom

is the most simple expression (of arbitrary type) whose
evaluation leads to a non-terminating computation with
value L.

6.3.4
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The Undefined Value and Lists

The undefined value | may occur as

» an “ordinary” element of a list
» a list itself.

Example:

lstl1 = 2 : bottom : 5 : 7 : []
1st2 =2 : 3 : 5 : 7 : bottom
1st3 = 2 : bottom : 5 : 7 : bottom
1std =2 : 3 :5 :7 : []

Note:

» The occurrence of bottom in 1st1 and the first occur-
rence of bottom in 1st3 are of type Integer.

» The occurrence of bottom in 1st2 and the second occur-
rence of bottom in 1st3 are of type [Integer].

6.3.4
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Defined and Partial Lists

Definition 6.3.4.1 (Defined Values)
A value of a data type is defined, if it is not equal to L.

Definition 6.3.4.2 (Defined and Partial Lists)
A list is
» defined, if it is a list of defined values

» partial, if it is built from the undefined list, i.e., if its tail
is the undefined list L

6.3.4

Example:
» 1st4 is a defined list, while 1st1, 1st2, 1st3 are not.
» 1st2 and 1st3 are partial, while 1st1 is neither defined
nor partial (note: 1st1 contains an undefined element
but is not built from the undefined list).
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Examples of Partial Lists

Successively increasingly defined partial lists:

» bottom (the undefined list, i.e., the “least defined” par-
tial list)

» 1 : bottom (partial list)

» 1 : 2 : bottom (partial list)

» 1 : 2 : 3 : bottom (partial list) 634
>

»1:2:3:4:5:6:7: bottom (partial list)

>
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Properties of Functions on Partial Lists (1)

reverse (lstl) ->> [7,5 ...followed by an infinite wait
reverse (1st2) ->> ...infinite wait
reverse (1st3) ->> ...infinite wait

reverse (1lst4) ->> [7,5,3,2]

head (tail (reverse 1lstl)) ->> 5

head (tail (tail (reverse 1st1)]) ->> ...infinite wait

last (1stl) ->> 7

last (1st2) ->> ...infinite wait 634
head (tail (reverse 1lst2)) ->> ...infinite wait

head (reverse 1lstl) ->> 7

head (tail (reverse 1lstl)) ->> 5

head (reverse (reverse 1lstl)) ->> 2

reverse (reverse (lstl) ->> [2 ...followed by an

infinite wait
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Properties

length
length
length
length

length
length
length

length
length
length
length

1stl
1st2
1st3
1st4

(take
(take
(take

(take
(take
(take
(take

of Functions on Partial Lists (2)

->> 4

=>> ...infinite wait
=>> ...infinite wait
->> 4

3 1lstl) ->> 3

2 1st2) ->> 2

3 1st3) ->> 3

4 1std) ->> 4

5 1std4) ->> 4

4 1st2) ->> 4

5 1st2) ->> ...infinite wait

6.3.4
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Properties of Functions on Partial Lists (3)

For understanding the different behaviours recall the defini-
tions of length and reverse:

length :: [a] -> Int
length [] =0
length (x:xs) = 1 + length xs -- x is not evaluated!

length :: [a] -> Int
length [] =0

length (_:xs) = 1 + length xs -- x is not evaluated!
reverse :: [a] -> [a]

reverse [] = []

reverse (x:xs) = reverse x ++ [x] -- x is evaluated!
reverse :: [a] -> [a]

reverse = foldl (flip (:)) [ -- x is evaluated!
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Inductive Proofs on Lists Reconsidered

The inductive proof pattern introduced at the beginning of
Chapter 6.3.3 holds for

» defined lists.

For inductive proofs of properties on partial lists (such as
1st2) with possibly undefined elements (such as 1st3) it has
to be replaced by the inductive proof principle shown next.

6.3.4
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Inductive Proofs on Partial Lists w/ Possibly
Undefined Elements

Inductive proof pattern for partial lists with possibly undefined
elements:

Let P be a property on lists.

1. Base case: Prove that P is true for the empty list and for
the undefined list, i.e. prove P([]) and P(L).

2. Inductive case: Assuming that P(xs) is true (induction
hypothesis), prove that P(x : xs) is true, for x being a
defined and an undefined value (induction step).

6.3.4
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Chapter 6.3.5

Inductive Proofs on Streams

6.3.5
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Approximating Lists and Streams

Lists and Streams

» can be approximated by sequences of increasingly more
accurate partial lists, also called approximants.

6.3.5
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Approximating Lists by Partial Lists

The list

[1,2,3,4,5] =1 :2 : 3 :4 :5: []

is approximated by the below sequence of partial lists that are
increasingly more accurate approximations and ultimately cul-
minate in the list [1,2,3,4,5]:

bottom
1 : bottom
1 2 : bottom
1 :2 : 3 : bottom
1 :2:3:4 : bottom
1 2 :3:4 :5 : bottom
1 2 :3:4:5:1]

6.3.5

531/165



Approximating Streams by Partial Lists (1)

The stream

[1,2,3,4,5..]

of natural numbers is the limit of the infinite sequence of
increasing approximations of partial lists:

bottom

1 : bottom

1 : 2 : bottom

1 :2: 3 : bottom

1 :2:3:4 : bottom

1 :2:3:4:5 : bottom
1:2:3:4:5:6:7

6.3.5

: 8 : 9 : bottom
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Approximating Streams by Partial Lists (2)

Note:

» Considering partial lists approximations of streams
reminds to the strategy of partially outputting/printing
streams by hitting Ctr1-C after some period of time.

» Extending this period of time further and further yields
successively more accurate approximations of the stream.

6.3.5
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Equality of Lists and Streams

Definition 6.3.5.1 (Equality of Lists)

Two lists xs and ys are equal, if all their approximants are
equal, i.e., if for all natural numbers n, take n xs = take n

ys.

Definition 6.3.5.2 (Infinite Lists, Streams)

A list xs is infinite or a stream, if for all natural numbers n,
take n xs /= take (n+l) xs.

6.3.5

Definition 6.3.5.3 (Equality of Streams)

Two streams xs and ys are equal, if for all natural numbers n,
xs!!ln = ys!!n.
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Extending Properties from Lists to Streams

Properties on lists

» can be extensible to streams, e.g.,
take n xs ++ drop n xs = Xxs

» but need not be extensible to streams, e.g.,
reverse (reverse xs)) = xs

Similarly, properties that are true for every partial list of an
approximating sequence of partial lists

» can be true for their limit

» but need not be true for their limit, e.g., “this list is
partial”.

6.3.5
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Hence

Proving properties on streams thus demands for tailored
» proof strategies

that avoid such anomalies and paradoxes.

Fortunately

» The restriction “expressed as an equation in Haskell” is
sufficient to ensure that a property that is true for every

partial list of an approximating sequence is also true for
its limit.
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Inductive Proofs on Streams

Inductive proof pattern for streams with only defined elements:
Let P be a property on streams expressed as an equation in
Haskell.

1. Base case: Prove that P holds for the least defined list,
i.e. prove P(L) (instead of P([])).

2. Inductive case: Assume that P(xs) is true (induction hy- 635
pothesis) and prove that P(x : xs) is true (induction

step).
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Example A: Induction on Streams (1)

Lemma 6.3.5.4

For all streams xs is true:

take n xs +4 drop n xs = xs

Proof by induction on the structure of xs.

6.3.5
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Example A: Induction on Streams (2)

Base case:

take n 1L 4+ drop n L
= 1 4+ dropn L
= 1

Inductive case:

take n (x : xs) 4+ drop n (x : xs)
= x : (take (n—1) xs 4+ drop (n — 1) xs)
(IH) = x :xs
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Chapter 6.4

Approximation
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Proof by Approximation

...Is an important principle
» for proving properties of infinite objects, e.g. equality of
streams
» has been applied in Chapter 6.3.5.

» is more general than the usage suggested there.

6.4

...will be considered in more detail in this chapter.
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Preliminaries

Definition 6.4.1 (Partially Ordered Set)

A relation R on M is called a partially ordered set (or partial
order) iff R is reflexive, transitive, and anti-symmetric.

Definition 6.4.2 (Chain)

Let (P,C) be a partially ordered set. A subset C C P is called
a chain of P, if the elements of C are totally ordered.

6.4

Remark
» Refer to Appendix to recall the meaning of terms if
necessary.
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Domains

Definition 6.4.3 (Domain)

A set D with a partial order C is called a domain, if
1. D has a least element L
2. | ] C exists for every chain C in D

Example
» Let P(IN) denote the power set of IN. Then (P(IN),C)
with C =4 C is a domain with least element () and
| | C = C for every chain C in P(IN).

Note
» A domain is a (chain) complete partial order (cf. Appen-
dix)
» The relation C of a domain is also called approximation
order.

6.4
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Approximation Order for Lists and Streams

Definition 6.4.4 (Approximation Order)

We define the following relation on lists and streams:

1 C xs
[] C xs =dr X5 =[]
x:xs E y:ys =g¢ xCy N xsC ys o

Lemma 6.4.5 (Domain Property of List Types)

Let a be a type such that its values form a domain. Then the
values of the data types [a] form under the approximation
order of Definition 6.4.4 a domain.
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Approximating Lists by Partial Lists

By means of Definition 6.4.4, we have:

1Cx : LEx :xy : LEXx @ xx 1...1 x, : L

Cxo @ X teeoet Xn o []

This finite set of approximations is a chain. We have:

LJ{L, 0 : L, x0 :x L, xo @ xx :...0 X5 : L,
Xo @ X1 .0 X 0[]}

=X X1 i...0 Xp 0[]

6.4
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Approximating Streams by Partial Lists

Similarly, streams can be approximated by partial lists, too:

1Cx : LEXx :x1 1 LEXx : x3 :...0 x, . L
CXo @ X ©...0 Xp @ Xpr1 @ LE oo
This infinite set of approximations is a chain. We have:

LI{L, x0 : L, x0 :x1 L, x:x :x : L,...} =xs
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Computing Partial Approximations

The function approx gives approximations of any list, stream:

approx :: Integer -> [a] -> [al
approx (n+1) [] =[]
approx (n+1) (x:xs) = X : approx n xs

Note:

6.4

» n+1 matches only positive integers.

» Calling approx n xs with n smaller or equal to the
length of xs will cause an error after generating the first
n elements of the list, i.e., it generates the partial list

Xo X1 i...: Xp—1 - L

» If n is greater than the length of xs, the call approx n
xs generates the whole list xs.
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Proof by Approximation

Lemma 6.4.6 (Approximation)

For any list, stream xs holds:

o0
|_| approx n xs = Xxs

n=0 6.4

Theorem 6.4.7 (Approximation)

For any two lists, streams xs, ys hold:

xs=ys < VnelN. approx n xs = approx n ys
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Proving Properties of Streams

Note:

» The Approximation Theorem 6.4.7 is an important means
for proving properties of streams.

» The inductive proof principle for streams of Chapter 6.3.5
is justified by Theorem 6.4.7.
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Chapter 6.4: Further Reading

[§ Kees Doets, Jan van Eijck. The Haskell Road to Logic,
Maths and Programming. Texts in Computing, Vol. 4, 61
King's College, UK, 2004. (Chapter 10, Corecursion — 63
Proof by Approximation) -
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Chapter 6.5

Coinduction
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Proof by Coinduction

...Is another important principle

» for proving properties of infinite objects, e.g. equality of
streams

» complements the principle of proof by approximation for
proving properties of infinite objects (cf. Chapter 6.3.5)

» extends our tool box for proving properties of infinite
objects like streams
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Essence of Proof by Coinduction (1)

Proof by coinduction of equality of two infinite objects

» amounts to proving that the two objects exhibit the same
observational behaviour.

For example, proving the equality of two streams xs and ys
using the principle of proof by coinduction amounts to proving  ®°
that

» xs and ys have the same heads

» the tails of xs and ys have the same observational beha-
viour
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Essence of Proof by Coinduction (2)

Technically, proof by coinduction of the equality of two infinite
objects xs and ys boils down to

» defining a bisimulation relation on xs and ys, and proving
them to be bisimilar.

Formalizing this requires the notions of a labeled transition
system and a bisimulation relation.
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Labeled Transition Systems

Definition 6.5.1 (Labeled Transition System)

A labeled transition system is a tripel (Q, A, T) consisting of
> a set of states @
» a set of action labels A

6.5

» a ternary relation T C Q x A x @, the transition relation.

Note:
» If (q,a,p) € T, we write this as g — p.
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Bisimulations

Definition 6.5.2 ((Greatest) Bisimulation)
Let (@, A, T) be a labeled transition system.
A bisimulation on (Q, A, T) is a binary relation R on @ with
the following properties.
If gRp and a € A then
» If ¢ == ¢ then there is a p’ € Q with p —— p’ and
qgRp
» If p == p’ then thereis a ¢’ € Q with ¢ — ¢’ and
qdRp

6.5

We denote the greatest bisimulation on @ by ~.
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Example

Consider the following decimal representations of %

0.142857
0.1428571
0.14285714
0.142857142857142

v

v

v

v

and the relation R ‘having the same infinite expansion’ on 65
decimal representations.

Then

» R is a bisimulation on decimal representations

» 0.142857, 0.1428571, 0.14285714, 0.142857142857142
are all bisimilar.
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[[lustration

(=)
—_

615]
6.6
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Bisimilar

Definition 6.5.3 (Bisimilar)
Let (@, A, T) be a labeled transition system, and let p, g € Q.

Then p and g are called bisimilar, if they are related by a 65
bisimulation on Q.
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Proof by Coinduction (1)

The general pattern of a proof by coinduction for proving the
equality of infinite objects:

Let x and y be two infinite objects.

To prove that x and y are equal, show that they exhibit the
same behaviour, i.e. prove that x ~ y:

a~ b < JR.(Ris a bisimulation, and aR b)
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Proof by Coinduction (2)

A proof matching the preceding pattern is called a

» proof by coinduction.

Next, we are going to show how to use this pattern to prove
equality of streams.
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Proof by Coinduction (3)

To this end, we introduce the following notation:

If f=[fo,fi,h,fa, f5,...] is a stream, then f, denotes the head
and f the tail of f, ie.,, f="1y:f.

Note:

» A stream f can be considered a labeled transition system. s

[llustration

f

f @ —— @

Stream f as a labeled transition system
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Equality of Streams

Let f = [f(-)7 f—lv f37 ﬂlv f5a e ] and 8= [g07g17g37g47g57 <. ] be
two streams.

Then
» f and g are equal iff they exhibit the same behaviour

iffVieNg. =g

This boils down to
» fand g are equal iff f ~ g, ie., fy =goand f ~ g
with fiﬂfandgﬂg.
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Stream Bisimulation

Definition 6.5.4 (Stream Bisimulation)

A stream bisimulation on a set A is a relation R on [A] with
the following property.

If f,g € [A] and f R g then both f, =gy and f R 3.

[llustration
f @ ® ¢
6.5
fo o
T @ e ®:

Bisimulation between two streams f and g
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Proof by Coinduction w/ Stream Bisimulations

The general pattern of a proof by coinduction using stream
bisimulations of f ~ g, where f, g € [A]:

1. Define a relation R on [A]
2. Prove that R is a stream bisimulation, with f R g.
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Chapter 6.6

Fixed Point Induction
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Fixed Point Induction

...another important proof principle.

Fixed point induction allows proving properties of functions on
ordered sets, such as complete partial orders, lattices, and the
like (cf. Appendix).

6.6
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Admissible Predicates

Definition 6.5.1 (Admissible Predicate)

Let (C,C) be a complete partial order (CPO), and let
1 : C — IB be a predicate on C.

The predicate 1 is called admissible iff for every chain D C C
holds: 6.6

if )(d) = true for all d € D then (| | D)= true
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Fixed Point Induction

The general pattern of a proof by fixed point induction:

Theorem 6.5.2 (Fixed Point Induction)

Let (C,C) be a complete partial order (CPO), let f : C — C
be a continuous function on C, and let ¢ : C — IB be an
admissible predicate on C.

If for all ¢ € C holds that 66

(c) = true implies ¥(f(c))

then
Y(uf) = true

where uf denotes the least fixed point of f.
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Note

Streams

» form a domain resp. CPO (cf. Chapter 6.4 and Appendix)

Hence, fixed point induction is a relevant proof technique for a 4,
functional programmer.
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Chapter 6.6: Further Reading

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with
Applications: A Formal Introduction. Wiley, 1992.
(Chapter 6, Axiomatic Program Verification — Fixed Point
Induction)

[§ Hanne Riis Nielson, Flemming Nielson. Semantics with 66
Applications: An Appetizer. Springer-V., 2007. (Chapter 9,
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Chapter 6.7
Other Approaches, Verification Tools
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Other Approaches and Tools: A Selection (1)

» Programming by contracts (Vytiniotis et al., POPL 2013)

» Verifying equational properties of functional programs
(Sonnex et al., TACAS 2012)

» Tool Zeno: proof search based on induction and equality
reasoning driven by syntactic heuristics.

» Verifying first-order and call-by-value recursive functional 61
programs (Suter et al., SAS 2011)
» Tool Leon: based on extending SMT with recursive
programs.
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Other Approaches and Tools: A Selection (2)

» Verifying higher-order functional programs (Unno et al.,
POPL 2013)
» Tool MoCHi-X: prototype implementation of the type

inference algorithm as an extension of the software
model checker MoChi (Kobayashi et al, PLDI 2011).

» Verifying lazy Haskell (Mitchell et al., Haskell 2008)

» Tool Catch: based on static analysis; can prove absence
of pattern match failures; evaluated on ‘real’ programs.

6.7
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Chapter 7

Functional Arrays

Chap. 7
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Imperative Arrays

For imperative arrays holds:

» A value of the array can be accessed or updated in
constant time.
» The update operation does not need extra space.

» There is no need for chaining the array elements with
pointers as they can be stored in contiguous memory
locations.

Chap. 7
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Lists and Functional Arrays

(Functional) lists
» do not enjoy the favorable list of characteristics of
imperative arrays; most importantly, values of a list
cannot be accessed or updated in constant time.
» Using (!!) to access the ith element of a list takes a

number of steps proportional to /.

» Lists can be arbitrarily long, potentially even infinite. chep T

Functional arrays
» are designed and implemented to get as close as possible
to the characteristics of imperative arrays.
» Using (!) to access the ith element of an array takes a
constant number of steps, regardless of /.
» Arrays are of a fixed size which must be defined at the
time the array is (first) created.
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Chapter 7.1

Functional Arrays

7l
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Functional Arrays

Functional arrays

» are not part of the standard prelude Prelude.hs of
Haskell.

Various libraries
» provide different kinds of functional arrays

7.1
» import Array

» import Data.Array.IArray
» import Data.Array.Diff

Important variants of functional arrays
» Static arrays (w/out destructive update)
» Dynamic arrays (w/ destructive update)
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Static Arrays

Creating static arrays

import Array

There are three functions for creating static arrays:

» array bounds list_of_associations
» listArray bounds list_of values

» accumArray f init bounds list_of_associations

7l
=
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Creating Static Arrays

The three functions for creating static arrays in more detail:

» array :: Ix a=> (a,a) -> [(a,b)] -> Array a b
array bounds list_of_associations

» listArray:: (Ix a)=> (a,a) -> [b] -> Array a b
listArray bounds list_of _values

» accumArray :: (Ix a) => (b -> c -> b) > b
-> (a,a) -> [(a,c)] -> Array a b
accumArray f init bounds list_of associations

7l
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The Type Class Ix

Ix denotes the class of types that are (mainly) used for indices
of arrays.

» Ix inherits from the type class Ord (and indirectly from
the type class Eq):
class (0rd a) => Ix a where

range :: (a,a) -> [a]

index :: (a,a) > a -> Int “
inRange :: (a,a) > a —> Bool

rangeSize :: (a,a) -> Int

» Members of the type class Ix must provide implementa-
tions of the functions
» range
» index
» inRange
» rangeSize
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Creating Static Arrays: The 1st Mechanism

The first and most fundamental array creation mechanism:
» array :: Ix a=> (a,a) -> [(a,b)] -> Array a b
array bounds list_of_associations

Meaning of the arguments:
» bounds: gives the value of the lowest and the highest
index in the array.

7l

Example: bounds of a
» zero-origin vector of five elements: (0,4)
» one-origin 10 by 10 matrix: ((1,1),(10,10))
Note: The values of the bounds can be arbitrary
expressions.
» list_of_associations: a list of associations, where an
association is of the form (i,x) meaning that the value

of the array element i is x.
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Examples

The expressions

a’ = array (1,4) [(3,’¢c’),(2,’a’),(1,’£°),(4,%e’)]
f n = array (O,n) [(i,i*i) | i <- [0..n]]
m = array ((1,1),(2,3))
[C(1,3),C*j)) | i<-[1..2], j<-[1..3]]
have type
a’ :: Array Int Char 71
f :: Int -> Array Int Int
m :: Array (Int,Int) Int
and value

a’ ->> array (1,4) [(1,°£’),(2,7a’),(8,’¢c’),(4,’¢e’)]

£ 3 ->> array (0,3) [(0,0),(1,1),(2,4),(3,9)]

m ->> array ((1,1),(2,3)) [((1,1),1),((1,2),2),
(1,3),3),0(2,1),2),
((2,2),4),(2,3),6)]
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Properties of Array Creation
In general:

Arrays have type
» Array a b where
» a: represents the type of the index
» b: represents the type of the value

7l

Note:
» An array is undefined if any specified index is out of
bounds.
» If two associations in the association list have the same
index, the value at that index is undefined.

This means: array is strict in the bounds but non-strict
(lazy) in the values. In particular, an array can thus
contain ‘undefined’ elements.
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Example

The computation of the Fibonacci numbers:

fibs n = a
where a = array (1,n) ([(1,0), (2,1)] ++
[(1, a!(i-1) + a!(i-2))
| i <= [3..n]])

Applications: &

fibs 3 ->> array (1,3) [(1,0),(2,1),(3,1)]
fibs 5 ->> array (1,5) [(1,0),(2,1),(3,1),
(4,2),(5,3)]
fibs 10 ->> array (1,10) [(1,0),(2,1),(3,1),
(4,2),(5,3),(6,5),
(7,8),(8,13),(9,21),
(10,34)]
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Example (Cont'd)
More Applications:

fibs 5156 ->> 3
fibs 10'10 —>> 34

fibs 100!'10 ->> 34 -- Thanks to lazy evaluation
-— computation stops at
-- fibs 10!10

7l

fibs 50150 ->> 7.778.742.049
fibs 100!100 ->> 218.922.995.834.555.169.026

fibs 5!10 ->> Program error: Ix.index: index out
of range

607/165



The Array Access Function (!)

The signature of the array access function (!):

(1) :: Ix a => Array a b ->a ->b

Recall: The index type must be an element of type class Ix,
which defines operations specifically needed for index
computations.
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Example (Cont'd)

Note:

» The declaration of a in a where-clause is crucial for
performance.

» The local declaration of a avoids creating new arrays
during computation.

7l

For comparison consider:

an = array (1,n) ([(1,0), (2,1)] ++
[(i, a n!(i-1) + a n!(i-2))
| i <= [3..n]1)
xfibs n = an
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Example (Cont'd)
Applications:

xfibs 3 ->> array (1,3) [(1,0),(2,1),(3,1)]

xfibs 5 ->> array (1,5) [(1,0),(2,1),(3,1),
(4,2),(5,3)]

xfibs 10 ->> array (1,10) [(1,0),(2,1),(3,1),(4,2),
(5,3),06,5),(7,8),(8,13),
(9,21),(10,34)] 7

xfibs 5!5 ->> 3

xfibs 10!10 ->> 34

xfibs 25120 ->> 4.181

xfibs 25!256  ->> ...takes too long to be feasible!

Note: Though correct, the evaluation of xfibs n is most
inefficient due to the generation of new arrays during

computation.
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Creating Static Arrays: The 2nd Mechanism

The second array creation mechanism:
» listArray:: (Ix a)=> (a,a) -> [b] -> Array a b
listArray bounds list_of_values

Meaning of the arguments:
» bounds: gives the value of the lowest and the highest
index in the array.
» list_of values: a list of values. 7

The function 1istArray
» is useful for the frequenly occurring case where an array is
constructed from a list of values in index order.
Example:
a’’ = listArray (1,4) "face"
a’’ ->> array (1,4) [(1,’f’),(2,’a’),
(38,’¢?),(4,’e’)]
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Creating Static Arrays: The 3rd Mechanism

The third array creation mechanism:
» accumArray :: (Ix a) => (b -> c -> b) > b
-> (a,a) -> [(a,c)] -> Array a b
accumArray f init bounds list_of associations
...removes the restriction that a given index may appear at
most once in the association list. Instead, ‘conflicting’ indices
are accumulated via a function f. 71

Meaning of the arguments:
» f. an accumulation function.
» init: gives the (default) value the entries of the array shall
be initialized with.
» bounds: gives the value of the lowest and the highest
index in the array.

» list_of_associations: a list of associations.
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A Histogram Function
...using the function accumArray:

histogram :: (Ix a, Num b) =>

(a,a) > [a] -> Array a b
histogram bounds vs =

accumArray (+) O bounds [(i,1) | i <- vs]

Applications:

71
histogram (1,5) [4,1,4,3,2,5,5,1,2,1,3,4,2,1,1,3,2,1]
->> array (1,5) [(1,6),(2,4),(3,3),(4,3),(5,2)]

histogram (-1,4) [1,3,1,1,3,1,1,3,1]
=>> array (_1,4) [(_1,0) ) (O,O) s (1’6) s (210) s (3:3) ’ (4;0)]

histogram (1,3) [5,3,1,3,4,2,(-4),1,1,3,2,1,5,(-9)]
->> array

Program error: Ix.index: index out of range
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A Prime Number Test

...using the function accumArray:

primes :: Int -> Array Int Bool
primes n =
accumArray (\e e’ -> False) True (2,n) 1
where 1 = concat [map (flip (,) O)
(takeWhile (<=n) [k*ilk<-[2..]])
| i<-[2..n ‘div‘ 2]]

Applications:

(primes 100)!1 ->> Program error: Ix.index: index
out of range

(primes 100)!2  ->> True
(primes 100)!4  ->> False
(primes 100)!71 ->> True
(primes 100)!100 ->> False

(primes 100)!'101

>> Program error: Ix.index: index
out of range

7l
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A Prime Number Test (Cont'd)

More Applications:

elems (primes 10)
->> [True,True,False,True,False,True,False,False,Falsel

assocs (primes 10)
->> [(2,True), (3,True), (4,False), (5,True), (6,False),
(7,True), (8,False), (9,False), (10,False)]

yieldPrimes (assocs (primes 100)) 71

->> [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,
59,61,67,71,73,79,83,89,97]

where

yieldPrimes :: [(a,Bool)] -> [al

yieldPrimes [] = []

yieldPrimes ((v,w):t)
| w = v : yieldPrimes t
| otherwise = yieldPrimes t
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Array Operators

Array operators are:

» |: array subscripting.

» bounds: yields bounds of an array.

» indices: yields list of indices of an array.

» elems: yields list of elements of an array. .

» assocs: yields list of associations of an array.

» //: array updating — the operator // takes an array and a
list of associations and returns a new array identical to
the left argument except for every element specified by
the right argument list.

This means: // does not perform a destructive update!
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Array Operators (Cont'd)

» (1) :: (Ix a) => Array a b ->a > b

» bounds :: (Ix a) => Array a b (a,a)

» indices :: (Ix a) => Array a b -> [a]

» elems :: (Ix a) => Array a b -> [b] 71
» assocs :: (Ix a) => Array a b -> [(a,b)] -

» (//) :: (Ix a) => Array a b -> [(a,b)] —>
Array a b
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lllustrating the Usage of Array Operators

Let

m = array ((1,1), (2,3)) [((i,3), (ixj))
| i<-[1..2], j<-[1..3]]

Then

m ->> array ((1,1),(2,3)) [((1,1),1),((1,2),2),((1,3),3),
((2,1),2),0(2,2),4),((2,3),6)]

m!(1,2) ->> 2, m!(2,2) ->> 4, m!(2,3) ->> 6 s

bounds m ->> ((1,1),(2,3))

indices m ->> [(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)]

elems m ->> [1,2,3,2,4,6]

assocs m ->> [((1,1),1), ((1,2),2), ((1,3),3),
((2,1),2), ((2,2),4, ((2,3),6)]

m // [((1,1),4), ((2,2),8)]
->> array ((1,1),(2,3)) [((1,1),4),((1,2),2),((1,3),3),
(2,1,2),02,2),8),(2,3),6)]

618/165



lllustrating the Update Operator
The histogram function:

histogram (lower,upper) xs
= updHist (array (lower,upper)
[(1,0) | i<-[lower. .upper]])
XS
updHist a [] = a e
updHist a (x:xs) = updHist (a // [(x, (alx + 1))]) xs

Application:

histogram (0,9) [3,1,4,1,5,9,2]
->> array (0,9) [(0,0),(1,2),(2,1),(3,1),(4,1),
(5,1),(6,0),(7,0) ,(850) 3y (9’1)]
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lllustrating the accum Operator

Instead of replacing the old value, values with the same index
could also be combined using the predefined:
» accum :: (Ix a) => (b -> ¢ => b) -> Array a b
-> [(a,c)] -> Array a b
accum function array list_of_associations

Application:
accum (+) m [((1,1),4), ((2,2),8)]
->> array ((1,1),(2,3))

[((1,1),5),((1,2),2),((1,3),3),
((2,1),2),((,2,2),12),((2,3),6)]

Note:

» The result is a new matrix identical to m except for the
elements (1,1) and (2,2) to which 4 and 8 have been
added, respectively.

7l
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Higher-Order Array Functions

Higher-order functions can be defined on arrays just as on
lists.

For illustration consider:

» The expression
amap (\x -> x*10) a

7l

...creates a new array where all elements of a are multi-
plied by 10.
» The expression
ixmap b f a = array b [(k, a ! f k) | k<-range b]

with
ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b)
-> Array b ¢ -> Array a c
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Higher-Order Array Functions (Cont'd)

The functions row and col return a row and a column of a
matrix, respectively:

row :: (Ix a, Ix b) =>
a -> Array (a,b) c -> Array b ¢
row i m = ixmap (17, u’) (\j->(1i,j)) m
where ((1,1°),(u,u’)) = bounds m

7l

col :: (Ix a, Ix b) =>
a -> Array (b,a) ¢ -> Array b ¢
col jm = ixmap (1,u) (\i->(i,j)) m
where ((1,1’),(u,u’)) = bounds m
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Higher-Order Array Functions (Cont'd)

Applications:

row
Irow
row

col
col
col
col

1
2
3

s N =

m
m
m

B B B B

->>
=->>
->>

->>
->>
=->>
->>

array (1,3) [(1,1),(2,2),(3,3)]

array (1,3) [(1,2),(2,4),(3,6)]

array (1,3) [(1,

Program error: Ix.index: index out of
range

array (1,2) [(1,1),(2,2)]

array (1,2) [(1,2),(2,4)]

array (1,2) [(1,3),(2,6)]

array (1,2) [(1,

Program error: Ix.index: index out of
range

7l
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Dynamic Arrays

Creating dynamic arrays

import Data.Array.Diff

Instead of 71
> type Array
we now have to use

» type DiffArray

...everything else remains the same.
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Summing up

Static Arrays

» Access operator (!): access to each array element in
constant time.

» Update operator (//): no destructive updates; instead an
identical copy of the argument array is created except of
those elements which were ‘updated.” Updates thus do
not take constant time.

7l

Dynamic Arrays

» Update operator (//): destructive updates; updates take
constant time per index.

» Access operator (!): access to array elements may some-
times take longer as for static arrays.
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Summing up (Cont'd)

Recommendation

» Dynamic arrays should only be used if constant time

updates are crucial for the application. o
» Often, updates can completely be avoided by smartly

written recursive array constructions (cp. the prime

number test in this chapter).
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Chapter 8
Abstract Data Types Chap. 8
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Concrete vs. Abstract Data Types (1)

Concrete Data Types (CDTs)

v

A new CDT is specified by naming its values.

With the exception of functions, each value of a type is
described by a unique expression in terms of constructors.
Using definition by pattern matching as a basis, these
expressions can be generated, inspected, and modified in
various ways.

There is no need to specify the operations associated with
a type.

The Haskell means for defining CDTs are algebraic data
type definitions.

Chap. 8
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Concrete vs. Abstract Data Types (2)

Abstract Data Types (ADTs)

» A new ADT is specified by naming its operations, not by
naming its values.
» How values are represented is thus less important than
what operations are provided for manipulating them, Chap. 8
whose meaning, of course, has to be described:
» Degree of freedom for the implementation!
» Information hiding!
» There is no dedicated means in Haskell for defining
ADTs; ADTs, however, can be defined using modules.
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Concrete vs. Abstract Data Types (3)

Implementing an ADT

» When implementing an ADT, a representation of its
values has to be provided, and a definition of the

operations of the type in terms of this representation.

» The representation can be chosen e.g. for grounds of
simplicity or efficiency.

» It has to be shown that the implemented operations
satisfy the prescribed relationships.

Chap. 8
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In the following

...we consider abstract data types for

» Stacks

» Queues Chap. 8
. . 8.1

» Priority Queues 82

» Tables
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Chapter 8.1
Stacks
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The Abstract Data Type Stack (1)

The user-visible interface specification of the Abstract Data
Type (ADT) Stack:

module Stack (Stack,push,pop,top,
emptyStack,stackEmpty) where

push :: a —-> Stack a —> Stack a
pop :: Stack a -> Stack a 81
top :: Stack a -> a

emptyStack :: Stack a
stackEmpty :: Stack a —> Bool

Note: In a stack elements are removed in a last-in/first-out
(LIFO) order.
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The Abstract Data Type Stack (2)

A user-invisible implementation of Stack as an algebraic data
type (using data):

data Stack a = EmptyStk
| Stk a (Stack a)

push x s = Stk x s

pop EmptyStk = error "pop from an empty stack"
pop (Stk _ s) = s e

top EmptyStk = error "top from an empty stack"
top (Stk x _) = x

emptyStack = EmptyStk

stackEmpty EmptyStk = True
stackEmpty _ = False
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The Abstract Data Type Stack (3)

A user-invisible implementation of Stack as an algebraic data
type (using newtype):

Stk [a]

newtype Stack a

push x (Stk xs) = Stk (x:xs)

pop (Stk [1)
pop (Stk (_:xs))

error "pop from an empty stack"
Stk xs

8.1

top (Stk [1)
top (Stk (x:_.))

error "top from an empty stack"
X

emptyStack = Stk []

stackEmpty (Stk [])
stackEmpty (Stk _)

True
False
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Displaying Stacks (1)

Note:

» The constructors EmptyStk and Stk are not exported
from the module.

» This implies that a user of the module can not use or
create a Stack by any other way than the operations
exported by the module

8.1

» While this is actually so desired, the user can also not
display a value of type Stack except for the crude and
cumbersome way of completely popping the whole stack.

Next, we describe and compare two ways to display stacks and
their elements more elegantly.
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Displaying Stacks (2)

The easy way: Using a deriving-clause

data Stack a = EmptyStk
| Stk a (Stack a) deriving Show

newtype Stack a = Stk [a] deriving Show

Effect: a1

push 3 (push 2 (push 1 emptyStack))
->> Stk 3 (Stk 2 (Stk 1 EmptyStk))

push 3 (push 2 (push 1 emptyStack))
->> Stk [3,2,1]
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Displaying Stacks (3)

Using the deriving-clause for type class Show:

Advantage
» Simplicity, no effort.

Disadvantage

» The implementation of the ADT Stack is disclosed to the
programmer (though the user cannot access the represen-

tation in any way outside the module definition of the
ADT Stack).

8.1
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Displaying Stacks (4)
A smarter solution:

instance (Show a) => Show (Stack a) where
showsPrec _ EmptyStk str = showChar ’-’ str
showsPrec (Stk x s) str

= shows x (showChar ’|’ (shows s str))

instance (Show a) => Show (Stack a) where

showsPrec _ (Stk []) str = showChar ’-’ str o2
showsPrec _ (Stk (x:xs)) str
= shows x (showChar ’|’ (shows (Stk xs) str))
Effect:

push 3 (push 2 (push 1 emptyStack)) ->> 3|2[1]-
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Displaying Stacks (5)

This way:
» The implementation of the ADT Stack remains hidden.
It is not disclosed to the user.

» The output is the same for both implementations!

8.1

Note:

» The first argument of showsPrec is an unused
precedence value.
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Last but not least

An implementation of stacks in terms of
» predefined lists in Haskell: type Stack a = [al
would be possible, too.

Advantage

» Even less conceptual overhead as for the implementation
in terms of newtype Stack a = Stk [a]

Disadvantage
» All predefined functions on lists would be available on
stacks, too.
» Many of these, however, e.g. for reversing a list, for pick-

ing some arbitrary element, are not meaningful for stacks.

» Implementing stacks in terms of predefined lists would
not automatically exclude the application of such
meaningless functions but require to explicitly abstain
from them. Conceptually, this is disadvantageous.

8.1
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Chapter 8.2

Queues

8.2
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The Abstract Data Type Queue (1)

The user-visible interface specification of the Abstract Data
Type (ADT) Queue:

module Queue (Queue,emptyQueue,queueEmpty,
enQueue,deQueue, front) where

emptyQueue :: Queue a

queueEmpty :: Queue a -> Bool i
enQueue i a —> Queue a -> Queue a

deQueue :: Queue a —-> Queue a

front :: Queue a -> a

Note: In a queue elements are removed in a first-in/first-out
(FIFO) order.
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The Abstract Data Type Queue (2)

A user-invisible implementation of Queue as an algebraic data
type:

newtype Queue a = Q [al

emptyQueue = Q []

True
False

queueEmpty (Q [1)
queueEmpty _

8.2

enQueue x (Q q) = Q (q ++ [x])

deQueue (Q [1)
deQueue (Q (_:xs))

error "deQueue: empty queue"
Q xs

front (Q [1)
front (Q (x:.))

error "front: empty queue"
X
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Displaying Queues

The easy way: Using a deriving-clause

newtype Queue a = Q [a] deriving Show

Advantages, disadavantages: 82
» Cp. Chapter 8.1.
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Chapter 8.3

Priority Queues

8.3
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The Abstract Data Type PQueue (1)

The user-visible interface specification of the Abstract Data
Type (ADT) PQueue:

module PQueue (PQueue,emptyPQ,pqEmpty,
enPQ,dePQ, frontPQ) where

emptyPQ :: PQueue a
pqEmpty :: PQueue a -> Bool

enP(Q :: (0rd a) => a —> PQueue a —> PQueue a
dePQ :: (Ord a) => PQueue a -> PQueue a 83
frontPQ :: (0Ord a) => PQueue a -> a

Note: In a priority queue each entry has a priority associated
with it. The dequeue operation always removes the entry with
the highest (or lowest) priority. Technically, this is ensured by
the enqueue operation, which places a new element according

to its priority in a queue.
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The Abstract Data Type PQueue (2)

A user-invisible implementation of PQueue as an algebraic

data type:

newtype PQueue a = PQ [a]

emptyPQ = PQ []
pgEmpty (PQ []1) = True
pqEmpty _ False

enPQ x (PQ q)
where insert x []
insert x r@(e:xr’)

dePQ (PQ [1)
dePQ (PQ (_:xs))

PQ (insert x q)

| x <= e
| otherwise

[x]
X:r
e:insert x r’

error "dePQ: empty priority queue"
PQ xs

8.3

frontPQ (PQ [1) = error "frontPQ: empty priority queue"

frontPQ (PQ (x:.)) = x

654/165



Displaying Priority Queues

The easy way: Using a deriving-clause

newtype PQueue a = PQ [a] deriving Show

Advantages, disadavantages:
» Cp. Chapter 8.1.

8.3
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Chapter 8.4
Tables
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The Abstract Data Type Table (1)

The user-visible interface specification of the Abstract Data
Type (ADT) Table:

module Table (Table,newTable,findTable,updTable)
where

newTable :: (Eq b) => [(b,a)] -> Table a b
findTable :: (Eq b) => Table a b -> b -> a
updTable :: (Eq b) => (b,a) -> Table a b
-> Table a b o
Note:

» The function newTable takes a list of (index,value)
pairs and returns the corresponding table.
» The functions findTable and updTable are used to

retrieve and update values in the table.
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The Abstract Data Type Table (2)

A user-invisible implementation of Table as a function:
newtype Table a b = Tbl (b -> a)

newTable assocs =
foldr updTable
(Tbl (\_ -> eror "updTable: item not found"))
assocs

8.4

findTable (Tbl f) i = f i

updTable (i,x) (Tbl f) Tbl g
where g j | j==1i = x
| otherwise = f j
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Displaying Tables Represented as Functions

Using an instance-clause

instance Show (Table a b) where
showsPrec _ _ str = showString "<<A Table>>" str

8.4
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The Abstract Data Type Table (3)

A user-invisible implementation of Table as a list:

newtype Table a b = Tbl [(b,a)]
newTable t = Tbl t

findTable (Tbl []) i

= error "findTable: item not found"
findTable (Tbl ((j,v):r)) i

| i==j =v

| otherwise = findTable (Tbl r) i

updTable e (Tbl []) = Tbl [e]
updTable e’@(i,_) (Tbl (e@(j,_):r))
| i==j = Tbl (e’:r)

| otherwise = Tbl (e:r’)

where Tbl r’ = updTable e’ (Tbl r)

8.4
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Displaying Tables Represented as Lists

The easy way: Using a deriving-clause

newtype Table a b = Tbl [(b,a)] deriving Show

Advantages, disadavantages:
» Cp. Chapter 8.1. s
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The Abstract Data Type Table (4)

The user-visible interface specification of the Abstract Data
Type (ADT) Table for implementation as as Array:

module Table (Table,newTable,findTable,updTable)
where

newTable :: (Ix b) => [(b,a)] -> Table a b
findTable :: (Ix b) => Table a b -> b -> a
updTable :: (Ix b) => (b,a) -> Table a b

-> Table a b o
Note:

» The function newTable takes a list of (index,value)
pairs and returns the corresponding table.
» The functions findTable and updTable are used to

retrieve and update values in the table.
662/165



The Abstract Data Type Table (5)

A user-invisible implementation of Table as an Array:

newtype Table a b = Tbl (Array b a)

newTable 1 = Tbl (array (lo,hi) 1)
where indices = map fst 1

lo = minimum indices

hi = maximum indices

findTable (Tbl a) i = a ! i

updTable p@(i,x) (Tbl a) = Tbl (a // [pl)

8.4
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The Abstract Data Type Table (6)

Note:

» The function newTable determines the boundaries of the
new table by computing the maximum and the minimum
key in the association list.

» In the function findTable, access to an invalid key
returns a system error, not a user error.

8.4
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Displaying Tables Represented as Arrays

The easy way: Using a deriving-clause

newtype Table a b = Tbl (Array b a) deriving Show

Advantages, disadavantages:
» Cp. Chapter 8.1. s
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Chapter 8.5
Summing Up
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Summing up
Benefits of using abstract data types:

» Information hiding: Only the interface is publicly known;
the implementation itself is hidden. This offers:
» Security of the data (structure) from uncontrolled or
unintended /not admitted access.
» Simple exchangeability of the underlying implementation
(e.g. simplicity vs. performance).
» Work-sharing of implementation.

There are many more implementations of data types in terms
of an abstract data type. E.g.:

Sets

Heaps

(Binary Search) Trees
Arrays

vV v vV v Y

667/165



Arrays: An Abstract Data Type

module Array (

module Ix, -- export all of Ix for convenience
Array, array, listarray (!), bounds, indices,
elems, assocs, accumArray, (//),

accum, ixmap ) where

import Ix
infixl 9 ', //

data (Ix a) => Array a b = ...

array 1o (Ix
listArray :: (Ix
D) i (Ix
bounds 10 (Ix
indices i (Ix
elems 10 (Ix
assocs i (Ix

a)
a)
a)
a)
a)
a)
a)

(a,a)
(a,a)
Array
Array
Array
Array
Array

-- Abstract

-> [(a,b)] -> Array a b
-> [b] -> Array a b
ab->a->b

b (a,a)

b -> [al

b —> [b]

b -> [(a,b)]

a
a
a
a
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Arrays: An Abstract Data Type (Cont'd)

accumArray :: (Ix a) => (b -> ¢ -> b) -> b
-> (a,a) -> [(a,c)] -> Array a b
7)) :: (Ix a) => Array a b -> [(a,b)]
-> Array a b
accum :: (Ix a) => (b -> ¢ => b) -> Array a b
-> [(a,c)] -> Array a b
ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b)

-> Array b ¢ -> Array a c

instance Functor (Array a) where...
instance (Ix a, Eq b) => Eq (Array a b) where...
instance (Ix a, Ord b) => Ord (Array a b) where...
instance (Ix a, Show a, Show b)

=> Show (Array a b) where...
instance (Ix a, Read a, Read b)

=> Read (Array a b) where...
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Arrays: An Abstract Data Type (Cont'd)

See also:

» Simon Peyton Jones (Hrsg.). Haskell 98: Language and
Libraries. The Revised Report. Cambridge University
Press, 173-178, 2003.
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Chapter 9
Monoids

Chap. 9
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Motivation (and Recommendation)

Types equipped with an associative operation on its values
with a left-unit and a right-unit like list types with the
operation concatenation (++) and the value []

(xs ++ ys) ++ zs
[] ++ xs
xs ++ []

xs ++ (ys ++ zs) (associative)
Xs (left-unit)
Xs (right-unit)

or the type Bool with the operation logical and (&%) and the Chap. 9
value True 2

(bl && b2) && b3
True && Db
b && True

bl && (b2 && b3) (associative)
b (left-unit)
b (right-unit)

should be made an instance of the type class Monoid.
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Chapter 9.1
Monoids
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The Type Class Monoid

Monoids are types, which are instances of the type class
Monoid and obey the so-called monoid laws.

class Monoid m where

mempty :: m
mappend :: m ->m ->m
mconcat :: [m] ->m
mconcat = foldr mappend mempty  -- Default
-—- implementation
9.1
Intuitively:

» A monoid is made up of an associative binary operation
mappend, and an element mempty that acts as an identity
for with respect to the function mappend.

» The function mconcat takes a list of monoid values and
reduces them to a single monoid value by using mappend.
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The Monoid Laws

Proper instances of the type class Monoid must obey the three
monoid laws:

Monoid Laws

mempty ‘mappend‘ x = x (MoL1)
X ‘mappend‘ mempty = x (MoL2)
(x ‘mappend‘ y) ‘mappend‘ z =
x ‘mappend‘ (y ‘mappend‘ z) (MoL3)
Intuitively: i

» MoL1 and MoL2 require that mempty is a left-unit and a
right-unit of mappend.

» Mol3 requires that mappend is associative.

Note: It is an obligation of the programmer to verify that their

instances of the class Monoid satisfy the monoid laws.
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Remarks

» The element mempty can be considered a nullary function
or a polymorphic constant.

» The name mappend is often misleading; for most monoids
the effect of mappend cannot be thought in terms of
“appending” values.

9.1

» Usually, it is wise to think of mappend in terms of a
function that takes two m values and maps them to
another m value.
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The List Monoid [a] (1)

Making [a] an instance of the type class Monoid:

instance Monoid [a] where
mempty = []
mappend = (++)

Lemma 9.1.1 (Monoid Laws for [al) o

For every instance of type a, the instance [a] of class Monoid
satisfies the three monoid laws MolL1, MolL2, and MoL3, and
is hence a monoid, the so-called list monoid.
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The List Monoid [a] (2)

Examples:

[1,2,3] ‘mappend‘ [4,5,6] ->> [1,2,3,4,5,6]

"Advanced " ‘mappend‘ "Functional " ‘mappend’
"Programming"
->> "Advanced Functional Programming"
"Advanced " ‘mappend‘ ("Functional " ‘mappend’

"Programming" i
->> "Advanced Functional Programming")

("Advanced " ‘mappend‘ "Functional ") ‘mappend°
"Programming"
->> "Advanced Functional Programming"
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The List Monoid [a] (3)

Examples (cont'd):

[1,2,3] ‘mappend‘ mempty ->> [1,2,3]

mempty :: [a] ->> []

Note: Commutativity of mappend is not required by the
monoid laws:

9.1
"Semester " ‘mappend‘ "Holiday"

->> "Semester Holiday"
is different from

"Holiday " ‘mappend‘ "Semester"
->> "Holiday Semester"
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Monoids of Numeral and Boolean Types

Numeral and Boolean types are equipped with more than
operation that behave as required for the monoid operation

mempty, mappend, and mconcat:
» e.g., * and + for numeral types
» e.g., || and && for the type Bool

9.1

Hence, we will use

» newtype declarations for types of numeral and Boolean
values to allow more than one monoid instantiation for

these types.
» record syntax to obtain selector functions for free.
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Monoids of Numeral Types (Num a) (1)

The Product Monoid of Numeral Types:

newtype Product a = Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
mempty = Product 1
Product x ‘mappend‘ Product y = Product (x*y)

The Sum Monoid of Numeral Types:

newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
mempty = Sum O
Sum x ‘mappend‘ Sum y = Sum (x+y)

9.1

686/165



Monoids of Numeral Types (Num a) (2)

Lemma 9.1.2 (Monoid Laws for (Num a) Types)

For every numeral instance of type a, the instance (Product
a) and the instance (Sum a) of class Monoid satisfy the three
monoid laws MoL1, MolL2, and MoL3, and are hence monoids,
the so-called product monoid and the sum monoid.

9.1
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Monoids of Numeral Types (Num a) (3)

Examples:

getProduct $ Product 3 ‘mappend‘ Product 7 ->> 21
getSum $ Sum 17 ‘mappend‘ Sum 4 ->> 21

getProduct $ Product 3 ‘mappend‘ Product 7
‘mappend‘ Product 11 ->> 231
getSum $ Sum 3 ‘mappend‘ Sum 7 ‘mappend‘ Sum 11
->> 21

9.1

getProduct . mconcat . map Product $ [3,7,11] ->> 231
getSum . mconcat . map Sum $ [3,7,11] ->> 21

Product 3 ‘mappend‘ mempty ->> Product 3
getSum $ mempty ‘mappend‘ Sum 3 ->> 3
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The Boolean Monoids Any and A11 (1)

The Any Monoid of Type Bool:

newtype Any = Any { getAny :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)
instance Monoid Any where
mempty = Any False
Any x ‘mappend‘ Any y = Any (x || y)
-—- "Any" because True if some argument is true.

The All Monoid of Type Bool: 01

newtype All = All { getAll :: Bool }
deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
mempty = All True
A1l x ‘mappend‘ All y = All (x && y)
-— "All" because True if every argument is true.
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The Boolean Monoids Any and A1l (2)

Lemma 9.1.3 (Monoid Laws for Any and A11)

The instances Any and A1l of class Monoid satisfy the three
monoid laws MoL1, MolL2, and MoL3, and are hence monoids,
the so-called any monoid and the all monoid. )
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The Boolean Monoids Any and A1l (3)

Examples:

getAny $ Any True ‘mappend‘ Any False ->> True
getAll $ All True ‘mappend‘ All False ->> False

getAny $ mempty ‘mappend‘ Any False ->> False
getAll $ All True ‘mappend‘ mempty ->> True

getAny . mconcat . map Any $ [False,True,False,Falsel
->> True

getAll . mconcat . map All $ [False,True,True,False]
->> False
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Remarks on Numeral and Boolean Monoids

Note:

» For the monoids (Product a), (Sum a), Any, and All
the monoid operation mappend is both associative and
commutative.

» For most instances of the type class Monoid, however,
this does not hold (and need not to hold). Two such
examples are the list monoid [a] and the Ordering
monoid Ordering considered next.

9.1
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The Ordering Monoid Ordering (1)

Making Ordering an instance of the type class Monoid:

instance Monoid Ordering where

mempty = EQ

LT ‘mappend‘ _ = LT

EQ ‘mappend‘ x = x

GT ‘mappend‘ _ = GT
Note:

9.1
» The definition of the operation mappend leads to
‘alphabetically’ comparing lists of arguments.
» For the ordering monoid Ordering the operation
mappend fails to be commutative:
LT ‘mappend‘ GT ->> LT
GT ‘mappend‘ LT ->> GT
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The Ordering Monoid Ordering (2)

Lemma 9.1.4 (Monoid Laws for Ordering)

The instance Ordering of class Monoid satisfies the three
monoid laws MoL1, MolL2, and Mol3, and is hence a monoid,

the so-called ordering monoid. 01
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The Ordering Monoid Ordering (3)

Example:

The two definitions of lengthCompare:

lengthCompare :: String -> String -> Ordering
lengthCompare x y
= let a = length x ‘compare‘ length y -- ist priority
b = x ‘compare‘ y -- 2nd priority,
in if a == EQ then b else a
9.1
lengthCompare :: String -> String -> Ordering
lengthCompare x y = (length x ‘compare‘ length y)
‘mappend‘ (x ‘compare‘ y)

...are equivalent as can be verified by means of the properties
of the monoid operation ‘mappend ‘.
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The Ordering Monoid Ordering (4)

Example (cont'd):

As expected we get with either version of lengthCompare:

lengthCompare "his" "ants" ->> LT
(since string “his” is shorter than string “ants”) and
lengthCompare "his" "ant" ->> GT

(since string “his" is lexicographically larger than “ant”).

9.1
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The Ordering Monoid Ordering (5)

Comparison criteria can easily be added and prioritisized.

E.g., the below extension of lengthCompare takes the number
of vowels as the second most important comparison criteron:

lengthCompareExt ::

String -> String —> Ordering

lengthCompareExt x y
= (length x ‘compare‘ length y) -- 1st priority
‘mappend‘ (vowels x ‘compare‘ vowels y)

-- 2nd priority

‘mappend‘ (x ‘compare‘ y) -- 3rd priority
where vowels = length . filter (‘elem‘ "aeiou"

As expected we get:
lengthCompareExt
lengthCompareExt
lengthCompareExt
lengthCompareExt

"songs" "abba" ->> GT
"song" "abba" ->> LT
"sono" "abba" ->> GT
"sono" "sono" —->> EQ

9.1
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Summing up (1)

Monoids are especially useful for defining
» folds over various data structures.

This seems obvious for

» lists
but holds for many other data structures including for example b
> trees

too.
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Summing up (2)
This led to the introduction of the type constructor class

Foldable (cf. module Data.Foldable):

class Foldable f where
foldr :: (a -=>b ->b) >b ->fa->>o
foldl :: (a->b ->a) >a->fb->a

...whose operations generalize the folding of lists:

foldr :: (a->b ->Db) =>b > [] a->b
foldl :: (a->b ->a) >a->[b->a

9.1

...to foldable types, i.e., instances of the class Foldable. This
class brings us from type classes to type constructor classes.

Foldable is the first example of this new kind of type classes

of which we consider more examples next: Functor, Monad,
Arrow (cf. Chapters 10, 11, and 12).

699/165



Chapter 9.2
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Chapter 10

Functors

Chap. 10

702/165



Motivation (and Recommendation)

Types whose values can be mapped over compositionally and

with a neutral element like list types with map and id
f::a->b
map £ []
map f (x:xs)

(]
(f x) : map f xs

map (f . g) xs = map f (map g xs) (compositional)
map id xs = Xxs (neutral element)

or tree types with tmap and id

f ::a->b

Chap. 10
data Tree a = Nil | Node a Tree Tree
tmap f Nil = Nil

tmap £ (Node v 1 r) = Node (f v) (tmap f 1) (tmap f r)
tmap (f . g) t = tmap f (tmap g t) (compositional)
tmap id t =t (neutral element)
should be made an instance of the type constructor class

Functor. e, 1o



Chapter 10.1

Motivation
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Outline

In Chapter 7 of LVA 185.A03 we were going

» from functions to higher-order functions

In this chapter we are going

» from type classes to higher-order type classes 101
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Recall “Kapitel 7, LVA 185.A03"

Funktionale Abstraktion hoherer Stufe (1)

(siehe Fethi Rabhi, Guy Lapalme. Algorithms - A Functional
Approach, Addison-Wesley, 1999, S. 7f.)

Betrachte folgende Beispiele:

» Fakultatsfunktion:
facn | n==0 =1
| n>0 =n * fac (n-1)
» Summe der n ersten natiirlichen Zahlen: 101
natSum n | n==0 =0 10.2
| >0 = n + natSum (n-1) o
10.5

» Summe der n ersten natiirlichen Quadratzahlen:

natSquSum n | n==0 = 0
| n>0 = n*n + natSquSum (n-1)

1/873
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Recall “Kapitel 7, LVA 185.A03"

Funktionale Abstraktion hoherer Stufe (2)

Beobachtung:

» Die Definitionen von fac, sumNat und sumSquNat folgen
demselben Rekursionsschema.

Dieses zugrundeliegende gemeinsame Rekursionsschema ist
gekennzeichnet durch:
» Festlegung eines Wertes der Funktion im 101
> Basisfall 10.2

. . . . 10.3
» verbleibenden rekursiven Fall als Kombination des .

Argumentwerts n und des Funktionswerts fiir n-1 10.5

1/873
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Recall “Kapitel 7, LVA 185.A03"

Funktionale Abstraktion hoherer Stufe (3)

Dies legt nahe:

» Obiges Rekursionsschema, gekennzeichnet durch Basisfall
und Funktion zur Kombination von Werten, herauszu-
ziehen (zu abstrahieren) und musterhaft zu realisieren.

Wir erhalten:

» Realisierung des Rekursionsschemas
recScheme base comb n
| n==0 = base
| n>0 = comb n (recScheme base comb (n-1))

1/873

10.1
10.2
10.3
10

10.5
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Recall “Kapitel 7, LVA 185.A03"

Funktionale Abstraktion hoherer Stufe (4)
Funktionale Abstraktion héherer Stufe:

fac n = recScheme 1 (*¥) n

natSum n = recScheme 0 (+) n

natSquSum n = recScheme 0 (\x y -> x*x + y) n

Noch einfacher: In argumentfreier Ausfiihrung
10.1
fac = recScheme 1 (*) Hﬁ
10
natSum = recScheme 0 (+) 10.5

natSquSum = recScheme 0 (\x y -> x*x + y)

1/873
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Recall “Kapitel 7, LVA 185.A03"

Funktionale Abstraktion hoherer Stufe (5)

Unmittelbarer Vorteil obigen Vorgehens:

» Wiederverwendung und dadurch
» kiirzerer, verldsslicherer, wartungsfreundlicherer Code

Erforderlich fiir erfolgreiches Gelingen:

» Funktionen hoherer Ordnung; kiirzer: Funktionale.
10.1
Intuition: Funktionale sind (spezielle) Funktionen, die
Funktionen als Argumente erwarten und/oder als Resultat
zurtickgeben.

1/873
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Recall “Kapitel 7, LVA 185.A03"

Funktionale Abstraktion hoherer Stufe (6)

Illustriert am obigen Beispiel:

» Die Untersuchung des Typs von recScheme

recScheme ::

zeigt:

» recScheme ist ein Funktional!

Int -> (Int -> Int -> Int) -> Int

In der Anwendungssituation des Beispiels gilt weiter:

Wert i. Basisf. (base) | Fkt. z. Kb. v. W. (comb)
fac 1 (%)
natSum 0 +)
natSquSum 0 \x y => x¥x + y

1/873

10.1
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A Similar but Slightly More Complex Example

The higher-order function map on

» Lists
mapList :: (a -> b) -> [a] -> [b]
mapList g [] = []

mapList g (1:1s) = g 1 : mapList g 1ls

» (Binary) Trees

data Tree a = Leaf a | Node a (Tree a) (Tree a)

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree g (Leaf v) = Leaf (g v)
mapTree g (Node v 1 r)

= Node (g v) (mapTree g 1) (mapTree g r)
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From Higher-Order Functions

...to Higher-Order Type (Constructor) Classes.

Note that the implementations of
» mapList
» mapTree

like the implementations of fac, natSum, and natSquSum are
structurally similar, too.

This similarity suggests 101
» striving for a function genericMap that covers mapList,
mapTree, and more

...and leads us to the
» (type) constructor class Functor.

713/165



Chapter 10.2

Functors
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The Type Constructor Class Functor

Functors are 1-ary type constructors , which are instances of
the type constructor class Functor and obey the so-called
functor laws.

class Functor f where
fmap :: (a -=>b) > f a->fb

Note:

» The argument f of Functor is applied to type variables. This
means, T is not a type variable but a 1-ary type constructor
that is applied to the type variables a and b.

» Instances of (type) constructor classes are type constructors, 102
not types.

» The functor operation of an instance of Functor takes a
polymorphic function g :: a -> b and yields a polymor-
phic function g’ :: f a -> f b,eg., g :: Int >
String, and g’ :: Month Int -> Month String.

715/165



The Functor Laws

Proper instances of the type constructor class Functor must
obey the two functor laws:

Functor Laws

fmap id = id (FL1)
fmap (g.h) = fmap g . fmap h (FL2)
Intuitively:

» The “shape of the container type” is preserved.

» The contents of the container is not regrouped.

Note: It is an obligation of the programmer to verify that their
instances of the type constructor class Functor satisfy the
functor laws.

10.2
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Type Classes vs. Type Constructor Classes (1)

Recall the definition of the type class Eq to compare it with
the type constructor class Functor:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /=y not (x==y)
X ==y not (x/=y)

Note:

» The argument a of Eq is a type variable. Functions
declared in Eq operate on values of type a; a itself does
not operate on anything.

10.2

» This holds for all other type classes, too. Recall the defi-

nitions of the type classes we considered so far such as
Ord, Num, Fractional, etc.
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Type Classes vs. Type Constructor Classes (2)

Type classes and type constructor classes are conceptually
equal. They differ in the type of their members:

» Type constructor classes (Foldable, Functor, Monad,
Arrow,...) have

» type constructors (e.g., Tree, [1,(,),(->),...) as
members.

» Type classes (Eq, Ord, Num,...) have
» types (e.g., Tree a,[al,(a,a),...) as members.

Type constructors are o2
» maps, which construct new types from given types.
Examples: Tuple constructors (,), (,,), (,,,); list

constructor []; map constructor (->); input/output
constructor I0,...
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The List and Tree Functors [] and Tree (1)

Making the 1-ary type constructors [] and Tree for lists and trees,
respectively, instances of the type constructor class Functor:
instance Functor [] where
fmap g [] =[]
fmap g (1:1s) = g 1 : fmap g 1s

instance Functor Tree where
fmap g (Leaf v) = Leaf (g v)
fmap g (Node v 1 r)
= Node (g v) (fmap g 1) (fmap g r)

10.1

Note:
10.2
» The symbol [ ] is used above in two roles, as a 103

> type constructor in the line instance Functor [ ]| where... -
» value of some list type in the line fmap g [| = [].

» The declarations instance Functor [a] where... and
instance Functor (Tree a) where... would not be correct, since

[a] and (Tree a) denote types, no type constructors. el



The List and Tree Functors [] and Tree (2)

Lemma 10.2.1 (Functor Laws for [] and Tree)

The instances [] and Tree of the type constructor class
Functor satisfy the two functor laws FL1 and FL2,
respectively, and hence, are functors, the so-called list functor
and tree functor.

10.2
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The List and Tree Functors [] and Tree (3)

The instance declarations for [] and Tree could have been
equivalently but more concise as follows:

instance Functor [] where
fmap = maplList -- user-defined mapList

instance Functor [] where
fmap = map -- predefined map

10.1

instance Functor Tree where o
fmap = mapTree  -- user-defined mapTree 105
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The List and Tree Functors [] and Tree (4)

Examples:

t = Node 2 (Node 3 (Leaf 5) (Leaf 7)) (Leaf 11)

fmap (*¥2) t
->> Node 4 (Node 6 (Leaf 10) (Leaf 14)) (Leaf 22)
fmap (73) t
->> Node 8 (Node 27 (Leaf 125) (Leaf 343))
(Leaf 1331)

fmap (¥2) [1..5] ->> [2,4,6,8,10]
fmap (°3) [1..5] ->> [1,8,27,64,125]

10.2

722/165



Observation

The map fmap of the type constructor class Functor is
» the map genericMap

that we were looking and striving for.

Members of the type constructor class Functor can be

» pre-defined and user-defined 1-ary type constructors. 102

723/165



Examples of Predefined Type Constructors

...of different arity:

» l-ary type constructors: [], Maybe, I0,...

» 2-ary type constructors: (, ), (->), Either,...

» 3-ary type constructors: (, , ),...

» 4-ary type constructors: (, ,,),...

> ...

Note:

» Only l-ary type constructors are instance candidates of .

Functor. This may be partially evaluated type construc- o

tors of higher arity, e.g. (Either a), ((->) r)), too.

» Considering types as 0-ary type constructors shows the
conceptual coincidence of type classes and type construc-
tor classes.
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Notational Remarks (1)

The following notations are equivalent:

» (a,b) is equivalentto (,) a b
(a,b,c) is eqivalent to (, ,) a b c, etc.

» [a] is equivalent to [] a
» £ -> gisequivalentto (->) f g

» T a b is equivalent to ((T a) b) (i.e., associativity to
the left as for function application)

10.2
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Notational Remarks (2)

Example:

The signatures of the functions fac and list2pair...

fac :: Int -> Int

fac 0 = 1

fac n = n * fac (n-1)

list2pair :: [a] -> (a,a) o
list2pair (x : (y : _)) = (x,y) 108

list2pair (x : _) = (x,%) 105
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Notational Remarks (3)

...can equivalently be written in the form:

fac :: (->) Int Int

list2pair :: [1 a -> (a,a)

list2pair :: [a] -> (,) a a
list2pair :: (->) [a] (a,a)
list2pair :: [J a -> (,) a a

iiét2pair o (=>) ([1 a) ((,) a a)

10.1
10.2

Nonetheless, we are better acquainted with the more e

“classical” notations... wE
fac :: Int -> Int
list2pair :: [a] -> (a,a)

...which thus may appear to being more easily understandable.
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The Maybe Functor Maybe (1)

Making the 1-ary type constructor Maybe an instance of the
type constructor class Functor:

data Maybe a = Nothing | Just a

instance Functor Maybe where

fmap £ (Just x) = Just (f x)
fmap f Nothing = Nothing
Lemma 10.2.2 (Functor Laws for Maybe) 0

The instance Maybe of the type constructor class Functor
satisfies the two functor laws FL1 and FL2, and hence, is a
functor, the so-called maybe functor.
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The Maybe Functor Maybe (2)

Examples:

fmap (++ "Programming") (Just "Functional")
->> Just "Functional Programming"

fmap (++ "Programming") Nothing
->> Nothing

10.2
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An Improper Instantiation of Functor (1)

Consider the type CounterMaybe, which is similar to the type
Maybe but whose Just values contain an additional Int value:

data CounterMaybe a = CNothing
| CJust Int a deriving (Show)

Make CounterMaybe an instance of the type constructor class
Functor:

instance Functor CounterMaybe where
fmap f CNothing = CNothing
fmap £ (CJust counter x) = CJust (counter+l) (f x)

We will show:

» The CounterMaybe instance of Functor violates functor
law FL1. Hence, the instantiation is improper.

10.2
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An Improper Instantiation of Functor (2)

E.g., we get:

CNothing ->> CNothing

CJust 0 "haha" ->> Cjust O "haha"
CNothing :: CounterMaybe a

CJust O "haha" :: CounterMaybe [Char]
CJust 100 [1,2,3] ->> CJust 100 [1,2,3]

fmap (++ "ha") (CJust O "ho")
->> CJust 1 "hoha"

fmap (++ "he") (fmap (++ "ha") (CJust O "ho")) 102
->> CJust 2 "hohahe"

fmap (++ "blah") CNothing
->> CNothing

...which is absolutely fine.
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An Improper Instantiation of Functor (3)

However

fmap id (CJust O "haha")
=>> CJust 1 "haha"

yields a different value as

id (CJust O "haha")
->> CJust O "haha"

This is in contradiction to functor law FL1, i.e., fmap defined 0!
for CounterMaybe violates the equality: fmap id = id. o

Therefore, CounterMaybe may not be considered a valid
instance of the type constructor class Functor.

732/165



The Input/Output Functor 10 (1)

Making the 1-ary type constructor 10 for input/output an
instance of the type constructor class Functor:

instance Functor I0 where
fmap f action = do result <- action
return (f result)

Lemma 10.2.3 (Functor Laws for I0)

The instance I0 of the type constructor class Functor
satisfies the two functor laws FL1 and FL2, and hence, is a
functor, the so-called input/output functor.

10.2
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The Input/Output Functor 10 (2)

Examples:

The programs

main =
do line <- fmap reverse getLine
putStrLn $ "You said " ++ line ++ " backwards!"
putStrln $ "Yes, you said " ++ line ++ " backwards!"

and

main =
do line <- getLine
let line’ = reverse line
putStrLn $ "You said " ++ line’ ++ " backwards!"
putStrLn $ "Yes, you said " ++ line’ ++ " backwards!"

10.2

are equivalent to each other.
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The Input/Output Functor 10 (3)

Examples (cont'd):

import Data.Char
import Data.LlList

The effect of
main =
do line <- fmap (intersperse ’-’ . reverse .

map toUpper) getLine
putStrLn line

and 102
(\xs -> intersperse ’-’ (reverse (map toUpper xs)))
is the same.

E.g., applied to the input string “hello there”, the result string will
be “E-R-E-H-T- -O-L-L-E-H".
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The Either Functor (Either a) (1)

Making the 1-ary type constructor (Either a) an instance of
the type constructor class Functor:

data Either a b = Left a | Right b

instance Functor (Either a) where
fmap f (Right x) = Right (f x)
fmap f (Left x) = Left x

Note: The type constructor Either has two arguments, i.e., is
a 2-ary type constructor. Hence, only the partially evaluated
1-ary type constructor (Either a) can be made an instance
of Functor.

10.2

Lemma 10.2.4 (Functor Laws for (Either a))

The instance (Either a) of the type constructor class
Functor satisfies the two functor laws FL1 and FL2, and

hence, is a functor, the so-called either functor.
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The Either Functor (Either a) (2)

Examples:
fmap length (Right "Programming")
->> Right 11

fmap length (Left "Programming")
->> Left "Programming"

10.2
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The Either Functor (Either a) (3)

Examples (cont'd):

Note that an instance declaration like

instance Functor (Either a) where
fmap f (Right x) = Right (f x)
fmap £ (Left x) Left (f x)

would not be meaningful.
10.1
10.2

Homework: Think about why not. Think about the con- 104
straints the above instantiation would impose on the types
being eligible for a and b.
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The Applicative Functor ((->) r) (1)

Making the 1-ary type constructor ((=>) r) an instance of
the type constructor class Functor:

instance Functor ((->) r) where
fmap g h = (\x -> g (h %))

Note: Like Either also the type constructor (->) has two
arguments, i.e., is a 2-ary type constructor. Hence, like
(Either a) only the partially evaluated 1-ary type construc-
tor ((=>) r) can be made an instance of Functor.

10.2

Lemma 10.2.5 (Functor Laws for ((->) r))

The instance ((->) r) of the type constructor class Functor
satisfies the two functor laws FL1 and FL2, and hence, is a
functor, the so-called applicative functor.
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The Applicative Functor ((->) r) (2)

In more (colorful) detail:

class Functor f where

fmap :: (&2 =>Db) > f a ->fb
Choosing ((=>) r) for f:

instance Functor ((->) r) where

fmap g h = ((\x ->g (hx))
(a —> bf I ((->) r) a %: 1 T T
T
3
R MR o) 10.2
((->) 1) b

Hence, fmap defined by
fmap g h = (\x -> g (h %))

means function composition: fmap g h = (g . h)
740/165



The Applicative Functor ((->) r) (3)

This observation allows us to define the instance declaration of
((=>) ) more concisely by:

instance Functor ((->) r) where
fmap = (.)

10.1
10.2
10.3
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The Applicative Functor ((->) r) (4)

Note, for the instance ((->) r) of the type constructor class
Functor the function fmap

fmap :: (Functor f) => (a -=> b) > f a > f b
has the type

fmap :: (a => b) > (((->) 1) a) —> (((->) r) b)
which, using infix notation for (=>), is written as

fmap :: (a -> b) -> (r -=> a) > (r -> b) 108

It is implemented by
fmap g h = (g . h)
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The Applicative Functor ((->) r) (5)

Examples:

Main>:t fmap (*3) (+100)
fmap (*3) (+100) :: (Num a) => a -> a

fmap (*3) (+100) 1 ->> 303
(¥3) ‘fmap‘ (+100) $ 1 ->> 303
(*3) . (+100) $ 1 ->> 303
fmap (show . (*3)) (+100) 1 ->> "303" o

Note: Calling fmap as an infix operation emphasizes the
equality of function composition (.) and fmap for the
instance ((=>) r) of the type constructor class Functor.
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The Applicative Functor ((->) r) (6)
Examples (cont'd):

Recalling the generic type of fmap

fmap :: (Functor f) => (a ->b) ->f a ->f b
we get:

Main>:t fmap (*2)
fmap (¥2) :: (Num a, Functor f) => f a -> f b

Main>:t fmap (replicate 3)

fmap (replicate 3) :: (Functor f) => f a -> f [a]
where :
replicate :: Int -> a -> [a]
replicate n x
| n <=0 =[]

| otherwise = x : replicate (n-1) x
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The Applicative Functor ((->) r) (7)

Examples (cont'd):

fmap
->>

fmap
->>

fmap
->>

fmap
->>

fmap
->>

(replicate 3) [1,2,3,4]
(f1,1,11,12,2,2]1,13,3,3],[4,4,4]]

(replicate 3) (Just 4)
Just [4,4,4]

(replicate 3) (Right "blah")
Right ["blah","blah","blah"]

10.2

(replicate 3) Nothing
Nothing

(replicate 3) (Left "foo")
Left "foo"
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The Applicative Functor ((->) r) (8)
Examples (cont'd):

Applying fmap to n-ary argument maps (e.g., (*), (++),
\xyz ->...,...) instead of only to 1-ary argument maps
(e.g., replicate 3, (*¥3), (+100),...) so far:

fmap (*) (Just 3) ->> Just ((x) 3)

fmap (++) (Just "hey") :: Maybe ([Char] -> [Char])
fmap compare (Just ‘a‘) :: Maybe (Char -> Ordering)
fmap compare "A LIST OF CHARS" :: [Char -> Ordering]
fmap (\x y z > x +y / z) [3,4,5,6] 102
(Fractional a) => [a -> a —> a] 1:

let a = fmap (%) [1,2,3,4]
a :: [Integer -> Integer]
fmap (\f -> £ 9) a ->> [9,18,27,36]
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The Applicative Functor ((->) r) (9)

Some of the previous examples demonstrate the

» lifting of a map of type (2 -> b) to a map
of type (f a -> f b).

This shows that fmap can be thought of in two ways:

As a map
fmap :: (Functor f) => (a ->b) -> f a > f b
which takes

» a function g of type (a -> b) and a functor value v of
type (f a) as arguments and maps g over v (“uncurried”
view).

» a function g of type (a -> b) and lifts g to a new
function h of type (f a -> f b) which operates on
functor values (“curried” view).
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Chapter 10.3

Applicative Functors

10.3
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The Type Constructor Class Applicative

Applicatives are 1-ary type constructors, which are functor
instances of the type constructor class Applicative and obey
the so-called applicative laws.

class (Functor f) => Applicative f where
pure :: a -> f a
(<k>) :: £f (a->b) >fa->Ffb

Intuitively

» pure takes a value of any type and returns an applicative
value.

10.3

» (<*x>) takes a functor value, which has a function in it,
and another functor value. It extracts the function from
the first functor and maps it over the second one.
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The Applicative Laws

Proper instances of the type constructor class Applicative
must obey the four applicative laws:

Applicative Laws

pure id <*> v =v (AL1)
pure (.) <*> u <*> v <> w = u <> (v <> w) (AL2)
pure f <*> pure x = pure (f x) (AL3)

u <*> pure y pure ($ y) <*> u (AL4)

Note: It is an obligation of the programmer to verify that their 1%
instances of the type constructor class Applicative satisfy

the applicative laws.
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The Maybe Applicative Maybe (1)

Making the 1-ary type constructor Maybe an instance of the
type constructor class Applicative:

instance Applicative Maybe where

pure = Just

Nothing <*> _ Nothing

(Just f) <*> something = fmap f something

Note: f plays the role of the applicative functor.

Lemma 10.3.1 (Applicative Laws for Maybe)

The instance Maybe of the type constructor class
Applicative satisfies the four applicative laws AL1, AL2,
AL3, and AL4, and hence, is an applicative, the so-called
maybe applicative.

10.3
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The Maybe Applicative Maybe (2)

In more (colorful) detail:

pure :: (Applicative f) => a -> f a
(<x>) :: (Applicative f) => f (a -> b) -> f a -> f b
fmap :: (Functor f) => (a -> b) ->f a -> f b

instance Applicative Maybe where

pure = Just
:: a -> Maybe a i a —>AMaybe a

Nothing <k> _ =  Nothing 101
e MaybeA(a -> b) i Mé;be a :: Maybe b %3

(Just £) <*> something = fmap f something :
i Maybe (a -> b) :: Maybe a e éA;> b M;§be a

:: Maybe b
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The Maybe Applicative Maybe (3)

Examples:

Just
->>
->>

Just
->>
->>

Just
->>
->>

Just
->>
->>

(+3) <*> Just 9
fmap (+3) (Just 9)
Just 12

(+3) <*> Nothing
fmap (+3) Nothing
Nothing

(++ "good") <*> Just " morning"
fmap (++ "good") "morning"

Just "good morning"
10.3

(++ "good") <*> Nothing
fmap (++ "good") Nothing
Nothing

Nothing <*> Just "hello"

->>

Nothing
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The Maybe Applicative Maybe (4)

Examples (cont'd):

pure (+) <*> Just 3 <*> Just 5
=>> Just (+) <x> Just 3 <> Just 5
->> (fmap (+) Just 3) <*> Just 5
->> Just (3+) <*> Just 5
->> Just 8

pure (+) <*> Just 3 <*> Nothing
=>> Just (+) <*> Just 3 <> Nothing
->> fmap (+) Just 3 <*> Nothing
->> Just (3+) <x*> Nothing
->> fmap (3+) Nothing
->> Nothing

10.3
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The Maybe Applicative Maybe (5)

Examples (cont'd):

pure (+) <*> Nothing <*> Just 5
=>> Just (+) <*> Nothing <*> Just 5
->> (fmap (+) Nothing) <*> Just 5
->> Nothing <*> Just 5
->> Nothing

Note: The operator (<*>) is left-associative, i.e.: s
10.3

pure (+) <*> Just 3 <*> Just 5 = 104
(pure (+) <*> Just 3) <*> Just 5 '
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An Infix Operator <$> as Alias for ‘fmap’ (1)

...for a more compelling usage in operation sequences involving
both fmap and (<*>).

The infix alias (<$>) of fmap of Functor:

(<$>) :: (Functor f) => (a ->b) > f a > f b
g <$> x = fmap g x

Example: Using (<$>) as infix operator, we can write:
(++) <$> Just "Functional " <*> Just "Programming"
->> Just "Functional Programming"

instead of the less compelling variants using the prefix operator fmap:

(fmap (++) Just "Functional ") <x> Just "Programming" i

->> Just "Functional Programming"
...or its infix variant ‘fmap’:

((++) ‘fmap’ Just "Functional ") <*> Just "Programming"
->> Just "Functional Programming"
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An Infix Operator <$> as Alias for ‘fmap’ (2)

Remark:

Note that the definition of (<$>) by
(<$>) :: (Functor f) => (a ->b) -=> f a ->f b
f <$> x = fmap f x
would be valid, too, since the context allows to decide if f is
used as type constructor (f) or as an argument (£).

10.3
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The List Applicative [1 (1)

Making the 1-ary type constructor [] an instance of the type
constructor class Applicative:

instance Applicative [] where
pure x = [x]
fs <*> xs [f x| £ <- fs, x <- xs]

Lemma 10.3.2 (Applicative Laws for [])

The instance [] of the type constructor class Applicative
satisfies the four applicative laws AL1, AL2, AL3, and AL4,
and hence, is an applicative, the so-called list applicative.

10.3
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The List Applicative [] (2)

In more (colorful) detail:

pure :: (Applicative f) => a -> f a
(<*¥>) :: (Applicative f) =>f (a -> b) =>f a ->f b

instance Applicative [] where
pure x =[x]

—— Al A
cra=>[] a %: a t:oa

fs <x> xs = [ f x | £ <= fs, x < xsd,

1 (a —> by ::[Ja ::a->b%: a 102
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The List Applicative [1 (3)

Examples:
pure "Hallo" :: String ->> ["Hallo"]
pure "Hallo" :: Maybe String ->> Just "Hallo"

[(*x0), (+100), ("2)] <*> [1,2,3]
->> [ £ x| £ <= [(%0),(+100),("2)], x <= [1,2,3] ]
->> [0,0,0,101,102,103,1,4,9]

[(+),(*x)] <*> [1,2] <*> [3,4]

>> [ fx | f<=[(+),®], x <= [1,2] ] <> [3,4] 103
=>> [(1+),(2+), (1), (2%x)] <*> [3,4]

=>> [ fx | £f<= [(1+),02+),(1%),(2%)], x <~ [3,4] ]
->> [4,5,5,6,3,4,6,8]
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The List Applicative [1 (4)

Examples (cont'd):

(++) <$> ["ha","heh","hmm"] <> ["2", "in " ]
=>> (fmap (++) ["ha","heh","hmm"]) <> ["2n" min v ]
=>> [("ha"++), ("heh"++), ("hmm"++)] <x> ["on win n ]
=>> [ f x| £ <= [("ha"++),("heh"++), ("hmm"++)],

x <= ["er e w on] ]
["ha?","ha!","ha.", "heh?","heh!", "heh.",
"hmm?" , "hmm! ", "hmom. "]

->>
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The List Applicative [1 (5)

Examples (cont'd):

filter (>50) $ (%) <$> [2,5,10] <*> [8,10,11]
->> filter (>50) $ (fmap (x) [2,5,10]) <*> [8,10,11]
->> filter (>50) $ [(2x),(5%),(10%)] <*> [8,10,11]
->> filter (>50) $ [ £ x | £ <= [(2%),(5%),(10%)],

x <- [8,10,11] ]
->> filter (>50) $ [16,20,22,40,50,55,80,100,110]
->> filter (>50) [16,20,22,40,50,55,80,100,110] 103
->> [55,80,100,110]
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The List Applicative [1 (6)

Examples (cont'd):

The previous example shows that expressions using list
comprehension

[xxy | x <= [2,5,10], y <- [8,10,11]]
->> [16,20,22,40,50,55,80,100,110]
...can alternatively be written using (<$>) and <*>:

(x) <$> [2,5,10] <*> [8,10,11]
->> [16,20,22,40,50,55,80,100,110]

10.1

10.3
10.4
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The Input/Output Applicative 10 (1)

Making the 1-ary type constructor 10 an instance of the type
constructor class Applicative:

instance Applicative I0 where

pure = return
a <x>Db=4do f <-a
x <-Db

return (f x)

Lemma 10.3.3 (Applicative Laws for I0)

The instance I0 of the type constructor class Applicative
satisfies the four applicative laws AL1, AL2, AL3, and AL4,
and hence, is an applicative, the so-called input/output
applicative.

10.3
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The Input/Output Applicative 10 (2)

In more (colorful) detail:

pure :: (Applicative f) => a -> f a
(<x>) :: (Applicative f) => f (a -> b) => f a => f b

instance Applicative I0 where

pure = return
::a -> I0 a cra > 10 a
a <k> b = do f <- a
7 Y f_/\ﬁ "\
:: I0 (a -> b) :: I0 a :ta—>b :: I0 (a > b)
X <- b e
N —N— 103
a :: I0 a o
return (f x)
—_——— A~
::a->b B a
——
HE o)
:: I0 b
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The Input/Output Applicative 10 (3)

Examples:

The following two versions of myAction are equivalent:

myAction :: I0 String

myAction = do a <- getLine
b <- getLine
return $ a++b

myAction :: I0 String
myAction = (++) <$> getLine <*> getLine

The effect of main is similar but slightly different: 103

main = do
a < (++) <$> getLine <*> getline
putStrLln $
"The concatenation of the two lines is: " ++ a
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The Applicative Applicative ((->) r) (1)

Making the 1-ary type constructor ((-> r) an instance of the
type constructor class Applicative:

instance Applicative ((->) r) where
pure x = (\_ -> x)
f<>g=2\x->fx (gx)

Lemma 10.3.4 (Applicative Laws for ((->) 1))

The instance ((=>) r) of the type constructor class 103
Applicative satisfies the four applicative laws AL1, AL2,

AL3, and AL4, and hence, is an applicative, the so-called

applicative applicative.
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The Applicative Applicative ((->) r) (2)
In more (colorful) detail:

pure :: (Applicative f) =>a -> f a
(<x>) :: (Applicative f) => f (a -> b) -> f a -> f b

instance Applicative ((->) r) where

pure x = (\_ -> x)
~ N S
troa trrtoa

—_——
o ((->) 1) a

f <> g =\x > f x (g x)
: ((>) 1) (a > b) 0 ((->) 1) a .
—_— 102
i r > (a -> D) i r -> a 103
A~ ~ = A~ 10
c:r Gt:r G r 1
::
it b
trr > Db
tr ((=>) ) b)
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The Applicative Applicative ((->) r) (3)
Examples:

pure 3 "Hello"

->> (pure 3) "Hello" (left-assoc. of expr.)
->> (\_ -> 3) "Hello"
->> 3

(+) <$> (+#3) <x> (%x100) :: (Num a) => a -> a

(+) <$> (+3) <*> (*100) $ 5 :: Int

=>> (fmap (+) (+3)) <*> (*100) $ 5

=>> ((#) . (+3)) <*> (x100) $ 5

->> (\x > ((+) . (+3)) x ((*100) x)) $ 5

=>> ((+) . (+#3)) 5 ((x100) 5) 103
=>> (+) ((+3) 5) (5%100)

->> (+) (5+3) 500

->> (+) 8 500

->> (8+) 500

->> 8+500

->> 508 :: Int 769/165



The Applicative Applicative ((->) r) (4)

Examples (cont'd):

A\x y z => [x,y,2z]) <$> (+3) <x> (*¥2) <*> (/2) $ 5

->> (fmap (\x y z > [x,y,z]) (+#3)) <> (x¥2) <x> (/2) $ &
=>> ((\x y z -> [x,y,2z]) . (+3)) <x> (x2) <*> (/2) $ b
->> ..

->> [8.0,10.0,2.5]

10.1

10.3
10.4

Homework: Completing the stepwise evaluation! o
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The Ziplist Applicative ZipList (1)

Making the 1-ary type constructor ZipList an instance of the
type constructor class Applicative:

instance Applicative ZipList where
pure x = ZL (repeat x)
ZL fs <x> ZL xs = ZL (zipWith (\f x -> f x) fs xs)

where

newtype ZipList a = ZL [a]

-- the newtype declaraion is required since []
-— can not be made a second time an instance 10
-- of Applicative e

Intuitively

» <*x> applies the first function to the first value, the

second function to the second value, and so on.
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The Ziplist Applicative ZipList (2)

Lemma 10.3.5 (Applicative Laws for ZipList)

The instance ZipList of the type constructor class
Applicative satisfies the four applicative laws AL1, AL2,
AL3, and AL4, and hence, is an applicative, the so-called
ziplist applicative. "

10.3
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The Ziplist Applicative ZipList (3)

In more (colorful) detail:

pure :: (Applicative f) => a -> f

(<x>) :: (Applicative f) => f > f a->f
instance Applicative ZipList where
pure x = ZL (repeat x)
—_——
0 [
: Ziplist
ZL fs <k> ZL xs
:: ZipList :: ZipList .
= ZL (zipWith (\f x -> f x) fs xs)
—
( ) > L 1 0 [a]
—
( -> a ->b) L 1 0 [&]

(b]

:: Ziplist
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The Ziplist Applicative ZipList (4)

Recall:
newtype ZipList a = ZL [a]

repeat :: a —> [a]
repeat x = X : repeat x -- generates a stream

zipWith :: (a => b -> ¢) -> [a] -> [b] -> [c]
zipWith _ [1 _ =[] 102
zipWith _ _ 0 =0 2
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
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The Ziplist Applicative ZipList (5)
Examples:

getZipList $ (+) <$> ZL [1,2,3] <*> ZL [100,100,100]
->> getZipList $ (fmap (+) ZL [1,2,3]) <*> ZL [100,100,100]
->> getZipList $ ZL [(1+),(2+),(3+)] <*> ZL [100,100,100]
->> getZipList $ ZL [1+100,2+100,3+100]
->> getZipList $ ZL [101,102,103]
->> [101,102,103]

getZipList $ (+) <$> ZL [1,2,3] <*> ZL [100,100..]
->> getZipList $ (fmap (+) ZL [1,2,3]) <*> ZL [100,100,..]
->> getZipList $ ZL [(1+),(2+),(3+)] <x> ZL [100,100,..]
->> getZipList $ ZL [1+100,2+100,3+100]
->> [101,102,103] 103

getZiplist $ max <$> ZL [1,2,3,4,5,3] <*> ZL [5,3,1,2]
->> ... ->> [5,3,3,4]

getZiplList $ (,,) <$> ZL "dog" <*> ZL "cat" <*> ZL "rat"
=>> .. =>> [(fdf, e, fr), (Fof, fal, faf), (gL e, e )]
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Useful Supporting Maps
...for instances of Applicative
1iftA2 :: (Applicative f) =>
(a>b->c¢c) >fa->fb->fc
1iftA2 gab =g <$> a <x> b
sequenceld :: (Applicative f) => [f a] -> f [a]

sequenceA [] pure []
sequenceA (x:xs) (1) <$> x <*> sequenceA xs

sequenceld :: (Applicative f) => [f a] -> f [a]
sequenceA = foldr (1iftA2 (:)) (pure [])

Examples:

fmap (\x -> [x]) (Just 4) ->> Just [4]

1iftA2 (:) (Just 3) (Just [4]) ->> Just [3,4]
(1) <$> Just 3 <x> Just 4 ->> Just [3,4]
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Chapter 10.4
Kinds of Types and Type Constructors
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Kinds of Types and Type Constructors

Like values, also

» types and

» type constructors

types themselves, so-called kinds.
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Kinds of Types

In GHCi, kinds of types (and type constructors) can be
computed and displayed using the command “:k".

Examples:
ghci> :k Int
Int :: *

ghci> :k (Char,String)
(Char,String) :: *

ghci> :k [Float]
[Float] :: *

10.4
ghci> :k (->)
(=>) :: % => % > %
where * (read as "star" or as “type") indicates that the type
is a concrete type.
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Type Constructors
Type constructors take

» types as parameters to eventually produce concrete types.

Examples:

The type constructors Maybe, Either, and Tree

Nothing | Just a
Left a | Right b
Leaf a | Node a (Tree a) (Tree a)

data Maybe a
data Either a b
data Tree a

produce for a and b chosen to be Int and String, respec-
tively, the concrete types

10.4

Maybe Int
Either Int String
Tree Int
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Kinds of Type Constructors

Like concrete types, type constructors have

» types, called kinds, too.

Examples:

ghci> :k Maybe
Maybe :: * -> x*

ghci> :k Either

Either :: *x => *x -> %
ghci> :k Tree o
Tree :: *x => x

ghci> :k (->)
(=>) 1 % => % -> %
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Kinds of Partially Evaluated Type Constructors

Like functions, also

» type constructors can be partially evaluated.

Examples:

ghci> :k Either Int
Either Int :: *x -> x

ghci> :k Either Int String
Either Int String :: * 104
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Type Constructors as Functors

Recalling the definition of the type constructor class Functor

class Functor f where
fmap :: (a -=>b) >fa->1fhb
it becomes obvious that only
» type constructors of the kind (x —-> x)

can be instances of Functor.

10.4

783/165



Chapter 10.5
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[§ Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 11.1, Kategorien, Funk-
toren und Monaden)

[§ Fethi Rabhi, Guy Lapalme. Algorithms — A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
2.8.3, Type classes and inheritance) 101

10.3
10.4
10.5

786/165



Chapter 11
Monads

Chap. 11
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Motivation

Monads — A mundane approach for composing functions, for
» functional composition!

The monad approach succeeds in
» linking and composing functions

whose types are incompatible and thus inappropriate to allow
their
» simple functional composition.

Chap. 11
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Monads: A Suisse Knife for Programming

Monadic programming works well for problems involving:

» Global state

» Updating data during computation is often simpler than
making all data dependencies explicit (State Monad).

» Huge data structures

» No need for replicating a data structure that is not
needed otherwise.

» Side-effects and explicit evaluation orders Chap. 11
» Canonical scenario: Input/output operations (10 Monad).

» Exception and error handling
» Maybe Monad
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[[lustration

Consider:
a-b —-- Evaluation order of a and b is not
—-- fixed. This is crucial, if input/output
-- 1is involved.
Monads

» allow us to explicitly specify the order, in which opera-
tions are applied; this way, they bring an imperative
flavour into functional programming.

do a <- getInt -- Evaluation order is
b <- getInt -—- explicitly fixed:
return (a-b) -- first a, then b.

Chap. 11
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Chapter 11.1

Motivation
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Setting the Stage

Consider:
f :: a-
g ::b—>c

Functional composition for £ and g works perfectly:

(g . f) v=g (W)

where 111

(g . f) 1t a—>c¢
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Case Study “Debugging” (1)

Objective:
» Empowering £ and g such that debug-information in

terms of a string is collected and output during compu-
tation.

To this end, replace £ and g by two new functions £’ and g’:
type DebugInfo = String

f’ :: a -> (b,DebugInfo)
g’ :: b => (c,DebugInfo)

1.1

Unfortunately:
» £’ and g’ cannot be composed easily: Simple functional
composition does not work any longer because of incom-
patible argument and result types of £’ and g’.
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Case Study “Debugging” (2)

The below ad hoc composition works:

hvs=
let (fResult,fInfo) = f’ v
(gResult,glinfo)
= g’ fResult in (gResult,gInfo++fInfo)

...but were impractical in practice as it continuously required
implementing new specific composition operations.

1.1
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Case Study “Debugging” (3)

Towards a more systematic approach:

» Define a new “link” function.

link :: (a,DebugInfo) -> (a -> (b,Debuglnfo))
-> (b,DebugInfo)

link (v,s) g = let
(gResult,gInfo) = g v in (gResult,s++gInfo)

The function 1ink allows us to compose £’ and g’ comfor-
tably again:

h’> v = £’ v ’link’ g’

1.1
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Making it Practical: 1ink, unit, 1ift

Introduce a new identity function that is a unit for 1ink, and a
new lift function that makes each function working with link:
unit v = (v,"")
lift £ = unit . f

The functions 1ink, unit, and 1ift can now be applied in
concert.
Example:

fv= (v, "f called. ")
gv= (v, "g called. ")

hv=1fv ’link’ g ’link’ (\x -> (x, "done.")

We obtain:
h 5 ->> (5, "f called. g called. done.")
Note that functions are applied “left to right” as desired.

1.1
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Case Study “Random Numbers” (1)

The library Data.Random provides a function
random :: StdGen -> (a,StdGen)

for computing (pseudo) random numbers.

Ordinary functions can use random numbers, if they can (addi-
tionally) manage a value of type StdGen that can be used by
the next operation to generate a random number:

f :: a -> StdGen -> (b,StdGen)

Problem:
» How to compose functions f and g?

f :: a -> StdGen -> (b,StdGen)
g :: b -> StdGen -> (c,StdGen)

1.1
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Case Study “Random Numbers” (2)

An ad hoc composition:

h :: a -> StdGen -> (c,StdGen)
h v gen = let
(fResult,fGen) = f v gen in g fResult fGen

More appropriate:
» The trio of functions 1ink, unit, 1ift.

link :: (StdGen -> (a,StdGen)) ->
(a => StdGen -> (b,StdGen)) —>
StdGen -> (b,StdGen)
link :: g f gen = let (v,gen’) = g gen in f v gen’

1.1

unit v gen = (v,gen)
lift £ unit . £
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Quintessence

The previous examples enjoy

» a common structure.

This common structure can be encapsulated in a

» new (type) constructor class.

This type class will be the (constructor) class

1.1

» Monad.
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Outlook: The Constructor Class Monad

newtype Debug a D (a,String)

R (StdGen -> (a,StdGen))

newtype Random a

class Monad m where
(>>=) ::ma->(a->mb) ->mb - link
(>>) ::ma->mb ->mb -- link but ignore the
—-- (result) value of type a
-- of the first argument
return :: a -> m a —— make an (m a) value; neutral
-- element wrt (>>=)
fail :: String -> m a -- exception handling o
-- default implementations for (>>) and fail e
m> k =m>=\_->k o
fail = error
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Outlook: Instance Declaration for Debug

newtype Debug a = D (a,String)

The instance declaration for the type constructor Debug:

instance Monad Debug where
(D (v,s)) >=f = let D (v’,s8’) =

f (v,s) in D (v’ ,s++s’)
return x =D (x,"")

1.1
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Outlook: Instance Declaration for Random

newtype Random a = R (StdGen -> (a,StdGen))

The instance declaration for the type constructor Random:

instance Monad Random where
(Rm) >=f =R $ \gen —> (let
(a,gen’) = m gen
(RDb) =f ain b gen’) m
R $ \gen -> (x,gen)

return x
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Functors, Applicatives, Monads — Intuition (1)

Compare and note the similarity of the signature patterns:

apply :: (@ =>b) ->a > b
apply k v = k v

fmap :: (Functor f) => (a ->b) ->f a ->f b
fmap k v = ...

(<x>) :: (Applicative f) =>f (a ->Db) > f a ->f b
(xx>) kv = ...

(>>=) Dl (Monad m) =>m a —-> (a ->m b) ->mb 111
>>=) vk=...

() :: d->c) >@->b) > (a->c)
f . g v=1Ff (gw
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Functors, Applicatives, Monads — Intuition (2)
In greater (and also more colorful) detail:
apply :: (@ ->b) > a > b
apply k v=kv::Db
—_—
:ta->b t:a
fmap :: (Functor f) => (a -> b) -> f a -> f b
fmap k v=...::fb--w...specific for f
——
:ta->b ::f a
(<x>) :: (Applicative f) => f (a => b) -> f a => f b
(<*>) k v=...:fb--w ... specific for £

o ———
::f(a->b) ::f a

(>>=) :: (Monad m) =>ma -> (a->mDb) ->mb 1
(>>=) v k=...::mb--w/...specific for m ..
- — 1
““ma ::a->m b) 1

()t (d->c) >(@->b) > (a >0
(f .gv=1Ff(gv) ::c

~ =
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Composing Functions: (.) vs. () (1)

By default, function composition in Haskell is from “right to
left,” just as in mathematics:

(.) :: (b->¢c) >(@a->b) > (a->c¢c)
(f . g v=1=f(gW)

~» First g is applied, then f: application “right to left"!

We complement “right to left” function compositition (.)
with “left to right” function compositition (;)

G) ::(@a->b) > (b ->c) > (a->c) fi
f; @ v=g (v s
-- or equivalently pointfree: f ; g =g . £ o

~» First  is applied, then g: application “left to right”!
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Composing Functions: (.) vs. () (2)

Composition by : Functions are taken from
(fn . ... . £f3 . f2 . f1 . f) v
=>> (fn . ... . £f3 . f2 . f1) (f v)
->> (fn . ... . £f3 . f2) (f1 (f v))
=>> (fn . ... . £3) (f2 (f1 (£ v)))
->> ..
=>> fn (... (£3 ( £f2 ( £f1 v)))...)
Composition by : Functions are taken from
(f ; f1 ; f2 ; £f3 ; ... ; fn) v ha
->> (f1; £2 ; £3 ; ... ; fn) (f v) '
->> (f2 ; £3 ; ... ; fn) (f1 (f v))
->> (f3 ; ... ; fn) (£2 (f1 (f v)))
->> ..

=>> fn ( ... ( £3 ( £f2 ( f1 v)))...)
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The Relationship between (.) and (;) (1)

If £, f1, f2, £3,..., fn are functions and v a value of
fitting types we have the following equalities:

((fn . ... . £3) . £f2) . f1) . f =

f; (f1 ; (f2 ; (£3 ; ... ; fn)))
((((fn . ... . £3) . f2) . f1) . £f) v =

(f ; (f1 ; (2 ; (£3 ; ... ; fn)))) v
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The Relationship between (.) and (;) (2)

Both (.) and (;) are associative. Hence, parentheses can be
dropped yielding:

fn . ... . £f3 . f2 . f1 . f =
f,;, f1; f2 ; £3 ; ... ; fn
(fn . ... . f3 . f2 . f1 . f) v =
(f ; f1 ; £f2 ; £3 ; ... ; fn) v
Note:
» Both (.) and (;) specify explicitly, in which order the 11

functions are to be applied!

» This holds for monadic composition (>>=), too. The
above shows that this is not a feature which is unique for
monadic composition.
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Composition for Monadic and Non-M. Types

In analogy to the monadic composition operator (>>=) for
monadic types...

(>>=) :: (Monad m) =>ma -> (a->mb) >mb
m >=f=...::mb
—
(dcv)>=f=fv::mb
-- with dc some data constructor of type constructor m,

-- and with v some value of type a, i.e, v :: a

...we introduce a composition operator (>>;) inspired by
(>>=) and (;) for non-monadic types: w2

(>>;) ::a->(a->b) >b o
v>; f=fv::b 18
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Composing Functions: (;) vs. (>>;) (1)
The operators (;) and (>>;) are closely related:
(f ; f1 ; f2 ; £f3 ; ... ; fn) v =
v >>; £ >>; f1 >>; £2 >>; £3 >>; ... >>; fn
(;): function application left to right but argument on the right.

(f ; f1 ; f2 ; £3 ; ... ; fn) v

->> (f1; f2 ; £f3 ; ... ; fn) (f v)
->> (f2 ; £f3 ; ... ; fn) (f1 (£ v))
->>

=>> fn (... (£3 ( £2 ( £f1 v)))...)

(>>;): function application left to right and argument on the left!

v >>; £ >>; f1 >>; £2 >>; £3 >>; ... >>; fn
=>> (f v) >>; f1 >>; £2 >>; £3 >>; ... >>; fn
=>> (f1 (£ v)) >>; £2 >>; £3 >>; ... >>; fn
->> ...
->> fn (... (£3 ( £2 ( f1 v)))...)

1.1

810/165



Non-Monadic Function Composition: (>>;)(1)

v >>; £ > fl

>>;  £2 >>;

£3 >>;

f4

a ::a->b::b->c::c->4d::

b b > ¢
V2 >>; 0
1. C c >d

d > e ::

e > g

g
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Non-Monadic Function Composition: (>>;)(2)

The same but (most) types dropped and parentheses added
for clarity:

(v >>; £)  >>; £1) >>; £2) >>; £3) >>; f4) :: g
tta ra->b::b->c::c->d::d->e::e>g

(CCCCu >>; £) >>; £1) >>; £2) >>; £3) >>; £4)
=>> ((((vl >>; £1) >>; £2) >>; £3) >>; f4)
=>>  (((v2 >>; £2) >>; £3) >>; f4)

=>>  ((v3 >>; £3) >>; £4) o
=>>  (v4d >>; f4) H?
->> vb :: g ]
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Non-Monadic Function Composition: (>>;)(3)

The same but (most) types and parentheses dropped:

v >>; £ >>; f£1 >>; £2 >>; f£3 >>; f4 g
1 a :ta->b::b->c:tc->d::d->e ::e->g

vo>>; o >>; f1>>; £2 0 >>; f3 >>; f4
;o f1>>; £20 >>;  £3 0 >>; f4
=>> v2 >>; f2 >>; £3 >>; f4
=>> v3 >>; f3 >>; f4
=>> v4d >>; f4
=>> vb i g u
Note: 15
» The operators (>>;) are applied from left to right and 17
the argument is forwarded from left to right, too. This
gets lost if (>>;) is used as prefix operator (next slide).

=>> vl >>
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Non-Monadic Function Composition: (>>;)(4)

Infix usage of (>>;)

v o>>; £ >>; f1 >>; f2 3 >>; f4
—N—
vl
v2
v3
...vs. prefix usage of (>>;):
(>>;) ((>>;) ((>>;) ((>>;) v £) £1) £2) £3) f4) ::
———
vl
v2
v3
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Monadic Function Composition: (>>=) (1)

v o>>= £ >>= f1 >>= f2 >>= f3 >>= f4
— ! — — —N— —P—— e
timoa :ta->mb :tb->mc ctc->md ::d->me ite->mg
return v0 >>= £
Tooa
i ma a->mb
vl >>=  f1
g:mb b ->mc
Ve >>=  f2
iimC c ->md
v3 >>=  £3
md ::d->me
Vi >>=  f4
i:me e ->mg
V5
—_—
itmg

1rmog
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Monadic Function Composition: (>>=) (2)

The same but (most) types dropped and parentheses added
for clarity:

v >>= £ >>= f1 >>= £2 >>= £3 >>= f4 ::mg

P —
trmoa :ta->mb :tb->mc it c>md :rd->me tte>mg

(CCCv >>= ) >>= £1) >>= £2) >>= £3) >>= f4)
=>> ((((v1 >>= £1) >>= £2) >>= £3) >>= f4)
=>>  (((v2 >>= £2) >>= £3) >>= f4)

->>  ((v3 >>= £3) >>= f4) 112

->> (v4d >>= f4) o

=>> vb ::m g’
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Monadic Function Composition: (>>=) (3)
The same but (most) types and parentheses dropped:

v >>= £ >>= f1 >>= f2 >>= £3 >>= f4 ::mg

v o>>= f >>= f1 >>= f2 >>= {3 >>= f4
=>> vyl >>= f1 >>= f2 >>= f3 >>= f4
=>>  y2 >>= f2 >>= {3 >>= f4
=>> v3 >>= f3 >>= f4
=>> vd >>= f4
->> v5 ::m g™
Note:

» The operators (>>=) are applied from left to right and
the argument is forwarded from left to right, too. This
gets lost if (>>=) is used as prefix operator (next slide).
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Monadic Function Composition: (>>=) (4)

Infix usage of (>>=)

v >>= f >>= f1 >>= f2 f3 >>= f4
—N—
vl
v2
v3
...vs. prefix usage of (>>=):
(>>=) ((>>=) ((>>=) ((>>=) v f) f1) f2) £3 f4) ::
—_———
vl
v2
v3

vb

rmog

Hkp &
1.1
11.3
11.4
I8
11.6
11.7
11.8
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Monadic Function Composition via do-Not. (1)

v >>= £ >>= f1 >>= f2 >>= {3 >>= f4 ::mg
PN e — —— —N— ——— N —
rrma a->mb b ->mc it c->md crd->me ite->mg
do vO’ <- return vO —-- Note: return vO ->> v
3
~ = —_——
coa :ma
vl <- f vO’
~ =
S o) ::mb
v2 <- f1 vi1
~ = —N
1 C i mC
v3 <- £f2 v2
~ =
o d ::m d
v4 <- f3 v3
~ =
) i m e
vb <- f4 v4
g 1t mg

return vb
—_———
1t mg

1.1
11.2
11.3
11.4
I8
11.6
11.7
11.8
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Monadic Function Composition via do-Not. (2)
The expression

(CCCCv >>= £) >>= £1) >>= £2) >>= £3) >>=f4 ) :: m g

...in standard notation using (>>=) and parentheses for order
specification can equivalently be written using the syntactic
sugar of the do-notation

do vO’ :: a <- return vO :: m a —— Note:
vl b <=1 v0O’ mb -— return vO ->> v
v2 ¢ <= fl1wvl mc
v3 ::d <= £2 v2 m d i
vd :: e <- f3 v3 me i
vb 1 g <- f4 v4h mg o
return vb :: m g N

...with an implicit ordering specification by data dependencies.
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Monadic Function Composition via do-Not. (3)

The same but (most) types dropped...

The expression

(CCCCv >>= £) >>= £1) >>= £2) >>= £3) >>= 4 ) :: m g

...Is equivalent to the do-expression:

do vO’ <= return vO -- Note: return vO ->> v
vl <= f vO’
v2 <- f1 vi
v3 <- f2 v2
v4d <- f3 v3
vb <- f4d v4
return vb
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Compare: Monadic vs. Non-M. Operations (1)

A non-monadic application example:
"Functional Programming" >>; length >>; odd >>; f
where

f :: Bool -> Char
f True = ’H’ -- reminding to High
f False = L’ -- reminding to Low

...stepwise evaluated:

111

"Functional Programming" >>; length e
- 11.4
22 >>: odd 115

’ 11.6

11.7

False >>; f 1.8
1,0
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Compare: Monadic vs. Non-M. Operations (2)

...and its monadic counterpart:

Id "Functional Programming" >>= lengthm >>= oddm >>= fm

where
lengthm :: String -> Id Int
lengthm s = Id (length s)

oddm :: Int -> Id Bool
oddm n = Id (odd n)

fm :: Bool -> Id Char
fm b = Id (f b)

...Sstepwise evaluated: 11
Id "Functional Programming" >>= lengthm T
Id 22 >>= oddm ;E
Id False >>= fm o

4 'L’
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Compare: Monadic vs. Non-M. Operations (3)

Monadic operations

(>>=) :: (Monad m) =>ma -> (a->mb) ->mb
m>=f=fv::mb
(dc v) =-- w/ dc a data constructor of type constructor m, and w/ v a value of type a, i.e., v :: a
return :: (Monad m) => a -> m a

return v =m v :: m a

fail :: (Monad m) => String -> m a

fail s = error s :: m a

(>>) :: (Monad m) =>ma ->mb->mb
v>k=v>>\_->k ::mb

...and their non-monadic counterparts:

(>>;) ::a->(a->b) >b
11.1

v>>; f=fv::Db 112
id :: a -> a 1111131
idv ->v :: a ﬁi
fail :: String -> a T
fail s = error s :: a

(>;) ::a->b->b
vy >:rw=v>>:\ ->w ‘b — de.*T V> WwW=wW ‘Db 824/165



Why Introducing Class Monad at All? (1)

...generality, flexibility, and re-use!

Note, just staying with

>>;) ::a->((@->b) >b
v>; f==fv
means to stay

» with only one implementation of (>>;) for all types a
and b

» which must be used and work for all types a and b 11

» which thus can not be particularly “type specific” since
nothing can be assumed about a and b by the
implementation of (>>;)
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Why Introducing Class Monad at All? (2)

Note, (>>;) does not allow to cope with the debug-example.

f :: String -> Int g :: Int -> Bool

f = length g = odd

(g . £) = f ; g -—— composition of f and g works!

(g . £) s=( ; g) s =g(f(s)) —— works for all values
=s>; f>; g -- s of type String!

While composition works fine for £ & g, it does not for £’ & g’:

£’ :: String -> (Int,String) g’ :: Int -> (Bool,String)
f’ s = (f s,"f called, ") g’ n=(gn,"g called, ")
(g . £?) = £’ ; g’ -- does not work: types of g’ 11
-- and f’ do not fit! 113
(£’ ; g’) s = g’?(f’(s)) -- does not work: us
s >>; £7 >>; g’ -- type-specific implemen- 1
—— tations of (>>;), (>>;) .
-- are required!

(g> . £7) s
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Why Introducing Class Monad at All? (3)

Introduce a new data type Debug a:

newtype Debug a = D (a,String)

Make the constructor Debug an instance of class Monad:

instance Monad Debug where
(D (v,8)) >>=f = 1let D (v’,s8’) =
f (v,s) in D (v’,s++s’)
return x =D (x,"")

Note that Debug Int and Debug Bool are both instances of type
Debug a. This allows us to switch from £’, g’ to fm, gm:

fm :: String -> Debug Int gm :: Int -> Debug Bool i
fm s =D (f s,"f called, ") gmn =D (g n,"g called, ")
D (s,t) >>= fm >>= gm -- works for all values s, t of

-- type String!

Hence, we got the desired type-awareness of (>>=) with just one
instance declaration! 827/165



Why Introducing Class Monad at All? (4)

In fact, introducing the type constructor class Monad
class Monad m where

(>>=)

return :: a

(>>)
fail

allows as many implementations of (>>=) for a type as needed. It

->m a

ma->mb

->mb
String -> m a

ma->(a->mb) >mb

only requires to hide the type behind a distinct new type

constructor to allow another implementation of (>>=) for it:

data
data
data
data
data
data
data

Id a
[ a
Maybe a
Tree a
I0 a

Id’ a
Maybe’ a

instance
instance
instance
instance
instance

instance
instance

Monad
Monad
Monad
Monad
Monad

Monad
Monad

Id where...
[] where...
Maybe where...
Tree where. ..
I0 where...

Id’ where...
Maybe’ where. ..
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Why Introducing Class Monad at All? (5)

...where (the values of) the data types

data Id’ a Id’ a
data Maybe’ a = Nothing’ | Just’ a
data List’ a Empty’ | Cons’ a (List’ a)

equal their “unprimed” counterparts but allow us to imple-
ment a different behaviour for (>>=) and the other monadic 11
operations. -
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Why Introducing Class Monad at All? (6)

All in all, this also allows to interleave applications of (>>=)

and (>>;) and to change the monad in the course of the
computation, e.g., from Id a to Id’ a:

id2id’ :: Id a -> Id’ a 1d’2id :: Id’ a -> Id a
id2id’ (Id v) = Id’ v id’2id (Id’ v) = Id v
s = Id "Fun" :: Id String
f , g :: String -> Id String
£, g’ :: String -> Id’ String
monad change: Id2Id’ monad change: Id’2Id

s >>= f >>; id2id’ >>= £’ >>= g’ >>; id’2id >>=g

—_—A—T —_— e —— — —_—
mon.c.ord.c. mon.c. mon.c. ord.c. mon.c.

1.1

1il.5
11.4
I8
11.6
11.7
11.8
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Last but not least (1)

If we had been prepared to change both domain and range of
functions (instead of their range only), ordinary composition would
have been sufficient for the debug-example:

While
f’ :: String -> (Int,String) g’ :: Int -> (Bool,String)
£’ s = (f s,"f called, ") g’ n = (gn,"g called, ")
(g . £?) = £’ ; g’ -- does not work: types of g’ and f’
-- do not fit!
(g . £2) s =(f’ ; g’) s = g’(£f’(s)) -- does not work:
=35 >>; £f7 >>; g’ -- type-specific implemen-

-- tations are required!

does not work, the following does work: .

f" :: = (String,String) -> (Int,String) o
" (s,t) = (f s, t++"f called, ") 6

11.7
g" :: (Int,String) -> (Bool,String) 118

g" (n,t) = (g n, t++"g called, ")

(g" . ") s = (£" ; g") s = g"(£"(s)) = (s,"") >>; £" >>; g" 831/165



Last but not least (2)

Compare the monadic-free implementation of the debug-example....

"o = (Strlng,Strlng) -> (Int,Strlng) -- Note: Concatenation of
f" (S,t) = (f s , t++"f Called, ") -- Strings handled by
g" :: (Int,String) -> (Bool,String) -~ £" and g", not by (>>3)
g" (n,t) = (gn , t++"g called, ")

(HFunll’HH) >>; f” >>; gn

->> (3,"f called, ") >>; g" ->> (True,"f called, g called, ")
...with its monadic counterpart:

newtype Debug a = D (a,String)

instance Monad Debug where -~ Note: Concatenation
(D (v,8)) >>=f =1let D (v’,s8’) = —- of Strings handled
f (v,s) in D (v’,s++87) — by G>o), not 111
return x =D (x,"") -~ by fm and gu o
fm :: String -> Debug Int gm :: Int -> Debug Bool .
fm s =D (f s,"f called, ") gmn =D (g n,"g called, ") 116

11.7
11.8

D (s,"") >>= fm >>= gnm
->> D (3,"f called, ") >>; gm ->> D (True,"f called, g called, ™)

Quite similar, aren’t they? 832/165



Chapter 11.2
Monads
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The Type Constructor Class Monad

Monads are 1-ary type constructors, which are instances of the

type constructor class Monad and obey the so-called monad
laws:

class Monad m where

(>>=) irma —> (a ->m b) ->mb - (>>=) and return important

Ieturn coa -> m a -- for every instance of Monad

(>>) c:ma->mb->mb -= (>>=) and fail important only

fall . Strlng -> m a -- for some instances of Monad

m>> k =m >= \_ -> k —- default implementation

fail s = error s -- default implementation: )
-- represents a failing e

-- computation that outputs ||
-- the error message s 117

...where the implementations of the monad operations (>>=),

(>>), return, fail must satisfy the so-called monad laws.
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Monad Laws

Proper instances of the type constructor class Monad must
satisfy the three monad laws:

Monad Laws
return a >>= f

f a (ML1)
c (ML2)
(c >>=f) >>=g (ML3)

c >>= return
c >>= (\x > (f x) >= g)

Intuitively:
» return shall pass the value without any other effect, i.e.,
return must be unit of (>>=).
» sequencings given by (>>=) shall not depend on how they .,
are bracketed, i.e., (>>=) must be associative.

Proof Obligation:
» It is an obligation of the programmer to verify that their
instances of the type constructor class Monad satisfy the
monad laws. 835/165



Associativity of (>>)

Lemma 11.2.1 (Associativity of (>>))

If (>>=) is associative, then also (>>) is associative, i.e.:

cl >> (c2 > c3) = (c1 > c2) > c3
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The Monad Laws in Terms of (>@>) (1)

We now introduce a new operator (>@>) defined by:

(>@>) :: Monad m => (a->mb) > (b ->m c)
-> (a ->m c)

f>0> g=\x > (f x)>>=¢g

Using (>@>) the monad laws can be expressed in a way such
that there meaning becomes more obvious, e.g., the assoc-
iativity requirement for (>>=) of ML3 becomes as obvious as s

for the operation (>>) in Lemma 11.2.1.
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The Monad Laws in Terms of (>@>) (2)

The monad laws expressed with (>@>):

return >0> f = f (ML1?)
f >0> return = f (ML27)
(f > g) >@> h = f >@> (g >0> h) (ML3”)

Intuitively
» (ML1'), (ML2'): return is unit of (>@>).
» (ML3'): (>@>) is associative.

11.2

Note: As mentioned before, the above properties need to
ensured by the instance declaration. They do not hold per se.
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Syntactic Sugar: The do-Notation

Monadic operations
» allow to specify the sequencing of operations explicitly.

This introduces
» an imperative flavour into functional programming.

The syntactic sugar of the so-called
» do-notation

11.2

makes this flavour even more explicit.
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do-Notation: A Useful Notational Variant (1)

The do-notation makes composing monadic operations
syntactically more concise.

Four transformation rules allow to convert
» compositions of monadic operations into equivalent (<=>)
do-blocks and vice versa.

(R1) do e <=> e

(R2) do el;e2;...;en <=> el >>= \_ -> do e2;...;en
<=> el >> do e2;...;en
(R3) do let decllist;e2;...;en <=> let decllist
in do e2;...;en 11.2
(R4) do pattern <- el;e2;...;en <=>
let ok pattern = do e2;...;en
ok = fail "..."

in el >>= ok
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do-Notation: A Useful Notational Variant (2)
A special case of the “pattern rule” (R4):

(R4’) do x <- el;e2;...;en <=>
el >>= \x -> do e2;...;en

Remarks:

» (R2): If the return value of an operation is not needed, it
can be moved to the front.

» (R3): A let-expression storing a value can be placed in
front of the do-block.

» (R4): Return values that are bound to a pattern, require
a supporting function that handles the pattern matching
and the execution of the remaining operations, or that
calls fail, if the pattern matching fails.

Note: It is rule (R4) that necessitates fail as a monadic
operation in Monad. Overwriting this operation allows a
monad-specific exception and error handling.

11.2
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lllustrating the do-Notation

...using the monad laws as example.

» The monad laws using the monadic operations:

fa (ML1)
c (ML2)
(c >>= f) >>= g (ML3)

return a >>= f
c >>= return
c >>= (\x —> (f x) >>=g)

» The monad laws using the do-notation:

do x <- return a; f x = f a (ML1)
do x <- c; return x = c (ML2) "2
dox<-c;, y<-fx; gy =

doy<-(dox<-¢c; £x); gy (ML3)
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Quintessence: The Constructor Class Monad

class Monad m where

(>>=) :ma —> (a ->m b) ->mb - (>>=) and return important
return .ooa -> m a -- for every instance of Monad
(>>) s ma -—->m b ->m b -- (>>=) and fail important only
fall ol Strlng -> m a -- for some instances of Monad
m> k =m >>= \_ -> k -- default implementation

fail s error s -- default implementation

Intuitively: Monad operations

11.2

» describe actions with side effects.

» allow to fix the order of evaluation steps.

» support an imperative-like programming style w/out
breaking the functional paradigm.

843/165



Quintessence: Monadic Operations

Intuitively

» (>>=): The sequence operator (read as then (following
Simon Thompson) or bind (following Paul Hudak)), or —
maybe — as link.

» return: Returns a value w/out any other effect.

» (>>): From (>>=) derived sequence operator (read as
sequence (according to Paul Hudak)).

» fail: Exception and error handling.

11.2

844/165



Useful Supporting Functions for Monads

sequence
sequence

sequence_
sequence_

mapM
mapM f as

mapM_
mapM_ f as

(=<<)
f =<< x

:: Monad m => [m a] -> m [a]

foldr mcons (return [])
where mcons p q =do 1 <-p
1s <- q
return (1:1s)

:: Monad m => [m al] ->m (O

foldr (>>) (return ())

:: Monad m => (a -> m b) -> [a] -> m [b]

sequence (map f as)

:: Monad m => (a->mb) > [a] ->m O

sequence_ (map f as)

:: Monad m=> (a->mb) >ma->mb

x >>= f

11.2
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A Law linking Classes Monad and Functor

Type constructors that are an instance of both
» class Monad and class Functor

must satisfy the law:

fmap g xs = Xs >>= return . g (MFL)
( do x <- xs; return (g x) )

11.2
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Chapter 11.3
Predefined Monads
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Predefined Monads

A selection of predefined monads in Haskell:

v

Identity monad

v

List monad

v

Maybe monad

State monad

v
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The Identity Monad (1)

The identity monad, conceptually the simplest monad:
newtype Id a = Id a

instance Monad Id where

(Id x) >=f = f x
return = Id
Note:

» (>>) and fail are implicitly defined by their default
implementations.

Lemma 11.3.1 (Monad Laws)

The instance Id of class Monad satisfies the three monad laws
ML1, ML2, and ML3.
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The Identity Monad (2)

Why is the instantiation meaningful? Recall the monad operations:

(>>=) :: (Monad m) =>ma -> (a->mb) ->mb
v>>=k=...::mb

return :: (Monad m) => a -> m a
return v = ... : ma

Choose now the 1-ary type constructor Id for m:

instance Monad Id where
Id x >>= f = f x -- creating an Id-value

— —— —
::Ida :ra->Idb :: Idb

return x = Id x -- creating an Id-value
A —N
rra ::Ida

Note the overloading of Id:
> Id followed by x: Id as data constructor (newtype Id a =

> Id followed by a or b: Id as type constructor (newtype Id a=1d a)

Id a)
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The Identity Monad (3)

Remarks:

>

>

The identity monad maps a type to itself.

It represents the trivial state, in which no actions are
performed, and values are returned immediately.

It is useful because it allows to specify computation
sequences on values of its type.

The operation (>@>) becomes for the identity monad
forward composition of functions, i.e., (>.>):

>.>) :: (a->Db) > ->c) > (a->¢)
g>>f=1f . g

Forward composition of functions (>.>) is associative
with unit id.
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The List Monad (1)

The list monad:

instance Monad [] where

xs >>= f = concat (map f xs)
return x = [x]
fail s = [

where concat is from the Standard Prelude:

concat :: [[al]l -> [a]
concat lss = foldr (++) [] 1lss

Lemma 11.3.2 (Monad Laws)

The instance [] of class Monad satisfies the three monad laws
ML1, ML2, and ML3.
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The List Monad (2)

Why is the instantiation meaningful? Recall the monad operations:

(>>=) :: (Monad m) =>ma -> (a ->mb) ->mb
v>>k= ... ::mb

return :: (Monad m) => a -> m a

return v = ... :: ma

fail :: (Monad m) => String -> m a

fail s = ... :: m a

Choose now the 1-ary list type constructor [] for m:

instance Monad [] where

xs >>= f = concat (map f xs) -- creating a [b]-list

— —_——
:[la ra->[]b 2 [1 (1)

2 [1b 2

return x = [x] -- creating the singleton list 77

/—/R llF?

ira ::[a i

fail s = [] -- creating the empty list e

e e —N—
::String  ::[]a
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The List Monad (3)

Example:

1s = [1,2,3] :: []Int

f =\n -> [(n,0dd(@))] :: Int -> [] (Int,Bool)

g=\n -> [x*n | x <- [1.5,2.5,3.5]] :: Int -> []Float
h=\n->[1..n] :: Int ->[] Int

h 3 >=1f
=->> 1s >>= £
->> concat [ [(1,True)], [(2,False)], [(3,True)] 1]
->> [(1,True), (2,False), (3,True)] :: [] (Int,Bool)

h3>>=g
->> 1s >>=g
->> concat [ [ x*xn | x <- [1.5,2.5,3.5] ] | n <- [1,2,3] ] u3
->> concat [ [1.5%1,2.5%1,3.5%1], [1.5%2,2.5%2,3.5%2],
[1.5%3,2.5%3,3.5%3] ]
->> concat [ [1.5,2.5,3.5], [3.0,5.0,7.0], [4.5,7.5,10.5] ]
->> [1.5,2.5,3.5,3.0,5.0,7.0,4.5,7.5,10.5] :: []Float
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The List Monad (4)

Why is the instantiation meaningful? Recall the monad operations:

(>>=) :: (Monad m) =>m a -> (a ->mb) >m b
v>>=k=...::mb

return :: (Monad m) => a -> m a
return v = ... ::ma

fail :: (Monad m) => String -> m a
fails = ... ::ma

Choose now the 1-ary list type constructor [] for m:
instance Monad [] where

xs >>= f = concat (map f xs) -- creating a [b]-list
—— —— ———
::[la ::a->[1b 2 [1([1b)
[—
:[0b
return x = [x] -- creating the singleton list
——
ira ::[la
fail s = [] -- creating the empty list
et
::String  ::[la
Example:
1s = [1,2,3] :: [1Int 11.1
f = \n -> [(n,0dd(n))] :: Int -> [] (Int,Bool) 1.2
g=\n -> [x*n | x <- [1.5,2.5,3.5]] :: Int -> []Float 113
h=\n->[1..n] :: Int ->[]Int H’
5
h 3 >>= f ->> 1s >>= £ ->> concat [ [(1,True)], [(2,False)], [(3,True)] ] Lo
->> [(1,True), (2,False), (3,True)] :: [] (Int,Bool) H'

h 3 >=g ->> 1s >= g ->> concat [ [ x*n | x <- [1.5,2.5,3.56] ] | n <- [1,2,3] ]
->> concat [ [1.5%1,2.5%1,3.5%1], [1.5%2,2.5%2,3.5%2], [1.5%3,2.5%3,3.5x3] ]
->> concat [ [1.5,2.5,3.5], [3.0,5.0,7.0], [4.5,7.5,10.5] ]

->> [1.5,2.5,3.5,3.0,5.0,7.0,4.5,7.5,10.5] :: []Float
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The List Monad (5)

The list monad can equivalently be defined by:

instance Monad [] where
(x:x8) >>=f = f x ++ (xs >>= f)

[1 >>= f = []

return x = [x]

fail s = []
Note:

» For the list monad the monadic operations (>>=) and
return have the types:

(>>=) :: [a] -> (a => [b]) -> [b]
return :: a -> [a]
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The List Monad (6)

The list monad is closely related to list comprehension:

do x <- [1,2,3]
y <- [4,5,6]
return (x,y)
->> [(1,4),(1,5),(1,6),(2,4),(2,5),
(2,6),(3,4),(3,5),(3,6)]

Hence, the following notations are equivalent:

[(x,y) | x <= [1,2,3], v <- [4,5,6] ] <=>
do x <- [1,2,3] 11.3

y <- [4,5,6]

return (x,y)

List comprehension is syntactic sugar for monadic syntax!
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The List Monad (7)

List comprehension: Syntactic sugar for monadic syntax.

We have:
[f x | x <- xs] <=> do x <- xs; return (f x)

[a | a <- as, p al] <=>
do a <- as; if (p a) then return a else fail ""
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The Maybe Monad (1)

The Maybe monad:
data Maybe a = Nothing | Just a

instance Monad Maybe where
(Just x) >>=k = k x

Nothing >>= k = Nothing

return = Just

fail s = Nothing
Remark:

» The Maybe monad is useful for computation (sequences)
that might produce a result, but might also produce an
error.

Lemma 11.3.3 (Monad Laws)

The instance Maybe of class Monad satisfies the three monad
laws ML1, ML2, and ML3.
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The Maybe Monad (2)

Why is the instantiation meaningful? Recall the monad operations:

(>>=) :: (Monad m) =>ma -> (a ->mb) ->mb
v>>k=...::mb

return :: (Monad m) => a -> m a
return v = ... :: ma

fail :: (Monad m) => String -> m a
fail s = ... :: m a

Choose now the 1-ary type constructor Maybe for m:

instance Monad Maybe where
Just x >>= k = k x -- creating a Just-value

:Maybea ::a->Maybeb ::Maybeb

Nothing >>= k = Nothing -- creating the Nothing-value '’
::Maybea ::a->Maybeb ::Maybeb 77
return x = Just x -- creating the Just-value o
A —_—~ 117
tra :: Maybea 118

fail s = Nothing -- creating the empty list

—_— —_——
:: String :: Maybea
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The Maybe Monad (3)

For the Maybe monad the monadic operations (>>=) and
return have the types:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
return :: a -> Maybe a

The Maybe type is also a predefined member of the Functor
class:

instance Functor Maybe where
fmap f Nothing = Nothing
fmap £ (Just x) = Just (f x)
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The Maybe Monad (4)
Composing functions like

f :: Int -> Int
g :: Int -> Int
x :: Int

in g (£ x) while assuming that the evaluation of f and g may
fail, is possible by embedding the computation into the Maybe

type:

case (f x) of
Nothing -> Nothing
Just y -> case (g y) of
Nothing -> Nothing
Just z -> z

Though possible, this is “inconvenient.”
862/165



The Maybe Monad (5)

Embedding gets a lot easier by exploiting the membership of
the Maybe type in the Maybe monad:

fx>=\y ->gy>=\z -> return z

which is equivalent to:

doy <- f x
z <- gy
return z

...the “nasty” error check is “hidden” in the Maybe monad.
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The Maybe Monad (6)

Note that

fx>>=\y ->gy>=\z -> return z

can also be simplified to:

f x>=\y ->gy>=\z -> return z
(Simplification by currying) <->
f x >>=\y -> g y >= return
(Monad law for return) <->
fx>>=\y>gy
(Simplification by currying) <-> 13
fx>>=g

This way, g (f x) gets f x >>= g.
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The Maybe Monad (7)

Another possibility to better cope with (g . f) x is to
introduce the function:

composeM :: Monad m => (b -> m c) ->
(a->mb) > (a->mc)

(g ’composeM’ f) x = f x >>=g

Using composeM we obtain:

(g . ) x gets (g ’composeM’ f) x

Note: o
» Both this and the previous handling of embedding the
function composition of g and £ into the Maybe type
preserve the original notation of composing g and f in an
almost 1-to-1 kind.
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The State Monad (1)

Objective:

» Modelling of programs with global (internal) state and
side effects
» by means of functions, which yield a final state s’ as part
of the overall result of the computation, when they are
applied to an initial state s.
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The State Monad (2)

The (resp. a) state monad:

newtype State s a = St (s -> (s,a))

instance Monad (State s) where
(St m) >>= f = -- Intuitively:
St (\s -> let (s1,x) =m s -- Map m applied to s
St £ = f x -- yields the pair (s1,x)
in f’ s1) -- onto whose 2nd compo-
-- nent x map f is applied
-— to yielding the state

-- value St f’, whose

-- map £’ is finally o
-- applied to sl yielding %
-- a pair of type (s,b). ..

return x =St (A\s -> (s,x)) —- States are iden-

-- tically mapped!
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The State Monad (3)

Note:

For the (State s) monad the monadic operations (>>=) and
return have the types:

(>>=) :: (State s) a —> (a -> (State s) b) —> (State s) b
return :: a -> (State s) a

Lemma 11.3.4 (Monad Laws)

The instance (State s) of class Monad satisfies the three 1.3
monad laws ML1, ML2, and ML3.
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The State Monad (4)

Why is the instantiation meaningful? Recall the monad operations:

(>>=) :: (Monad m) =>ma -> (a->mb) >mb
v>>k=...::mb

return :: (Monad m) => a -> m a

return v = ... :: ma

Choose now the 1-ary type constructor (State s) for m:

instance Monad (State s) where

St m >>= f
:: (States)a ::a->(States)b
=St (\s -> let ... in f’ sl1) -- creating a
) 1 (s,b) —-- proper state
11.1
::s -> (s,b) -- value: homework!
11.4
:: (State s)b 115
11.6
11.7
return x = St (\s -> (s,x)) -- creating a most simple o
it a :: (State s)a  -- proper state value
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The State Monad (5)

Intuitively

State transformers

>

>

model and transform global (internal) states.
are (in this setting) mappings of the type s -> (s,a).

map an initial state to a pair consisting of a (possibly
modified) final state and another result component of
type a. 113
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The State Monad (6)

A variant of the state monad for a suitable fixed state type S
(i.e., State’ is a l-ary type constructor while the formerly
introduced type constructor State is a 2-ary type constructor):

newtype State’ a = St’ (S -> (8,a))

instance Monad State’ where
St’ m >>=f =8t (\s >
let (s1,x) =nm s
St? f7 = £ x
in £’ s1)

return a =3t> (\s > (s,a))
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More Predefined Monads

There are many more predefined monads in Haskell:

» Writer monad

Reader monad

v

Failure monad

v

v

Input/output monad
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The Input/Output Monad (1)

The I0 monad:

instance Monad I0 where
(>>=) :: I0a->((a->1I0b) > I0Db

return :: a —-> I0 a

Intuitively:

» (>>=): If p and q are commands, then p >>= q is the
command that first executes p, yielding thereby the
return value x of type a, and then executes q x, thereby

yielding the return value y of type b.
» return: Generates a return value w/out any input/out-
put action.
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The Input/Output Monad (2)

Note:
» The I0 monad is similar in spirit to the state monad: It
passes around the “state of the world.”

In more detail:
For a given suitable type World
» whose values represent the current state of the world

the notion of an interactive program, i.e., an |O-program, can
be represented by a function of type

» World -> World

which may be abbreviated as:

type I0 = World -> World
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The Input/Output Monad (3)

In general:

» Interactive programs do not only modify the state of the
world but may also return a result value, e.g., echoing a
character that has been read from a keyboard.

This suggests to change the type of interactive programs to

type I0 = World -> (World,a)
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Chapter 11.4
Monads Plus
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The Type Constructor Class MonadPlus

...for members of Monad with Null and Plus operation:

class Monad m => MonadPlus m where
mzero :: m a
mplus :: ma->ma->ma

11.4
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The Laws of MonadPlus

Proper instances of the type constructor class MonadPlus
must satisfy in addition to the monad laws laws for the Null
and Plus operations:

MonadPlus Laws
Two laws for the Null operation:

m >>= (\X -> mzero) = mzero (MPL1)
mzero >>= m = mzero (MPL2)

Two laws for the Plus operation:
m ’mplus’ mzero = m (MPL3)

mzero ’mplus’ m = m (MPL4)

Note: As for Functor and Monad, the programmer needs to
prove that their instances of class MonadPlus satisfy the
monadplus laws.

11.4
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Instances of MonadPlus

Instance declarations for the Maybe and [] types for the class
MonadPlus:

instance MonadPlus Maybe where

mzero = Nothing
Nothing ’mplus’ ys = ys
xs ’mplus’ ys = XS

instance MonadPlus [] where
mzero = []
mplus = (++)

Note:
» List concatenation (++) is a special case of the mplus
operation.
» I0 is not an instance of MonadPlus because of the
missing null element.

11.4
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Chapter 11.5

Monadic Programming
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Outline

We will consider three extended examples for illustration:

» Example I: Summing labels of a tree.

» Example Il: Replacing the leaf labels of a tree by leaf
labels of another type.

» Example Ill: Replacing the labels of a tree by the number
of occurrences of this label in the tree.

115
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Example |

Given:

data Tree a = Nil | Node a (Tree a) (Tree a)

Objective:

» Write a function that computes the sum of the values of
all labels of a tree of type Tree Int.

Means:

Opposing two different functional approaches:
» A classical functional approach w/out monads s

» A functional approach w/ monads.
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[[lustration

N
NI
Nl © N |
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A Functional Approach w/out Monads

1st Approach: No monads

sTree :: Tree Int -> Int

sTree Nil 0
sTree (Node n t1 t2) n + sTree t1 + sTree t2

Note:
» The order of the evaluation is not fixed (i.e., there are
degrees of freedom!)

115

884/165



A Functional Approach w/ Monads
2nd Approach: Using the identity monad Id

sumTree :: Tree Int -> Id Int
sumTree Nil = return O
sumTree (Node n t1 t2)

do num <- return n —-- the Int value n is bound
—-— to num
sl <- sumTree tl1 —-- the Int values of the
s2 <- sumTree t2 -- recursive calls are bound
-— to sl and s2
return (numt+sl+s2) -- yields the Id Int value

-- (Id (num+s1+s2)) as resultl&

Note: o
» The order of the evaluation is explicitly fixed (i.e., there
are no degrees of freedom!)
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The |dentity Monad

Recall the identity monad:
newtype Id a = Id a
instance Monad Id where

(Id x) >=f = f x
return = TId

115
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Opposing the Two Approaches

Comparing the two approaches w/ and w/out monads, we
observe:

» Unlike sTree, function sumTree has an “imperative”
flavour very similar to the sequential sequence of
(imperative) assignments:

Imperative Monadic

num := n; do num <- return n
sl := sumTree t1; sl <- sumTree t1
s2 = sumTree t2; s2 <- sumTree t2

115

return (num+si+s2); return (num+sl+s2)
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Another Functional Approach w/ Monads

3rd Approach: Using monad Id and an extraction function

extract :: Id a -> a
extract (Id x) = x

Using extract we get a function of type Tree Int -> Int:

extract . sumTree :: Tree Int -> Int

Example:

(extract . sumTree)
(Node 5 (Node 3 Nil Nil) (Node 7 Nil Nil))
->>
extract (sumTree
(Node 5 (Node 3 Nil Nil) (Node 7 Nil Nil)))
->>
extract (Id 15) ->> 15

115
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Example Il

Given:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Objective:
» Replace the labels of the leafs that are supposed to be of
type Char by continuous natural numbers.

115
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[llustration
Let test be defined by

test = let t = Branch (Leaf ’a’) (Leaf ’b?’)
in label (Branch t t)

Then test shall be transformed to:

Branch (Branch (Leaf 0) (Leaf 1))
(Branch (Leaf 2) (Leaf 3))

VAN N
RANAN

115
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A Functional Approach w/out Monads

1st Approach: No monads

label :: Tree a -> Tree Int
label t = snd (lab t 0)

lab :: Tree a -> Int —> (Int, Tree Int)
lab (Leaf a) n
= (n+1, Leaf n)
lab (Branch t1 t2)
= let (n1,t1’) lab t1 n
(n2,t2’) = lab t2 ni
in (n2, Branch t1’ t2’)

[=]

115
Note:
» Simple but passing the value n through the incarnations

of lab is “intricate.”
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A Functional Approach w/ Monads (1)

2nd Approach: Using the state monad
newtype Label a = Label (Int -> (Int,a))

.."'matches” the pattern of the state monad State’.

We define:

instance Monad Label where
Label 1t0 >>= flt1l
= Label $ \sO —>

let (s1,al) = 1t0 sO
Label 1t1 = f1t1 al
in 1t1 si
return a = Label (\s -> (s,a)) e

Note: The $-operator in the definition of (>>=) can be dropped, if

the expression \sO -> let ... in 1t1 sl is bracketed.
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A Functional Approach w/ Monads (2)

This allows solving the renaming of labels as follows:

mlabel .. Tree a -> Tree Int
mlabel t = let Label 1t = mlab t
in snd (1t 0)

mlab :: Tree a -> Label (Tree Int)
mlab (Leaf a)
= do n <- getLabel
return (Leaf n)
mlab (Branch t1 t2)
= do t1’ <- mlab tl1
t2’ <- mlab t2
return (Branch t1’ t2’) 115

getLabel :: Label Int
getlLabel = Label (\n -> (n+1,n))
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A Functional Approach w/ Monads (3)

Let mtest be defined by

mtest = let t = Branch (Leaf ’a’) (Leaf ’b’)
in mlabel (Branch t t)

Then we get:

» mlabel applied to
Branch (Leaf ’a’) (Leaf ’b’)
yields as desired:

Branch (Branch (Leaf 0) (Leaf 1))
(Branch (Leaf 2) (Leaf 3))

115
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Example Il

Given:

data Tree a = Nil | Node a (Tree a) (Tree a)

Objective:
» Replace labels of equal value that are supposed to be of
type String by the same natural number.

115
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A Functional Approach w/ Monads (1)

Ultimate Goal: A function numTree of type
numTree :: Eq a => Tree a —> Tree Int

solving this task with monadic programming using the state
monad.

In order to eventually arrive at this function we start with:

numberTree :: Eq a => Tree a -> State a (Tree Int)
numberTree Nil = return Nil
numberTree (Node x t1 t2) =
do num <- numberNode x
ntl <- numberTree tl1
nt2 <- numberTree t2
return (Node num ntl nt2)

115
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A Functional Approach w/ Monads (2)

Next, we are storing pairs of the form
(<string>,<number of occurrences>)

in a table of type:

type Table a = [a]

In particular:

The table

[True, False]

115

encodes that the value True is associated with O and False
with 1.
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A Functional Approach w/ Monads (3)

Defining the state monad we consider:
data State a b = State (Table a —-> (Table a, b))

instance Monad (State a) where
(State st) >>=f
= State (\tab -> let

(newTab,y) = st tab
(State trans) = f y
in

trans newTab)
return x = State (\tab -> (tab,x))

115

Intuitively:
» Values of type b: Result of the monadic operation.
» Update of the table: Side effect of the monadic operation.
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A Functional Approach w/ Monads (4)

Defining the missing function numberNode:

numberNode :: Eq a => a -> State a Int
numberNode x = State (nNode x)

nNode :: Eq a => a -> (Table a -> (Table a, Int))
nNode x table

| elem x table = (table, lookup x table)

| otherwise (table++[x], length table)
—-- nNode yields the position of x in the table:
-- via lookup, if stored in the table; after .
-- adding x to the table via length otherwise s

lookup :: Eq a => a -> Table a -> Int 117
lookup ... (waiting to be completed)
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A Functional Approach w/ Monads (5)

Putting the pieces together, we get for
exampleTree :: Eq a => Tree a:

numberTree exampleTree :: State a (Tree Int)

Using an extraction function we get now the desired
implementation of the function numTree of type
numTree :: Eq a => Tree a -> Tree Int:

extract :: State a b -> b
extract (State st) = snd (st [])

numTree :: Eq a => Tree a -> Tree Int
numTree = extract . numberTree

115
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Chapter 11.6
Monadic Input/Output
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Handling Input/Output so Far

The programs we considered so far, handle input/ouput mono-
lithicly, in a way that resembles

» batch processing.

. Haskell-
Programm

Peter Pepper. Funktionale Programmierung.
Springer—Verlag, 2003, S.245

In fact, there is no interaction between a program and a user:
» All input data must be provided at the very beginning.

» Once called there is no opportunity for the user to react
on a program's response and behaviour.

11.6
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Handling Input/Output Henthforth

Our Objective:
Modifying the handling of input/ouput such that programs
become and behave like
» (sequentially) composed dialogue components
while preserving referential transparency as far as possible.

Laufzeitsystem ] 116

Peter Pepper. Funktionale Programmierung.
Springer—Verlag, 2003, S.253
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It is worth noting

As illustrated by the previous figure, input/output is

» a major source for side effects in a program: e.g., each
read statement like read will usually yield a different
value for each call, i.e. referential transparency is lost.

11.6
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Monadic Input/Output in Haskell

Conceptually, a Haskell program consists of
» a computational core and

» an interaction component.

Interaktions—

Chakravarty, Keller Einfiihrung in die e

Programmierung mit HaskellPearson, 2004, S.89
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Monadic Input/Ouput

The monad concept of Haskell allows to

» distinguish (and conceptually separate) functions that
belong to the
» computational core (pure functions)
» interaction component (impure functions, i.e. having
side effects).
by assigning different types to them:

~» Int, Real, String,... vs. I0 Int, I0 Real, IO
String,... where the type constructor I0 is an instance
of Monad.

» specify the evaluation order of functions of the inter-
action component (i.e., of basic input/output primitives =
provided by Haskell) by explicitly using the features of
monadic programming.
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Recall Chapter 11.3

The Input/Output Monad (1)

The I0 monad:

instance Monad IO where
(>>=) :: I0a->( ->I0b) ->I0b
return :: a -> I0 a

Intuitively:

» (>>=): If p and q are commands, then p >>= q is the
command that first executes p, yielding thereby the
return value x of type a, and then executes q x, thereby

yielding the return value y of type b.
» return: Generates a return value w/out any input/out-
put action.

1/1219

11.6
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Recall Chapter 11.3

The Input/Output Monad (2)

It is worth noting:
» The I0 monad is similar in spirit to the state monad: It
passes around the ‘“state of the world.”

In more detail:
For a given suitable type World
» whose values represent the current state of the world

the notion of an interactive program, i.e., an |O-program, can
be represented by a function of type

» World -> World
which may be abbreviated as:

type I0 = World -> World

1/1219

11.6
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Recall Chapter 11.3

The Input/Output Monad (3)

In general:

» Interactive programs do not only modify the state of the
world but may also return a result value, e.g., echoing a
character that has been read from a keyboard.

This suggests to change the type of interactive programs to

type I0 = World -> (a, World)

1/1219

11.6
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Typical Interaction Examples (1)

A simple question/response interaction with the user:

ask :: String -> I0 String
ask question = do
putStrln question
getLine

interAct :: I0 ()
interAct =
do name <- ask "May I ask your name?"
putStrLine ("Welcome " ++ name ++ "!")

11.6
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Typical Interaction Examples (2)

Input/output from/to files:

type FilePath = String

writeFile :: FilePath
appendFile :: FilePath

-- file names according
-- to the conventions of
—-- the operating system

-> String -> I0 ()
-> String -> 10 O

readFile :: FilePath -> I0 String

isEQF :: FilePath

interAct :: I0 O
interAct = do

-> I0 Bool

putStr "Please input a file name: "
fname <- getLine 116
contents <- readFile fname

putStr contents
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Typical Interaction Examples (3)

Note the relationship of the do-notation

do writeFile "testFile.txt" "Hello File System!"
putStr "Hello World!"

and the monadic operations:

writeFile "testFile.txt" "Hello File System!" >>
putStr "Hello World!"

Note also the (subtle) difference in the result types:
Main>putStr (’a’:(’b’:(’c’:[]))) Main>putChar (head [’x’,’y’,

->> abc :: I0 O ->>x :: I0 O
but
Main>(’a’: (b’: (’c’:[1))) Main>head [’x’,’y’,’2’] .,
->> "abc" :: [Char] ->> ’x’ :: Char
Main>print "abc" Main>print ’x’

=>> "abc" :: I0 O ->> ’a’ :: I0 O

913/165



More Examples (1)

The output command sequence

do writeFile "testFile.txt" "Hello File System!"
putStr "Hello World!"

...Iis equivalent to:

writeFile "testFile.txt" "Hello File System!" >>
putStr "Hello World!"

11.6
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More Examples (2)
Note:
From

(>>) :: Monadm=>ma->mb->mb

and

writeFile "testFile.txt"
"Hello File System!" :: I0 ()
putStr "Hello World!" :: 10 O

...we conclude for our example thatm = I0,a = (), and b =
(). Overall, we thus obtain: 16

>>) :: 10 ) >1I0 O —>10 O
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More Examples

llustrating local declarations within do-constructs:

reverse2lines
reverse2lines
= do linel <-
line2 <-
let revl
let rev2
putStrLn
putStrLn

is equivalent to:

reverse2lines

reverse2lines
= do linel <-
line2 <-
putStrLn
putStrLn

(3)

10 O

getline

getLine

= reverse linel
= reverse line2
rev2

revl

10 O

getlLine
getline
(reverse line?2)
(reverse linel)

11.6
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Summing up (1)

Overall, the monadic handling of input/output in Haskell
renders possible:

The shift from

» “batch-like” input/output processing that works
exclusively by pure functions of the computational core as
illustrated below

X Haskell-
Programm

Peter Pepper. Funktionale Programmierung. o

Springer—Verlag, 2003, S.245
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Summing up (2)

...to an interactive, dialogue-oriented input/output processing
w/out breaking the functional paradigm (keyword: referential
transparency!)

[ Laufzeitsystem ]

Peter Pepper. Funktionale Programmierung. 11.6
Springer—Verlag, 2003, S.253
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Stream-based Input/Output (1)

Early versions of Haskell foresaw a stream-based handling of

input/output:

» Stream-based considering programs functions on streams:

I0prog ::

String -> String

Programm

o @@m

Peter Pepper. Funktionale Programmierung.

Springer—Verlag, 2003, S.271

Input/output streams on terminals, file systems, prin-

ters,...

11.6
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Stream-based Input/Output (2)

Advantages and disadvantages:

» Stream-based input/output handling for languages with

» eager semantics:

» there is no real stream model (the input must
completely be provided and consumed at the beginning
and must thus be finite); hence, input/output is limited
to a batch- or stack-like processing.

» lazy semantics:

> Interactions are possible; thanks to lazy evaluation
inputs/outputs are always in “proper” order.

» But: the causal and temporal relationship between input
and output is often “obscure”; special synchronization
might be used to overcome that.

» Overall: streambased input/output reaches its limit
when switching to graphical user interfaces and random
access to files.
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ML-Style Input/Output

The ML-style of handling input/output is

» a Unix-like handling of display, keyboard, etc. as files:
std_in, std_out, open_in, open_out,
close_in, ...

Advantages and disadvantages:

» The handling is simple but at the cost of anomalies like
those discussed in LVA 185.A03; in particular, referential
transparency is lost.

11.6
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Last but not least

Input/output handling in functional languages is an important
research topic:

» Andrew D. Gordon. Functional Programming and
Input/Output. British Computer Society Distinguished

Dissertations in Computer Science. Cambridge University
Press, 1992.

11.6
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Chapter 11.7
A Fresh Look at the Haskell Class Hierarchy
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A Section of the Haskell Class Hierarchy (1)

...including the constructor classes Monad, MonadPlus, and
Functor:

Eq Show Enum Functor
(==) (I=) showsPrec succ pred fmap
show toEnum
showList fromEnum Monad
\ enumFrom (>>=)
enumFromThen >>)
Ord Num enumFromTo return
compare +) (=) (% enumFromThenTo fail
() (=) (=) (>) negate
max min abs signum
fromInteger
MonadPlus
mZero
mPlus

Fethi Rabhi, Guy Lapalme.Algorithms.
Addison-Wesley, 1999, Figure 2.4, p.46
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A Section of the Haskell Class Hierarchy (2)

Eq Show Functor
All except IO, (=>)  All Prelude Types 10, [], Maybe
/////\\\\\\\\\\ Monad
Ord Num 10, [1, Maybe
All except (—>), Int, Integer,
10, 10Error Float, Double
Ix / \ .
Int, Integer, Real Fractional MonadPlus
Char, Bool, Int, Integer, Float, Double 10, [], Maybe
Tuples of Ix types Float, Double
Enum RealFrac Floating
(), Bool, Char, Float, Double Float, Double
Ordering, Int,
Integer,
Float, Double
RealFloat Bounded
Integral Float. Double I, Char, Bool. 0.

Int, Integer

Ordering, tuples

Read
All except 10, (—>)
Cambridge University Press, 2000, p.156

Paul Hudak. The Haskell School of Expression.
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A Section of the Haskell Class

Eq Show Functor
(==) (=) showsPrec fmap
show
showList
Monad
Ord Num (>>=)
compare ) (=) (%) (>>)
() (<=) (=) (>) negate return
max min abs signum fail
fromInteger

Ix Real Fractional MonadPlus

range toRational ) mZero

index recip mPlus

inRange fromRational

rangeSize fromDouble
Enum RealFrac Floating
succ pred properFraction pi
toEnum truncate round exp log sqrt
fromEnum ceiling floor (*%) logBase
enumFrom sin cos tan
enumFromThen sinh cosh tanh
enumFromTo asinh acosh atanh
enumFromThenTo

Integral
quot rem div mod
quotRem divMod

even odd

tolnteger Read
readsPrec
readList

RealFloat Bounded

floatRadix minBound maxBound

floatDigits

floatRange

decodeFloat

encodeFloat

exponent

significand

scaleFloat

isNaN isInfinite

isDenormalized

isNegativeZero

isIEEE

atan2
Fethi Rabhi, Guy Lapalme Algorithms.
Addison-Wesley, 1999, Figure 2.4, p.46

Hierarchy (3
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Selected Types and their Class Membership

[Type Instance of Derivation j
0 Read Eq Ord Enum Bounded
[a] Read Functor Monad Eq Ord

(a,b) Read Eq Ord Bounded

(=>)

Array Functor Eq Ord Read

Bool Eq Ord Enum Read Bounded
Char Eq Ord Enum Read

Complex Floating Read

Double RealFloat Read

Either Eq Ord Read

Float RealFloat Read

Int Integral Bounded Ix Read

Integer Integral Ix Read

10 Functor Monad

IOError Eq

Maybe Functor Monad Eq Ord Read

Ordering Eq Ord Enum Read Bounded
Ratio RealFrac Read

Fethi Rabhi, Guy Lapalme. Algorithms.
Addison—Wesley, 1999, Table 2.4, p. 47
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Last but not least (1)

Monads — where does the term come from?

Monads, a term that

» has already been used by Gottfried Wilhelm Leibniz as a
counterpart to the term “atom.”

» has been introduced into programming language theory by
Eugenio Moggi in the realm of category theory as a means
for describing the semantics of programming languages:

Eugenio Moggi. Computational Lambda Calculus and
Monads. In Proceedings of the 4th Annual IEEE Symposi-
um on Logic in Computer Science (LICS'89), 14-23, 1989.  u7
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Last but not least (2)

Monads, a term that

» has become popular in the world of functional program-
ming (but w/out the background from category theory),
especially because monads (Philip Wadler, 1992)

» allow to introduce some useful aspects of imperative
programming into functional programming,

» are well suited for integrating input/output into func-
tional programming, as well as for many other applica-
tion domains,

» provide a suitable interface between functional program-
ming and programming paradigms with side effects, in
particular, imperative and object-oriented programming.

without breaking the functional paradigm!
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Arrows

Chap. 12
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Motivation

The higher-order type (constructor) class
» complements the type class Monad

providing a conceptually complementary mechanism for
» function composition

which is especially useful for

» functional reactive programming (cf. Chapter 15). Chap12
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Chapter 12.1

Arrows
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The Type Constructor Class Arrow

Arrows are 2-ary type constructors, which are instances of the
type constructor class Arrows, and obey the arrow laws:

class Arrow a where

pure :: (b ->c¢c) >abc
-- equivalently: pure :: ((->) bc) > abc
(>>>) :tabc->acd->abd

first :: abc -> a (b,d) (c,d)

Note:

» pure allows embedding of ordinary maps into the con-

structor class Arrow (the role of pure for maps is similar

to the role of return in class Monad for values of type a).
» (>>>) serves the composition of computations.
» first has as an analogue on the level of ordinary

functions the function firstfun with

firstfun £ = \(x,y) -> ( x, y)
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The Arrow Laws

Instances of the the type constructor class Arrow must satisfy the

following nine arrow laws:

Arrow Laws

pure id >>> f = f (AL1): identity

f >>> pure id = £ (AL2): identity

(f >>> g) >>> h = £ >> (g >> h) (AL3): associa-
tivity

pure (g . f) = pure f >>> pure g (AL4): functor
composition

first (pure f) = pure (f x id) (AL5): extension

first (£ >>> g) = first £ >>> first g (AL6) : functor 121

first £ >>> pure (id X g) = pure (id x g) >>> first f
(AL7): exchange

first £ >>> pure fst = pure fst >>> f (AL8): unit

first (first f) >>> pure assoc = pure assoc >>> first f
(AL9): association
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Making (=>) an Instance of Class Arrow (1)

Making the type constructor (=>) an instance of the type
constructor class Arrow:

instance Arrow (->) where

pure £ = f

f>>>g=g . f

first £ = £ X id
where

(x) :: (->¢c) > (@ ->¢e) > (b,d) —> (c,e)
(f x g)7(bv,dv) = (f bv, g dv) :: (c,e)

Note: Defining first by first £ = \(b,d) -> (f b, d)
would have been equivalent.
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Making (=>) an Instance of Class Arrow (2)

In more detail:

class Arrow a where
pure :: ( bc) >abec
(>>) ::abc->acd->abd
first :: abc > a (b,d) (c,d)

Making (=>) an instance of Arrow means constructor a equals (->):

instance Arrow (->) where

pure f = f
bc :: (->) bec
f >>> g = g . f
(->>bc :: (> cd :: (> bd
first £ = f x id
(> bc :: (> (b,d) (c,d)

Note: Defining first by first £ = \(b,d) -> (f b, d) would have
been equivalent.
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Useful Supporting Functions (1)

The product map x (recalled):
(x) :: (a->a’) > (b ->0b’) => (a,b) -> (a’,b?)
(f x g)7(a,b) = (f a, g b)

Regrouping arguments via assoc, unassoc, and swap:
assoc :: ((a,b),c) —> (a,(b,c))
assoc” (" (x,y),z) = (x,(y,2z))
unassoc :: (a,(b,c)) -> ((a,b),c)
unassoc” (x, (y,2)) = ((x,y),2)
swap :: (a,b) -> (b,a)
swap” (x,y) = (y,x)

The dual analogue to the map first, the map second

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = pure swap >>> first f >>> pure swap
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Useful Supporting Functions (2)

...derived operators for the type constructor class Arrow:

(k) :: Arrow a =>abc->ab’ c >
a (b,b’) (c,c?)

f *xx g = first £ >>> second g

(&&&) :: Arrowa=>abc->abc’ ->ab (c,c’)
f &&& g = pure (\b -> (b,b)) >>> (f ***x g)

idA :: Arrow a => a b b

idA = pure id
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Application: Modelling Circuits (1)

The map add introduces a notion of computation

add :: (b => Int) -> (b -> Int) -> (b -> Int)
add f gz=fz + gz

...which can be generalized in various ways.
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Application: Modelling Circuits (2)
First, generalizing add to state transformers:
type State s 1 o = (s,i) -> (s,0)

addST :: State s b Int -> State s b Int ->
State s b Int
f (s,2z)

g (s7,2)

addST f g (s,z) = let (s’,x)
(S;;’y)
in (s’ ,x+y)

[llustration:
S S S 12.1
= f Int R
b
2 g Int
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Application: Modelling Circuits (3)

Second, generalizing add to non-determinism:
type NonDet i o = i -> [o]

addND :: NonDet b Int -> NonDet b Int ->

NonDet b Int
addND f gz =[xty | x <-f z, y<-gz]
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Application: Modelling Circuits (4)

Third, generalizing add to map transformers:

type MapTrans s i o = (s -> i) -> (s -> o)

addMT :: MapTrans s b Int -> MapTrans s b Int ->
MapTrans s b Int

addMT f gmz =fmz +gmz
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Application: Modelling Circuits (5)

Fourth, generalizing add to simple automata:
newtype Auto i o = A (i -> (o, Auto i o))

addAuto :: Auto b Int -> Auto b Int -> Auto b Int
addAuto (A f) (A g)
=A (\z > let (x,f’) =f z

(y,8’) =gz
in (x+y), addAuto f’ g’))

Putting all this together, this allows us the

» modelling of synchronous circuits (with feedback loops).
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Application: Modelling Circuits (6)

» Functions and programs often contain components that
are “function-like” “w/out being just functions.”

» Arrows define a common interface for coping with the
“notion of computation” of such function-like compo-
nents.

» Monads are a special case of arrows.

» Like monads, arrows allow to meaningfully structure
programs. 21
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Note

» The preceding examples have in common that there is a
type A ~~ B of computations, where inputs of type A are
transformed into outputs of type B.

» Arrow yields a suffiently general interface to describe
these commonalities uniformly and to encapsulate them
in a class.
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Back to the Application

Next we are going to implement the previously introduced
types as instances of the type constructor class Arrow. To this
end, we reintroduce them as new types using newtype:

newtype State s ST ((s,i) -> (s,0))

newtype NonDet ND (i -> [o])
newtype MapTrans s =MT ((s -> 1) -> (s —> o))

newtype Auto =A (i -> (o, Auto i o))
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Making (State s) an Instance of Arrow (1)

Making state transformers an instance of Arrow:
newtype State s i o = ST ((s,1i) -> (s,0))

instance Arrow (State s) where
pure f ST (id x f)
ST £ >>> ST g = ST (g . £)
first (ST f) ST (assoc . (f x id) . unassoc)
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Making (State s) an Instance of Arrow (2)

In more detail:

class Arrow a where
pure :: ( bc) >abc
(>>>) ::abc->acd->abd
first :: abc > a (b,d) (c,d)

Making (State s) an instance of Arrow means type constructor variable
a is set to (State s):

newtype State s = 8T ((s,i) —> (s,0))

instance Arrow (State s) where

pure f = ST (id x f)
e bc :: (State s) b c 1
ST £ >>> ST g = ST (g . £)
(State s) bc :: (State s) ¢ d :: (State s) b d
first (ST f) = ST (assoc . (f x id) . unassoc)
(State s) b ¢ :: (State s) (b,d) (c,d)
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Making NonDet an Instance of Arrow (1)

Making “non-determinism” an instance of Arrow:
NonDet =ND (i -> [o])

instance Arrow NonDet where

pure f ND (\b -> [f bl)

ND £ >>>NDg=ND (\b->[d| c<-fb,d<-gcl)
first (ND f) ND (\(b,d) -> [(c,d) | c <= f bl)

958/165



Making NonDet an Instance of Arrow (2)

In more detail:

class Arrow a where
pure :: ( bc) >abec
(>>>) ::abc->acd->abd
first :: abc -> a (b,d) (c,d)

Making NonDet an instance of Arrow means type constructor variable a
is set to NonDet:

NonDet =ND (i -> [o])
instance Arrow NonDet where
pure f = ND (\b -> [f b])
bc :: NonDet b ¢ 121
NDf >> 1NDg =ND (\b -> [d | ¢ <- £ b, d<- gcl)
:: NonDet b ¢ :: NonDet ¢ d :: NonDet b d
first (ND f) = ND (\(b,d) -> [(c,d) | ¢ <= £ b]l)
:: NonDet b c

:: NonDet (b,d) (c,d)
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Making (MapTrans s) an Inst. of Arrow (1)

Making map transformers an instance of Arrow:

MapTrans s =MT ((s -> i) -> (s -> o))

instance Arrow (MapTrans s) where

pure f = MT (f .)

MT f >>> MT g = MT (g . f)

first (MT £) MT (zipMap . (f x id) . unzipMap)

where

zipMap :: (s > a, s >Db) > (s -> (a,b))

zipMap h s = (fst h s, snd h s) s
unzipMap i (s > (a,b)) > (s => a, s => b)

unzipMap h = (fst . h, snd . h)
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Making (MapTrans s) an Inst. of Arrow (2)

In more detail:

class Arrow a where
pure :: ((->) bc) > abc
(>>>) ::abc->acd->abd
first :: abc > a (b,d) (c,d)

Making (MapTrans s) an instance of Arrow means type constructor
variable a is set to (MapTrans s):

MapTrans s i o = MT ((s -> i) -> (s -> 0))

instance Arrow (MapTrans s) where

pure f = MT (£ .)
(->) b c :: (MapTrans s) b ¢ i
MT f >>> MT g = MT (g . £) ‘
(MapTrans s) b ¢ :: (MapTrans s) ¢ d :: (MapTrans s) b d
first (MT f£) = MT (zipMap . (f x id) . unzipMap)
(MapTrans s) b ¢ :: (MapTrans s) (b,d) (c,d)
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Making Auto an Instance of Arrow (1)

Making simple automata an instance of Arrow:
Auto =A (i > (o, Auto i o))

instance Arrow Auto where

pure f = A (\b -> (f b, pure f)
Af>>>Ag=A (b ->1let (c,f’) =£f b
(d,g’) =gc
in (d, £’ >>> g’)))
first (A £f) = A (\(b,d) -> let (c,f’) =f b

12.1

in ((c,d),first £’))
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Making Auto an Instance of Arrow (2)

In more detail:

class Arrow a where
pure :: ( bc) >abc
(>>>) ::abc->acd->abd
first :: abc -> a (b,d) (c,d)

Making Auto an instance of Arrow means type constructor variable a is
set to Auto:

Auto =A (i -> (o, Auto i 0))
instance Arrow Auto where

pure f =A (\b -> (£ b, pure f)

bc :: Auto b ¢
Af >>> Ag = A (\b > let (c,f’) =f b
(d,g’) =gc 12.1
in (d, £2 >>> g’)))
: Auto b ¢ :: Auto c d :: Auto b d
first (A £) = A (\(b,d) > let (c,f’) = b

in ((c,d),first £’))
—_——
:: Auto b ¢ :: Auto (b,d) (c,d) 963/165




Last but not least

Generalization

Consider the general combinator:

addA :: Arrow a => a b Int -> a b Int -> a b Int
addA f g = f &&& g >>> pure (uncurry (+))

Note that

» each of the considered variants of add results as a speci-
alization of addA with the corresponding arrow-type.
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Summing up

» Arrow-combinators operate on “computations”, not on
values. They are point-free in distinction to the “common
case” of functional programming.

» Analoguous to the monadic case a do-like notational
variant makes programming with arrow-operations often
easier and more suggestive (cf. literature hint at the end
of the chapter), whereas the pointfree variant is more
useful and advantageous for proof-theoretic reasoning.
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Last but not least (1)
...compare (same color means “correspond to each other”):
(.) 1t (b->c) >(a->b) > (a->c)
£ .g v=r=Ff(gWv)
G)::(@=>b) > (b->c) > (a~->c)
f ;8 =g .f -- pointfree
(>>;) ::a->(a->b) >b
v>>; £f==Ffv

(5<) :: (a>b) >a —>b

f ;<v=v>;1f -— Non-monadic operations

(<<) :: Monad m => (a > m b) ->m a -> m b -- Monadic op.

f =<K x =x>>=1

(>>=) :: Monadm=>ma -> (a->mb) >mb o1
m>>=k =k v... -— "m = dc v" 122
(>0>) :: Monad m => (a -=>mb) > (b ->mc) > (a->mc)

f>0> g=\x > (f x) >=g

(<@<) :: Monad m => (b -=>mc) -> (a ->mb) -> (a -> m c¢)

f << g=g>0> f —-- pointfree J66/165



Last but not least (2)

(>>>) :: Arrowa=>abc->acd->abd

...introduces composition for 2-ary type constructors.

Reconsider now instance (->) of class Arrow:

instance Arrow (->) where

pure £ = £
f>>g=g . f
first £f = £ x id
This means: 21

For (->) as instance of Arrow
» Arrow composition boils down to ordinary function
composition, i.e.: (>>>) = (.)
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Chapter 12.2

References, Further Reading
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Part V
Applications

12.2
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Chapter 13
Parsing

Chap. 13
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Parsing: Lexical and Syntactical Analysis

Parsing
» a common term for the lexical and syntactical analysis of
the structure of text, e.g., source code text of programs.

» an(other) application often used to demonstrate the
power and elegance of functional programming.
» enjoys a long history, see e.g.

» William H. Burge. Recursive Programming Techniques.
Addison-Wesley, 1975.

as an example of early text book. Chap. 13
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Functional Approaches for Parsing

...we are going to consider two conceptually different
approaches:

» Combinator parsing (higher-order functions parsing)

» Graham Hutton. Higher-Order Functions for Parsing.
Journal of Functional Programming 2(3):323-343, 1992.

~~ Recursive descent parsing

» Monadic parsing

» Graham Hutton, Erik Meijer. Monadic Parser Combi-
nators. Technical Report NOTTCS-TR-96-4, Dept. of Chap. 13
Computer Science, University of Nottingham, 1996.
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The Parsing Problem Informally

Basically, the parsing problem is as follows:

» Read a sequence s of objects of some type a.

» Extract from s an object or a list of objects of some type
b.

Chap. 13
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A Parsing Problem as lllustrating Example

Write a parser p, which
» reads a string s of the form "((2+4b)*5)" that is supposed
to represent a well-formed arithmetic expression exp
» “extracts” /yields from s a value v of Haskell-type Exp
representing exp, where Exp is given by:
data Exp = Lit Int | Var Char | Op Ops Exp Exp
data Ops = Add | Sub | Mul | Div | Mod

Example: Applied to string
> s ="((2+b)*5)"
the parser p shall deliver the value
» v = Op Mul (Op Add (Lit 2) (Var ’b’)) (Lit 5)
Chap. 13

13.1

Note: p can be considered to implement the reverse of the show 132
13.3

function, and is similar to the derived read function. But p and read

differ in the arguments they take: strings of the the form ((2+3)*5)

vs. strings of the form Op Mul (Add (Lit 2) (Lit 3)) (Lit 5). :
075/165



Towards the Type of a Parser Function (1)

The informal description of the parsing problem characterizing
parsing as to

» read a sequence s of objects of some type a.

» extract from s an object or a list of objects of some type b

suggests to naively specify the type of a parser function as
follows:

type NaiveParse a b = [a] -> b

-- Let bracket and number be parser functions for
-- detecting brackets and numbers

-- Parser Input What shall be the output? @13
bracket "(xyz" ->>
number "234"  ->> 27 Or 237 Or 2347

bracket "234" ->> No result? Or failure?
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Towards the Type of a Parser Function (2)

Questions to be answered:

How shall a parser function behave if there
» are multiple results?

» is a failure?

Answering these questions partially leads us to the following
refinement of the type of a parser function:

type RefinedParse a b = [a] -> [b]

-— Parser Input Expected Output
bracket  "(xyz" ->> [’(’] crap 13
number 234"  ->> [2, 23, 234]

bracket 234" ->> []
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Towards the Type of a Parser Function (3)

A question still to be answered is:

» What shall a parser function do with the remaining input
that has not been read?

Answering this question leads us to the proper type of a parser
function:

type Parse a b = [a] -> [(b,[a])]

-- Parser Input Expected Output
bracket " (Xyz" ->> [( ) ( ) s "XyZ" )] Chap
number "234" ->> [(2,"34"), (23,"4"), (234,"")]
bracket "234" ->> []

s
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Remarks (1)

The capability of delivering multiple results

>

enables parsers to analyze also ambiguous grammars

~ the so-called list of successes technique

Each element in the output list represents a successful
parse.

If a parser delivers

>

>

the empty list, this signals failure of the analysis.

a non-empty list, this signals success of the analysis. In
this case, each element of the list is a pair, whose first
component is the identified object (token) and whose
second component is the remaining input that still needs
to be analyzed.

Chap. 13
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Remarks (2)

...the following presentation is based on:

» Simon Thompson. Haskell — The Craft of Functional
Programming, Addison-Wesley/Pearson, 2nd edition,
1999, chapter 17.

» Graham Hutton, Erik Meijer. Monadic Parsing in Haskell.
Journal of Functional Programming 8(4):437-444, 1998.

Chap. 13
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Chapter 13.1

Combinator Parsing
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Basic Parsers (1)

There are two primitive, input-independent parser functions:

» none, the always failing parser function

none :: Parse a b
none _ = []

» succeed, the always succeeding parser function

succeed :: b -> Parse a b
succeed val inp = [(val,inp)]

Remark:
» The parser none always fails. It does not accept anything.

» The parser succeed always succeeds without consuming
its input or parts of it. In BNF-notation this corresponds
to the symbol ¢ representing the empty word.
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Basic Parsers (2)

There are two more primitive but input-dependent parser
functions:

» token, the parser recognizing a single object (a so-called

token):
token :: Eq a => a -> Parse a a
token t (x:xs)
| t == = [(t,xs)]
| otherwise = []
token t [] = []

» spot, the parser recognizing single objects enjoying a
particular property:

spot :: (a -> Bool) -> Parse a a .
spot p (x:xs) :
| p x = [(x,xs)]
| otherwise = []

(]

spot p []
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Example: Applying the Basic Parsers
...to construct parsers for simple parsing problems:

bracket = token ’(°
dig spot isDigit

isDigit :: Char -> Bool
isDigit ch = (’0’ <= ch) &% (ch <= ’97)

Note: The parser token could be defined using the parser
spot:

token :: Eq a => a -> Parse a a

token t = spot (== t)
This, e.g., allows to (re-) define the parser bracket as follows:
bracket = spot (== ’(’)

084/165



Parser Combinators, Parser Libraries

...for constructing (more) complex and more powerful
re-usable parser functions:

» Combinator Parsing

Objective: Building a

» parser library of higher-order polymorphic functions,
so-called parser combinators

which are then used to construct such parsers.

13.1
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The Parser Combinator for Alternatives

Combining parsers as alternatives:

» alt, the parser combining parsers as alternatives:

alt :: Parse a b -> Parse a b -> Parse a b
alt pl p2 inp = pl inp ++ p2 inp

The intuition underlying the definition of alt:

» An expression, e.g., is either a literal, or a variable or an
operator expression.
Example:
(bracket ’alt’ dig) "234" ->> [] ++ [(2,"34")]

~ The parser combinator alt combines the results of the
parses given by the parsers pl and p2.

13.1
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The Parser Combinator for Sequential Comp.

Combining parsers sequentially:

» (>*>), the parser combining parsers sequentially:
infixr 5 >*>
(>*>) :: Parse a b -> Parse a ¢ -> Parse a (b,c)
(>*>) pl p2 inp
= [((y,z),rem2) | (y,reml) <- pl inp,
(z,rem2) <- p2 reml ]

The intuition underlying the definition of (>*>):

» An operator expression starts with a bracket which must 131
be followed by a number.
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The Parser Combinator for Sequential Comp.

Example:

Since the evaluation of number "24(" yields the parse result
[(2,"4("), (24,"(")], we get:

(number >*> bracket) "24("

->> [((y,z),rem2) | (y,reml) <- [(2,"4("), (24,"("M],

(z,rem2) <- bracket reml ]
->> [((2,2),rem2) | (z,rem2) <- bracket "4(" ] ++
[((24,z),rem2) | (z,rem2) <- bracket "(" ]
->> [] ++ [((24,z),rem2) | (z,rem2) <- bracket "(" ]

Since the evaluation of bracket " (" yields the parse result
LCC,"") ], we finally get as the result of evaluating the
expression (number >*> bracket) "24(":

->> [((24,z) ,rem2) | (z,rem2) <- [CCC,""M] ]
->> [ ((24,°C), " 1]

13.1
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The Parser Combinator for Transformation

Combining parsers with a map transforming their results:

» build, the parser transforming obtained parser results,
i.e., transforming the item returned by a parser, or
building something from it:
build :: Parse a b -> (b -> ¢c) -> Parse a ¢
build p £ inp = [ (f x, rem) | (x,rem) <- p inp ]

Example: Note, diglist is assumed to return a list of digits,
which by digsToNum are transformed to the number values
they represent:

(diglList ’build’ digsToNum) "21a3"
->> [ (digsToNum x,rem) | (x,rem) <- digList "21a3" ]
->> [ (digsToNum x,rem) | (x,rem) <-
[(r2","1a3"), ("21","a3")1]
->> [ (digsToNum "2", "1a3"), (digsToNum "21", "a3") ]
->> [ (2,"1a3"), (21,"a3") ] hap, 16



A Universal Parser Basis

Summing up:

Together, the four basic parsers
» none, succeed, token, and spot
and the three parser combinators

» alt, (>*>), and build

form a “universal parser basis,” i.e., they allow us to build any
parser we might be interested in. .
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Summing up

...on parser combinators for combining parsers:

» Parser functions in the fashion of this chapter are
structurally similar to grammars in BNF-form. For each
operator of the BNF-grammar there is a corresponding
(higher-order) parser function.

» These higher-order functions allow us to combine
simple(r) parser functions to (more) complex parser
functions.

» Therefore, the higher-order functions are also called
combining forms, or, as a short hand, combinators
(cf. Graham Hutton. Higher-order Functions for Parsing.
Journal of Functional Programming 2(3):323-343, 1992).

991/165



The Universal Parser Basis at a Glance (1)

The priority of the sequence operator

infixr 5 >*>

The parser type
type Parse a b = [a] -> [(b,[al)]

The input-independent parser functions

» The always failing parser function

none :: Parse a b
none _ = []

» The always succeeding parser function

succeed :: b -> Parse a b
succeed val inp = [(val,inp)]

13.1
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The Universal Parser Basis at a Glance (2)

The input-dependent parser functions

» The parser for recognizing single objects

token :: Eq a => a -> Parse a a
token t = spot (==t)

» The parser for recognizing single objects satisfying some

property
spot :: (a -> Bool) -> Parse a a
spot p (x:xs)
| p x = [(x,xs8)]
| otherwise = [] b
spot p [ = [] -
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The Universal Parser Basis at a Glance (3)

The parser combinators

» Alternatives
alt :: Parse a b -> Parse a b -> Parse a b
alt pl p2 inp = pl inp ++ p2 inp

» Sequences

(>%>) :: Parse a b —> Parse a ¢ —> Parse a (b,c)
(>x>) pl p2 inp
= [((y,z),rem2) | (y,reml) <- pl inp,
(z,rem2) <- p2 reml ]

» Transformation 131

build :: Parse a b -> (b -> ¢c) -> Parse a c
build p f inp = [ (f x, rem) | (x,rem) <- p inp ]

994/165



Example 1: A Parser for a List of Objects

Suppose we are given a parser p recognizing single objects.
Then list called with p is a parser recognizing lists of objects:

list :: Parse a b -> Parse a [b]
list p = (succeed []) ’alt’
((p >*> list p) ’build’ (uncurry (:)))

The intuition underlying the definition of list:

» A list of objects can be empty: ~~ this is recognized by
the parser succeed [].

» A list of objects can be non-empty, i.e., it consists of an
object which is followed by a list of objects: ~~ this is
recognized by the parser combinator (p >*> list p).

» Finally, build is used to turn a pair (x,xs) into the list
(x:x8).

13.1
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Example 2: A Parser for String Expressions (1)

Back to the initial example — a parser for string expressions:

We would like to construct values of the type

Lit Int | Var Char | Op Ops Expr Expr
Add | Sub | Mul | Div | Mod

data Expr
data Ops

from strings of the form " (234+~42)*b", i.e:
Op Mul (Op Add (Lit 234) (Lit -42)) (Var ’b’)

The parser analysis shall adhere to the following convention:

Literals: 67, ~89, etc., where ~ is used for unary minus.
Variable names: the lower case characters from 'a’ to 'z’.
Applications of the binary operations ...+, x, —, /, %, 151
where % is used for mod and / for integer division. 123
Expressions are fully bracketed.

White space is not permitted.

v

v

v

v

v
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Example 2: A Parser for String Expressions (2)
The parser for string expressions

parser :: Parse Char Expr
parser = nameParse ’alt’ litParse ’alt’ opExpParse

...is composed of three main constituents (MCs) reflecting the
three kinds of expressions.

MC 1: Parsing variable names

nameParse :: Parse Char Expr
nameParse = spot isName ’build’ Var

isName :: Char -> Bool -- A variable name  i:
isName x = (Pa’ <= x && x <= ’Zz’) -- must be a lower

—-- case character
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Example 2: A Parser for String Expressions (3)

MC 2: Parsing literals (numerals)

litParse :: Parse Char Expr
litParse -- A literal starts
= ((optional (token ’7’)) >*> —- optionally with 7’
(nelList (spot isDigit)) -- must be followed by
’build’ (charlistToExpr . uncurry (++))) -- a non-

-- empty list of digits
MC 3: Parsing (fully bracketed binary) operator expressions
optExpParse :: Parse Char Expr

opExpParse -- A non-trivial expression
= (token ’(’ >*> —- must start with an opening bracket,
parser >*> -- must be followed by an expression, 131
spot isOp >*> -- must be followed by an operator, 23
parser >*> -- must be followed by an expression,
token ’)’) -- must end with a closing bracket.

’build’ makeExpr 998/165



Example 2: A Parser for String Expressions (4)

Required supporting parsers:

nelList :: Parse a b -> Parse a [b]
optional :: Parse a b -> Parse a [b]
where

» nelist p recognizes a non-empty list of the objects
which are recognized by p.

» optional p recognizes an object recognized by p or
succeeds immediately.

Note: neList, optional, and some other used supporting
functions such as

13.1

» isOp
» charlistToExpr
> ..

must still be defined: ~~ homework!
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Example 2: A Parser for String Expressions (5)

Putting it all together, yields the top-level parser:

Converting a string to the expression it represents:

topLevel :: Parse a b -> [a] -> b
topLevel p inp
= case results of
[l -> error "parse unsuccessful"
_ —> head results

where
results = [ found | (found, []) <- p inp ]

Note:

13.1

» The input string is provided by the value of inp.
» The parse of a string is successful, if the result contains
at least one parse, in which all the input has been read.
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Summing up (1)

Parsers of the form

type Parse a b = [a] -> [(b,[a])]

none :: Parse a b

succeed :: b -> Parse a b

token :: Eq a => a -> Parse a a

spot :: (a -> Bool) -> Parse a a

alt :: Parse a b -> Parse a b -> Parse a b
>*> :: Parse a b -> Parse a ¢ -> Parse a (b,c)
build :: Parse a b -> (b -> ¢) -> Parse a ¢

topLevel :: Parse a b -> [a] -> Db

131
...are well-suited for constructing so-called recursive descent
parsers.
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Summing up (2)

The following language features proved invaluable for combi-
nator parsing:

» Higher-order functions: Parse a b is of a functional
type; all parser combinators are thus higher-order func-
tions, too.

» Polymorphism: Consider again the type of Parse a b:
We do need to be specific about either the input or the
output type of the parsers we build. Hence, the above
parser combinator can immediately be reused for other
(token-) and data types.

» Lazy evaluation: “On demand” generation of the possible a1
parses, automatical backtracking (the parsers will back-
track through the different options until a successful one
is found).
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Chapter 13.2
Monadic Parsing
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Monadic Parsing

We adapt the type of a parser function in order to make it
eligible for becoming an instance of the type class Monad:

newtype Parser a = Parse (String -> [(a,String)])

Note, we will use the same convention as in Chapter 13.1, i.e.:

» Delivery of the empty list: Signals failure of the analysis.

» Delivery of a non-empty list: Signals success of the
analysis; each element of the list is a pair, whose first
component is the identified object (token) and whose

second component the input which is still to be parsed. 132
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Making Parser an Instance of Monad (1)

Recall the definition of class Monad:

class Monad m where
(>>=) ::ma->(->mb) >mbd
return :: a -> m a
-- (>>) and failure are not needed: Their

-- default implementations apply.

Parser is a l-ary type constructor, and can thus be made an
instance of type class Monad:
instance Monad Parser where
p >=f
= Parse (\cs -> concat [(parse (f a)) cs’ |
(a,cs’) <- (parse p) csl)
return a = Parse (\cs -> [(a,cs)])

where

parse :: (Parser a) -> (String -> [(a,String)])
parse (Parse p) = p

132
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Making Parser an Instance of Monad (2)

instance Monad Parser where
p >>=f
= Parse (\cs -> concat [(parse (f a)) cs’ |
(a,cs’) <- (parse p) csl)
return a = Parse (\cs -> [(a,cs)])

Note:

» The parser return a succeeds without consuming any of
the argument string, and returns the single value a.

» parse denotes a deconstructor function for parsers
defined by parse (Parse p) = p.

» The parser p >>= f first applies the parser (parse p) to
the argument string cs yielding a list of results of the
form (a,cs’), where a is a value and cs’ is a string. For
each such pair (parse (f a)) is a parser that is applied
to the string cs’. The result is a list of lists that is then
concatenated to give the final list of results.

132
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Making Parser an Instance of Monad (3)

As required for proper instances of the type class Monad, we
can show that the 3 monad laws hold for the 1-ary type
constructor Parser:

Lemma 13.2.1 (Monad Laws)

return a >>=f = f a
p >>= return = p
p >>= (\a > (f a >>= g)) (p>>= (N\a > f a)) >»>=g

132
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Remarks on the Properties of (>>=), return

Recall:

» The validity of the three monad laws are required for
every instance of class Monad, not just for the specific

instance of the parser monad

» (>>=) is associative
~> this allows suppression of parentheses when parsers

are applied sequentially.

» return is left-unit and right-unit for (>>=)
~> this allows a simpler and more concise definition of

some parsers.

132
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Two Monadic Parsers: (>>=), return

Having made type constructor Parser an instance of type
class Monad we received two important parsers and parser
combinators:

» return, the always succeeding parser

» (>>=), a combinator for sequentially combining parsers
Note: (>>=) and return are the monadic counterparts of the

combinator parser functions (>*>) and succeed, respectively.

132
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Making Parser an Instance of MonadPlus (1)

Making the type constructor Parser instances of the type
classes MonadZero and MonadPlus will provide us with two

further parsers:

» The parser zero, which always fails
» A parser for (++) for non-deterministic selection
Recall the class definition of MonadPlus:

class Monad m => MonadPlus m where

mzero :: m a
mplus :: ma->ma->ma 132
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Making Parser an Instance of MonadPlus (2)

Making the type constructor Parser an instance of the type
class MonadPlus yields in addition to (>>=) and return the
new parsers mzero and mplus:

instance MonadPlus Parser where
» mzero, the always failing parser:
zero = Parse (\cs -> [])
» mplus, the non-deterministically selecting parser:
p ’mplus’ q
= Parse (\cs -> parse p cs ++ parse q cs)

Note: mplus can yield more than one result, i.e., the value of 52
(parse p cs ++ parse g cs) can be list of any length (in this
sense “non-deterministically”).
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Making Parser an Instance of MonadPlus (3)

We can prove the validity of MonadPlus laws:

Lemma 13.2.2 (MonadPlus Laws)

p >>= (\_ -> mzero) = mzero
mzero >>= p = mzero
mzero ’mplus’ p = p
p ’mplus’ mzero = p

Intuitively:
» zero is left-zero and right-zero element for (>>=)

» mzero is left-unit and right-unit for mplus as
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Making Parser an Instance of MonadPlus (4)

MOFGOVGF, we Can prove:

Lemma 13.2.3
p ’mplus’ (q ’mplus’ r)
(p ’mplus’ q) >>= £
p >>= (\a -> f a ’mplus’ g a)

(p ’mplus’ q) ’mplus’ r
(p >>= £) ’mplus’ (q >>=f)
(p >>= £) ’mplus’ (p >>= g)

Intuitively:
» mplus is associative
» (>>=) distributes through mplus

132
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More Parsers and Parser Combinators (1)

...in addition to the parsers and combinators (>>=), return,
mzero, and mplus.

» item, the parser recognizing single characters:

item :: Parser Char
item = Parse (\cs -> case cs of

nn -> []
(c:cs) > [(c,cs)])

Note:
» The parser functions item and token correspond to each o

other. 133
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More Parsers and Parser Combinators (2)

» (+++), the deterministically selecting parser:
:: Parser a -> Parser a -> Parser a

(+++)
p +++ g
= Parse (\cs -> case parse (p ’mplus’ q) cs of
(] -> []
(x:xs8) -> [x])
Note:

» (+++) shows the same behavior as mplus, but yields at
most one result (in this sense “deterministically”).

» (+++) satisfies all of the previously listed properties of

132
mplus.
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More Parsers and Parser Combinators (3)

Recognizing
» Single objects:
char :: Char -> Parser Char
char ¢ = sat (c ==
» Single objects satisfying a particular property:
sat :: (Char -> Bool) -> Parser Char

sat p
= do {c <- item; if p c then return c else zero}

» Sequences of numbers, lower case and upper case
characters, etc.:
...analogously to char

o
Note:
» sat and char correspond to spot and token.
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More Parsers and Parser Combinators (4)

Useful parsers are often recursively defined.

» Parse a specific string:
string :: String -> Parser String
string "" = return ""
string (c:cs)
= do {char c; string cs; return (c:cs)}
» Repeated applications of a parser p:

—-- zero or more applications of p
many :: Parser a -> Parser [a]
many p = manyl p +++ return []

—-- one or more applications of p
manyl :: Parser a -> Parser [a]
manyl p
= do a <- p; as <- many p; return (a:as)

132
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More Parsers and Parser Combinators (5)

» A variant of the parser many with interspersed applica-
tions of the parser sep, whose result values are thrown
away:
sepby :: Parser a -> Parser b -> Parser [a]
p ’sepby’ sep

= (p ’sepbyl’ sep) +++ return []

sepbyl :: Parser a -> Parser b -> Parser [a]
p ’sepbyl’ sep
=do a <-p

as <- many (do {sep; p}) o
return (a:as) B2
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More Parsers and Parser Combinators (6)

» Repeated applications of a parser p, separated by
applications of a parser op, whose result value is an
operator that is assumed to associate to the left, and
which is used to combine the results from the p parsers
chainl :: Parser a -> Parser (a -> a -> a)

-> a -> Parser a
chainl p op a = (p ’chainll’ op) +++ return a

chainll :: Parser a -> Parser (a -> a -> a)
-> Parser a
p ’chainll’ op = do {a <- p; rest a}
where
rest a = (do f <- op o
b <- p
rest (f a b))

+++ return a
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More Parsers and Parser Combinators (7)

Suitable parser combinators allow suppression of a lexical
analysis (token recognition), which traditionally precedes
parsing.

» Parsing of a string with blanks and line breaks:

space :: Parser String
space = many (sat isSpace)

» Parsing of a token by means of a parser p:

token :: Parser a -> Parser a
token p = do {a <- p; space; return a}

132
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More Parsers and Parser Combinators (8)

» Parsing of a symbol token:

symb :: String -> Parser String
symb cs = token (string cs)

» Application of a parser p with removal of initial blanks:
apply :: Parser a -> String -> [(a,String)]
apply p = parse (do {space; p})

132
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The Typical Structure of a Monadic Parser (1)

...using the sequencing operator (>>=) or the syntactically

sugared do-notation:

pl >>= \al —> do al <- p1
p2 >>= \a2 —> a2 <- p2
pn >>= \an —> an <- pn
fala2 ... an fala2 ... an

...or, alternatively, in just one line, if one so desires:

do {al <- pl; a2 <- p2;...; an <- pn; f al a2

...an} 13.2
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The Typical Structure of a Monadic Parser (2)

Note that there is an intuitive, natural operational reading of
such a monadic parser:

>

>

Apply parser p1 and denote its result value al.

Apply subsequently parser p2 and denote its result value
a2.

Apply subsequently parser pn and denote its result value
an.

Combine finally the intermediate result values by applying
some suitable function f. 132
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Reminder to Notational Conventions

Expressions of the form

» ai <- pi are called generators
(since they generate values for the variables ai)

Note:

A generator of the form ai <- pi can be

» replaced by pi, if the generated value will not be used
afterwards.

132
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Example 1: A Simple Parser

Write a parser p which
» reads three characters,
» drops the second character of these, and
» returns the first and the third character as a pair.

Implementation:

:: Parser (Char,Char)

p
p = do c <- item; item; d <- item; return (c,d)

132
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Example 2: Parsing of Expressions (1)

...of arithmetic expressions built up from single digits, the
operators +, -, *, /, and parentheses, respecting the usual
priority rules applying to operators.

Grammar for expressions:

expr
term

factor ::

digit

addop
mulop

expr addop term | term
term mulop factor | factor
digit | (expr)

ol 11l ...19

+
*

/

132
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Example 2: Parsing of Expressions (2)

The Parsing (and On-the-Fly Evaluating) Problem:

Parsing and on-the-fly evaluating expressions (yielding integer
values) using the chainli combinator introduced earlier to
implement the left-recursive production rules for expr and
term.

13.1
13.2
13.3
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Example 2: Parsing of Expressions (3)

expr :: Parser Int
addop :: Parser (Int -> Int -> Int)
mulop :: Parser (Int -> Int -> Int)

expr = term ’chainll’ addop
term = factor ’chainll’ mulop
factor = digit +++

do {symb "("; n <- expr; symb ")"; return n}

digit

= do {x <- token (sat isDIgit); return (ord x - ord ’0°)}
addop

= do {symb "+"; return (+)} +++ do {symb "-"; return (-)i

mulop
= do {symb "x"; return (*)} +++ do {symb "/"; return (div)}
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Example 2: Parsing of Expressions (4)

E.g., parsing and on-the-fly evaluating the expression
apply expr "1 -2 x 3 + 4 "

yields as desired the singleton list
[(-1,""M)]

as result.

132
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Chapter 14

Logic Programming Functionally

Chap. 14
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Logic Programming Functionally

Declarative programming

» Characterizing: Programs are declarative assertions about
a problem rather than imperative solution procedures.

» Hence: Emphasizes the “what,” rather than the “how.”

» Important styles: Functional and logic programming.

If each of these two styles is appealing for itself

» (features of) functional and logic programming
uniformly combined in just one language should be even more
appealing.

Question

» Can (features of) functional and logic programming be
uniformly combined?

Chap. 14
14.1

14.3
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A Recent Article

...highlights the benefits of combining the paradigm features of
logic and functional programming

» Sergio Antoy, Michael Hanus. Functional Logic Program-
ming. Communications of the ACM 53(4):74-85, 2010.

and sheds some light on this issue.

...part of its essence is summarized in Chapter 14.1.

Chap. 14
14.1
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Chapter 14.1

Motivation

1042/16



Evolution of Programming Languages (1)

...the stepwise introduction of abstractions hiding the under-
lying computer hardware and the details of program execution.

» Assembly languages introduce mnemonic instructions and
symbolic labels for hiding machine codes and addresses.

» FORTRAN introduces arrays and expressions in standard
mathematical notation for hiding registers.

» ALGOL-like languages introduce structured statements
for hiding gotos and jump labels.

» Object-oriented languages introduce visibility levels and
encapsulation for hiding the representation of data and
the management of memory. o
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Evolution of Programming Languages (2)

» Declarative languages, most prominently functional and
logic languages hide the order of evaluation by removing
assignment and other control statements.

» A declarative program is a set of logic statements
describing properties of the application domain.
» The execution of a declarative program is the computa-

tion of the value(s) of an expression wrt these properties.

This way:

» The programming effort in a declarative language shifts
from encoding the steps for computing a result to struc-
turing the application data and the relationships between
the application components.

» Declarative languages are similar to formal specification
languages but executable.

14.1
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Functional vs. Logic Languages

Functional languages
» are based on the notion of mathematical function

» programs are sets of functions that operate on data
structures and are defined by equations using case
distinction and recursion

» provide efficient, demand-driven evaluation strategies that
support infinite structures

Logic languages
» are based on predicate logic

» programs are sets of predicates defined by restricted forms
of logic foumulas, such as Horn clauses (implications)

» provide non-determinism and predicates with multiple
input/output modes that offer code reuse

14.1
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Functional Logic Languages (1)

There are many: Curry, TOY, Mercury, Escher, Oz, HAL,...

Some of them in more detail:

» Curry

Michael Hanus, Herbert Kuchen, Juan Jose Moreno-
Navarro. Curry: A Truly Functional Logic Language. In
Proceedings of the ILPS'95 Workshop on Visions for the
Future of Logic Programming, 95-107, 1995.

See also: Michael Hanus (Ed.). Curry: An Integrated
Functional Logic Language (vers. 0.8.2, 2006).
http://www.curry-language.org/ 141
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Functional Logic Languages (2)

» TOY

Francisco J. Lépez-Fraguas, Jaime Sanchez-Herndndez.
TOY: A Multi-paradigm Declarative System. In Procee-
dings of the 10th International Conference on Rewriting
Techniques and Applications (RTA'99), Springer-V.,
LNCS 1631, 244-247, 1999.

» Mercury

Zoltan Somogyi, Fergus Henderson, Thomas Conway.

The Execution Algorithm of Mercury: An Efficient Purely
Declarative Logic Programming Language. Journal of

Logic Programming 29(1-3):17-64, 1996.

See also: The Mercury Programming Language b
http://www.mercurylang.org
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A Curry Appetizer (1)

Two important Curry operators:
» 7, denoting nondeterministic choice.
» =:=, indicating that an equation is to be solved rather
than an operation to be defined.

Example: Regular Expressions and their Semantics

data RE a = Lit a
| Alt (RE a) (RE a)
| Conc (RE a) (RE a)
| Star (RE a)

sem :: RE a -> [a]

sem (Lit c) [c]

sem (Alt r s) =semr 7 gsem s 141
sem (Conc r s) = sem r ++ sem s

sem (Star r) [] ? sem (Conc r (Star r))
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A Curry Appetizer (2)

» Evaluating the semantics of abstar:

non-deterministically

sem abstar ->> ["a","ab","abb"]
where abstar = Conc (Lit ’a’) (Star (Lit ’b’))

» Checking whether a given word w is in the language of a
given regular expression re:

sem re =:= W
» Checking whether a string s contains a word generated by
a regular expression re (similar to Unix's grep utility):

XS ++ sem re ++ ys =:= s s
Note: xs and ys are free o
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Functional and Logic Programming

...two principal approaches for combining their features:

» Ambitious: Designing a new programming language
enjoying features of both programming styles (e.g., Curry,
Mercury, etc.).

» Less ambitious: Implementing an interpreter for one style
using the other style.

14.1
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Here

...we will follow an even simpler approach, namely

» developing a library of combinators allowing us to write
logic programs in Haskell

which is presented in

» Michael Spivey, Silvija Seres. Combinators for Logic
Programming. In Jeremy Gibbons, Oege de Moor (Eds.),
The Fun of Programming. Palgrave MacMillan, 177-199,

2003.

Central for this approach
» Combinators, monads, and combinator and monadic
programming.

14.1
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Chapter 14.2
The Combinator Approach
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Benefits and Limitations

...of this combinator approach compared to approaches
striving for fully functional/logic programming languages:

» Less costly

» but also less expressive and (likely) less performant

14.1
14.2
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The Three Key Problems

...to be solved in the course of developing this approach:

Modelling
1. logic programs yielding (possibly) multiple answers
2. the evaluation strategy inherent to logic programs
3. logical variables (no distinction between input and output
variables)

14.2
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Key Problem 1: Multiple Answers

...can easily be handled (re-) using the technique of

» lists of successes (lazy lists) (Phil Wadler)

Intuitively

» Any function of type (a -> b) can be replaced by a
function of type (a -> [b]).

» Lazy evaluation ensures that the elements of the result
list (i.e., the list of successes) are provided as they are
found, rather than as a complete list after termination of
the computation.

14.2
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Key Problem 2: Evaluation Strategies

[llustrating running example:

...factoring of natural numbers: Decomposing a positive inte-
ger into the set of pairs of its factors, e.g.

Integer ‘ Factor Pairs
24 | (1,24), (212), (3.8), (4.6), ..., (24.1)

An obvious solution:

factor :: Int —> [(Int,Int)]
factor n = [(r,s) | r<-[1..n], s<-[1..n], r*s == n]

In fact, we get:

factor 24 ->> 14.2
[(1,24),(2,12),(8,8),(4,6),(6,4),(8,3),(12,2),(24,1)]
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Note

When implementing the “obvious” solution we exploit explicit
domain knowledge:

» Most importantly the fact
» rxs=n = r<nAs<n

which allows us to restrict our search to a finite space:
[1..24] x[1..24]

Often such knowledge is not available:

» Generally, the search space cannot be restricted a priori!

In the following, we thus consider

14.1

» the factoring problem as a search problem over the 2
infinite 2-dimensional search space [1..]x[1..]. -
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14.3

1058/16



Back to the Example

Adapting the function factor straightforward to the infinite
search space [1..]x[1..] yields:

factor :: Int -> [(Int,Int)]
factor n = [(r,s) | r<-[1..], s<-[1..], r*s == n]

Applying factor to the argument 24 yields:

factor 24
->> [(1,24)

...followed by an infinite wait.

This is useless and of no practical value! 142
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The Problem: Unfair Depth Search

...the two-dimensional space is searched in a depth-first order:

||| |||
AR || |
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~— [— [— = |— | — [ — | — |~—
||| ===
00 |00 109 109 109 100 100 19 100
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~— [— [— = |— | — |~ | — |~
—~| ||| —~[—~
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N[O | |IO|©O [~ |00 O
~— [— [— = |— | — | ~— | — |—
|||
clelelelelelelele
N[O | |IO|©O [~ |00 O
~— [— [~ — | — |~ |~ |~ |~
o lon] o) lon) fon lon) [on fon] fon)
S A A A L A L L
— N[ | |IO O [~ |00 O
~— [— [~ — | — |~ |~ |~ |~
||| |||
< S S S S S S S S
AN [ OO |~ |00 |O
~— [ [— |— |— | — [~ |~ |~
||| |||
CLOL L[N
— AN [ OO |~ |00 |O
~— [ [— |— |— | — [~ | — |~
||| | —~|—~
2vn./_v2vn./_v2vn./_v2vn./_v2v
N[ | |0 |©O [~ |00 O
~— [— [— = |— | — |[— | — |~
||| |||
R I e B e B e B s B R B R B R B |
N[ | |0 |©O [~ |00 O
~— [— [— = |— | — [~ | — |~—
— [N M| O[O |~ |00 D

14.1
14.2

This order is unfair: Pairs in rows 2 onwards will never be

reached and considered for being a factor pair.

14.3
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Diagonalization to the Rescue (1)

Searching the infinite number of finite diagonals ensures fairness, i.e.,
every pair will deterministically be visited after a finite number of steps:

| 1] 2| 3| 4|5 |6 | 7|89 |.

10 (L,1) | (1,2) | (1,3) (15) | (1,6) | (L,7) | (1,8) | (1,9)

2 (2,1) ] (2,2) (2,4) 1 (2,5) | (2,6) | (2,7) | (2,8) | (2,9)

3 (31) (3.3) | (34) | (35) | (36) | (3,7) | (3.8) ] (3,9)

4 (42) | (43) | (44) ] (45) | (46) | (47) ] (4,8)

51 (5,1) | (52) | (53) | (54) ] (55) | (56) ] (57) (5,9)

6 || (6,1)](6,2) | (63) ] (64) ]| (65) | (6,6) (6,8) | (6,9)

7 (1) | (7.2) | (7,3) | (7,4) ] (7,5) (7. 7) | (7,8) | (7,9)

8 || (81)](82) | (83) ] (84) (8,6) | (8,7) | (8,8) | (8,9)

9 | (91) ] (92) ] (93) (9,5) | (9,6) | (9,7) (9 8) (9,9)
» Diagonal 1: [(1,1)]
» Diagonal 2: [(1,2),(2,1)] o
» Diagonal 3: [(1,3),(2,2),(3,1)] 12
» Diagonal e
» Diagonal 5: [(1,5),(2,4),(3,3),((4,2),(5,1)]
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Diagonalization to the Rescue (2)

In fact, on visiting the infinite number of finite diagonals, every pair (J, )

of the infinite 2-dimensional search space [1..] x [1..] is deterministically

reached after a finite number of steps as illustrated below:

14.1
t 142

ol o o o 9| o v o &
| B o | S|~ @ o O
||| [ =
—/v_/v—/v_/y—/v —/v_/v—/
— o |or < [ ~ |9 oy
S [N [N [ [N (((
ol m| = o 2| =2 o ©| 8
= &| »| F| B| o ~| ®| S
=== —~| =
Lleleelele Q© o
— || | |0 o 0 |y
— = — |
N S| N = =] NS
| = & | &| 1| ©f ~| ©
=== == —~
[Fo) (T2} [ToN [ToR ITo N (TSR 7o) Lo
— [N [ < (O[O [~ ()]
R Dl el el g e A
~| & o v 0| & & M| v
| = N | & o] ©f ~
| ==~ = ==
<SS S S T S
AN |k 1O |©O [~ |00
el Dl Dl Bl Dl Bt R
<| | M| o © S| 0| M|
g - - & | & 0| ©
3 Cn] G G G Do o D
N N PN o RSP N PN 3o (52
- 0 [ [0 |© |~ [0 [o
S [N [ S e [N | e |
<+ of ~ < <
\«M\Mv/9122%45
2 e el Gl G G G
AN Ao e e e ey
— | il I el N P P
B S Rt N KL N R N SO
e e P R B B R
| — [ [ [
— |\ | oN y S . 3 5
R N I S N R RS S
— AN (O[O |~ |00 |O

14.3
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Implementing Diagonalization (1)

The function diagprod realizes the diagonalization strategy: It
enumerates the cartesian product of its argument lists in a fair
order, i.e., every element is enumerated after some finite
amount of time:

diagprod :: [a] -> [b] -> [(a,b)]
diagprod xs ys
= [(xs!!i, ys!!(n-1)) | n<-[0..], i<-[0..n]]

E.g., applied to the infinite 2-dimensional space [1..] x [1..],
diagprod ejects every pair (x,y) of [1..] x [1..] in finite time:

[((1,1,01,2),02,1,01,3),(2,2),(@3,1),
,(1,5),(2,4),(3,3),(4,2),(5,1),(1,6), i

14.2

(2,8),...,(6,1),(1,7),(2,6),...(7,1),... o
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Implementing Diagonalization (2)

diagprod :: [a] -> [b] -> [(a,b)]
diagprod xs ys = [(xs!!i, ys!!(n-i)) | n<-[0..], i<-[0..n]]

[ on |0 e | (xsti, yst(n=i)) [ ([1]M, [1]0(n-i)) | # | Diag. # |

0|01 O (xs!10,ys!10) (1,1) 1 1

110 1 (xs!10,ys!11) (1,2) 2 2

11| o (xsh1,ys!o) (2,1) 3

210 [ 2] (xsloysl2) (1.3) 2 3

211 1 (xs!!1,ys!!1) (2,2) 5

2120 (xs!12,ys!10) (3.1) 6

3101 3 (xs!10,ys!!3) 7

311 2 (xs!!1,ys!12) 8

312 1 (xs!12,ys!11) 9

303 0] (xs!3ys!0) 10

410 4 (xs!10,ys!4) (1,5) 11 5

4 11| 3 (xs!!1,ys!!3) (2,4) 12

4 12| 2 (xs!12,ys!12) (3.3) 13 o
413 1] (xs3ysihi) (4,2) 14 '
alal o (xs!4yso) (5,1) 15
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Back to the Example

...let's adjust factor in a way such that it explores the search
space of pairs in a fair order using diagonalization:

factor :: Int -> [(Int,Int)]
factor n
= [(r,s) | (r,s)<-diagprod [1..] [1..], r*s == n]

Applying factor to the argument 24, we now obtain:

factor 24 ->>
[(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),(1,24),(24,1)

...this means, we obtain all results; followed again, by an
infinite wait.
14.2
Of course, this is not surprising, since the search space is
infinite.
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Diagonalization with Monads

Recall:

class Monad m where
return :: a -> m a
>>=) ::ma->(a->mb) >mb

In the following we conceptually distinguish between:
» [a] ...for finite lists

» Stream a ...for infinite lists with type Stream a = [a]
Note: The distinction between (Stream a) for infinite lists

and [a] for finite lists is only conceptually and notationally as
is made explicit by defining (Stream a) as a type alias of [a]. 142
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Making Stream an Instance of Monad

Since (Stream a) is a type alias of [a], the stream and the
list monad coincide.

The monad operations for streams are thus defined as known
from Chapter 11:

» return:
return :: a —-> Stream a
return x = [x] -- yields the singleton list

» bind operation (>>=):
(>>=) :: Stream a -> (a -> Stream b) -> Stream b
xs >>= f = concat (map f xs)

The monad operations (>>) and fail are irrelevant in our 12
context, and thus omitted.
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Notational Benefit (1)

The monad operations return and (>>=) for lists and
streams allow us to avoid or replace list comprehension:

E.g., the expression
[(x,y) | x <= [1..], y <= [10..]1]
using list comprehension is equivalent to the expression
[1..] >>= (\x -> [10..] >>= (\y -> return (x,y)))

using monad operations, which is made explicit by unfolding
the monadic expression yielding the equivalent expressions

concat (map (\x -> [(x,y) | y <= [10..]]D)[1..])

and

14.2

concat (map (\x ->
concat (map (\y -> [(x,y)]1)[10..1))[1..1)
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Notational Benefit (2)

Using Haskell's do-notation allows an even more compact
equivalent representation:

do x <= [1..]; y <= [10..]; return (x,y)

...exploiting the general rule that
do x1 <-el; x2 <-e2; ... ; xn <- en; e
is shorthand for

el >>=(\x1l > e2>>=(N\x2 > ...>=N\xn > e)...))

14.1
14.2
14.3
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Towards a Fair Binding Operation (>>=) (1)

Note, exploring the pairs of the search space using the stream
monad is not yet fair.

E.g., the expression
do x <= [1..]; y <= [10..]; return (x,y)
yields the infinite list (i.e., stream):

[(1,10),(1,11),(1,12),(1,13),(1,14), ..

This problem is going to be tackled next by defining another
monad. 14.

14.2
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Towards a Fair Binding Operation (>>=) (2)

ldea: Embedding diagonalization into (>>=).

To this end, we introduce a new polymorphic type Diag:

newtype Diag a = MkDiag (Stream a) deriving Show

...together with a supporting function for stripping off the data
constructor MkDiag:

unDiag :: Diag a -> a
unDiag (MkDiag xs) = xs

14.2
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Making Diag an Instance of Monad (1)

Making Diag an instance of the type constructor class Monad:

instance Monad Diag where
return x = MkDiag [x]
MkDiag xs >>= f
= MkDiag (concat (diag (map (unDiag . f) xs)))

where diag rearranges the values into a fair order:

diag :: Stream (Stream a) -> Stream [a]
diag [1 = []
diag (xs:xss)
= 1lzw (++) [ [x] | x <= xs] ([] : diag xss)

14.2
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Making Diag an Instance of Monad (2)

...using the supporting function 1zw:

lzw :: (a -> a -> a) -> Stream a ->

Stream a -> Stream a
lzw £ [] ys = ys
lzw £ xs [] = X8

lzw £ (x:xs) (y:ys) (f xy) : (lzw £ xs ys)

Note: 1zw equals zipWith except that the non-empty remain-
der of a non-empty argument list is attached, if one of the
argument lists gets empty.

14.2
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Making Diag an Instance of Monad (3)

Intuitively, for the monad Diag holds:

v

return yields the singleton list.

v

undiag strips off the constructor added by the function
f :: a -> Diag b.

v

diag arranges the elements of the list into a fair order
(and works equally well for finite and infinite lists).

v

the acronym 1zw reminds to “like zipWith."

14.2
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Making Diag an Instance of Monad (4)

[llustrating the idea underlying the map diag:

Transform an infinite list of infinite lists
[[x11,x12,x13,x14,..], [x21,x22,x23,..],[x31,x32,..],..]

into an infinite list of finite diagonals:
[[x11], [x12,%x21], [x13,x22,x31], [x14,x23,x32,..],..]

This way, we get:

do x<-MkDiag [1..]; y<-MkDiag [10..]; return (x,y)
->> MkDiag [(1,10),(1,11),(2,10),(1,12),(2,11),
(3,10),(1,13), ..

14.1
14.2

Hence, we are done: 143
» The pairs are delivered in a fair order!
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Back to the Factoring Problem

The current status of our approach:
» Generating pairs (in a fair order): Done.

» Selecting the pairs being part of the solution: Still open.

Next, we are going to tackle the selection problem, i.e., filter-
ing out the pairs (r, s) satisfying the equality r X s = n, by:

» Filtering with conditions!

To this end, we introduce a new type constructor class Bunch.

14.1
14.2
14.3
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The Type Constructor Class Bunch

The type constructor class Bunch:

class Monad m => Bunch m where

Zero :: m a -- empty result, no answer

alt ::ma->ma->ma -- all answers either
-— in xm or ym

wrap :: ma ->ma -- answers yielded by auxi-

-- liary calculations; right
-- now, think of wrap as being
-- defined as the identity

—-— function: wrap = id

Note: The value zero allows us to express that an answer set 41
is empty. The operation alt allows us to join answer sets. 143
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Making Stream and Diag Instances of Bunch

Making ordinary lazy lists an instance of Bunch:

instance Bunch [] where

zero =[]
alt xs ys = xs ++ ys
wrap xs = XS

Making Diag an instance of Bunch:

instance Bunch Diag where

Zero = MkDiag []
alt (MkDiag xs) (MkDiag ys) —-- shuffle in the
= MkDiag (shuffle xs ys) -- interest of
wrap xm = Xm -- fairness
shuffle :: [a]l -> [a] —> [a]
shuffle [] ys = ys 142

shuffle (x:xs) ys = x : shuffle ys xs

Note: wrap will be used only later. 1078/16



Filtering with Conditions using test (1)

Using zero, the function test, which might not look useful at
first sight, yields the key for filtering:

test :: Bunch m => Bool -> m () -- () type idf:
test b = if b then return () else zero —- () value idf.

In fact, we get:

do x <= [1..]; test (x ’mod’ 3 == 0); return x
->> [3,6,9,12,15,18,21,24,27,30,33, ..

do x <= [1..]; test (x ’mod’ 3 == 0); return x
->> [3,6,9,12,15,18,21,24,27,30,33, ..

do x <- MkDiag [1..]; test (x ’mod’ 3 == 0); return x
->> MkDiag [3,6,9,12,15,18,21,24,27,30,33, ..

14.2

...l.e., filtering the multiples of 3 from the streams [1..] and
MkDiag [1..], respectively.
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Filtering with Conditions using test (2)

In more detail:

do x <= [1..];
| e e
:: Int :: [] Int
test (x ‘mod’ 3 == 0);
O TO1 :: 0 0O, if true
0 :: 0 O, if false

A

Ve

return x
[1 Int

Note: return x is only reached and evaluated for those

values of x with x ’mod’ 3 equals 0.

14.2
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Nonetheless

...we are not yet done as the example below shows.

Consider:

do r <- MkDiag [1..]; s <- MkDiag [1..];
test (r*s==24); return (r,s)
->> MkDiag [(1,24)

...followed again by an infinite wait.
Why is that?
The above expression is equivalent to:

do x <- MkDiag [1..]
(do y <- MkDiag [1..]; test(xxy==24);
return (x,y))
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Why is that? (1)

...this means the generator for y is merged with the sub-
sequent test to the (sub-) expression:

do y <- MkDiag [1..]; test(x*y==24); return (x,y)

Intuitively

» This expression yields for a given value of x all values of y
with x * y = 24,

» For x = 1 the answer (1,24) will be found, in order to
then search in vain for further fitting values of y.

» For x = 5 we thus would not observe any output, since an
infinite search would be initiated for values of y satisfying
5xy =24,

14.2
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Why is that? (2)

The deeper reason for this (undesired) behaviour:

The bind operation (>>=) of Diag is not associative, i.e.,
xm >>= (\x > f x >>=g) = (xm >>=f) >>=g¢g

...does not hold for (>>=) of Diag! Or, equivalently expressed
using do:

do x <-xm; y<-fx; gy

xm >>= (\x > f x >>= (\y -> g y))
xm >>= (\x > f x >>= g)

(xm >>= f) >>=g

(xzm >>= (\x —> £ x)) >>= (\y -> g y)
doy <- (do x <- xm; f x); gy

14.2

...does not hold.
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Mastering the Problem

Frankly, Diag is not a proper instance of Monad, since it fails
the monad law of associativity for (>>=). The order of apply-
ing generators is thus essential.

Therefore, the generators are explicitly pairwise grouped
together to ensure they are treated fairly by diagonalization:

do (x,y) <= (do u <- MkDiag [1..];
v <- MkDiag [1..]; return (u,v))
test (x*y==24); return (x,y)
->> MkDiag [(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),
(1,24),(24,1)
...yields now all results, followed again, of course, by an infinite o

14.2

wait (due to an infinite search space). 12

This means, the problem is fixed. We are done.
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Remarks

Note

» Getting all results followed by an infinite wait
...the best we can hope for if the search space is infinite.
» Explicit grouping
....only required because Diag is not a proper instance of
Monad since its bind operation (>>=) fails to be
associative. If it were, both expressions would be
equivalent and explicit grouping unnecessary.

Next, we will strive for

» avoiding/replacing infinite waiting by indicating that a
result has not (yet) been found.

14.2
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Indicating Progress of the Search

To this end, we introduce a new type Matrix together with a
cost-guided diagonalization search, a true breadth search.

Intuitively

» Values of type Matrix: Infinite lists of finite lists.

» Goal: A program which yields a matrix of answers, where
row / contains all answers which can be computed with
costs c(/) specific for row i.

» Indicating progress: Returning the empty list in a row k
means “nothing found,” i.e., the set of solutions which
can computed with costs c(k) is empty.

14.2
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The Type Matrix

The new type Matrix:

newtype Matrix a
= MkMatrix (Stream [a]) deriving Show

...together with a supporting function for stripping off the data
constructor:

unMatrix :: Matrix a -> a
unMatrix (MkMatrix xm) = xm

14.1
14.2
3
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Making Matrix an Instance of Bunch (1)

...preliminary reasoning about the required operations and
their properties:

return x = MkMatrix [[x]] -- Matrix with a single row
zero = MkMatrix [] -- Matrix without rows

alt (MkMatrix xm) (MkMatrix ym)
= MkMatrix (lzw (++) xm ym) -- Concatenating
-— corresponding rows

wrap (MkMatrix xm)
= MkMatrix ([]:xm) -- Taking care of the cost

—-- management!

14.1
14.2
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Making Matrix an Instance of Bunch (2)

(>>=) :: Matrix a -> (a -> Matrix b) -> Matrix b
(MkMatrix xm) >>= f = MkMatrix (bindm xm (unMatrix . f))
-- Essentially given by bindm; handles the data
-- data constructor MkMatrix not done by bindm.

bindm :: Stream[a] -> (a -> Stream[b]) -> Stream [b]
bindm xm f = map concat (diag (map (concatAll . map f) xzm))
-- Essentially (>>=) but without being burdened by
—-- MkMatrix. Applies f to all the values in xm and
-- collects together the results in a matrix according
-- to their total cost: these are cost of the argument
-- of f given by xm plus the cost of computing its
-- result.

14.1

concatAll :: [Stream [b]] -> Stream [b] 142
14.3
concatAll = foldr (lzw (++)) []
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Making Matrix an Instance of Bunch (3)

Now, we are now ready to make Matrix an instance of the
type constructor classes Monad and Bunch:

instance Monad Matrix where
return x MkMatrix [[x]]
(MkMatrix xm) >>= f MkMatrix (bindm xm (unMatrix . f))

instance Bunch Matrix where
Zero = MkMatrix []
alt( MkMatrix xm) (MkMatrix ym)
= MkMatrix (lzw (++) xm ym)
wrap (MkMatrix xm)
= MkMatrix ([]:xm) -- wrap xm yields a matrix with
-- the same answers but each
-- with a cost one higher than
-- its cost in xm 1.2

intMat = MkMatrix [[n] | n <- [1..]]

1090/16



Making Matrix an Instance of Bunch (4)

Example:
do r <- intMat; s <- intMat; test(r*s==24); return (r,s)
->> MkMatrix [ ,[(4,6),(6,4)],
[(3,8),(8,3)1,01,01,0(2,12),(12,2)1, 01,1, 1,
o,a,0,0,0,0,0,0,24),24,01,0,0,0, ..
Intuitively
> No factor pairs of 24 were found (indicated by ).
> Diagonal 9: The factor pairs (4,6) and (6,4) were found.
» Diagonal 10: The factor pairs (3,8) and (8,3) were found.
> Diagonals 11 to 12: No factor pairs of 24 were found (ind'd by []).
> Diagonal 13: The factor pairs (2,12) and (12,2) were found.
>

14.1
14.2
14.3

This means, if a diagonal d does not contain a valid factor pair, we
get []; otherwise the get the list of valid factor pairs located in d.

Hence, we are done!
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Making Matrix an Instance of Bunch (5)

[llustrating the location of the factor pairs of 24 in the diagonals of the
search space:

| v+ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |..

L@ a2)] (13) a5 ] @6) [@n] (1.8) [ (19
2 21 (22 24) [ @25) ] 26) | 27) ] 28 [ (29
3 [ (3.1) (3.3) | (34) | (35) | (36) | (3.7) [ 1(3.8)I'| (3,9)
4 (42) | (43) | (44) | (45 [W4.6)'] (47)] (48)

51 (51) | (52) | (53) (54) | (55) | (56) | (57) (5,9)
6 || (6,1) | (6,2) | (6,3) | 1(6,4)!| (6)5) | (6,6) (6,8) | (6,9)
T @D @2 (73 | (7.4) (7.5 @7 [ 7.8) (7,9
8 || (81) ] (82) | H8,3)1| (84) (8,6) | (87) | (88) | (8,9)
9 1 (91)](92)] (9,3) 95) | (9.6) | (9,7) | (9,8) | (9,9)

14.2
14.3
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An Array of Search Strategies

...Is now at our disposal, namely

1. Depth search ([1..])
2. Diagonalization (MkDiag [[n]| n<-[1..]])
3. Breadth search (MkMatrix [[n]| n<-[1..]])

...and we can choose each of them at the very last moment,
just by picking the right monad when calling a function:

—-— Picking the Search Strategy by Properly

—-- Selecting m when Calling the Function factor

factor :: Bunch m => Int -> m (Int, Int)

factor n = do r <- choose [1..]; s <- choose [1..];
test (r*s==n); return (r,s)

14.1
14.2

choose :: Bunch m => Stream a -> m a 12
choose (x:xs) = wrap (return x ’alt’ choose xs)
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Picking a Search Strategy at Call Time

...specifying the type of the result of factor at call time to fix
the search monad and thus the search strategy applied.

[llustrated by means of factor, our running example:

—-- Depth Search: Picking Stream
factor 24 :: Stream (Int,Int)
->> [(1,24)

-- Diagonalization Search: Picking Diag
factor 24 :: Diag (Int, Int)
->> MkDiag [(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),
(1,24),(24,1)
-- Breadth Search w/ Progress Indication: Picking Matrix
factor 24 :: Matrix (Int, Int)
->> MkMatrix [([1,0],01,00,00,00,00,0],0(4,6),(6,4)],
[(3,8),(8,3)1,01,00,0(2,12),(12,2)]1,0,01, 101,
1,0,0,0,0,0,0,00,24),24,01,01,00,101, ..
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Summarinzing our Progress so Far

...recall the 3 key problems we have/had to deal with.

Modelling

1. logic programs yielding (possibly) multiple answers:
(using lazy lists).
2. the evaluation strategy inherent to logic programs:

» The implicit search strategy of logic programming
languages has been made explicit. The type constructors
and type classes of Haskell allow even different search
strategies and to pick one conveniently at call time.

3. logical variables (no distinction between input and output
variables): Still open!

14.2
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Next

...we will be concerned with this third problem, i.e.

Modelling

» logical variables (no distinction between input and output
variables).

Common for evaluating logic programs

» ...not a pure simplification of an initially completely given
expression but a simplification of an expression containing
variables, for which appropriate values have to be deter-
mined. In the course of the computation, variables can be
replaced by other subexpressions containing variables
themselves, for which then appropriate values have to be
found.

14.2
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Terms, Substitutions, and Predicates (1)

Towards logical variables — we introduce:

Terms
data Term = Int Int
| Nil
| Cons Term Term
| Var Variable deriving Eq

...will describe values of logic variables.

Named variables and generated variables
data Variable = Named String
| Generated Int deriving (Show, Eq)

14.1
14.2

...will be used for formulating queries, respectively, evolve in o
the course of the computation.
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Terms, Substitutions, and Predicates (2)

Support functions for

» transforming a string into a named variable:
var :: String -> Term
var s = Var (Named s)
» constructing a term representation of a list of integers:

list :: [Int] -> Term
list xs = foldr Cons Nil (map Int xs)

14.1
14.2
14.3
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Terms, Substitutions, and Predicates (3)

Substitutions
newtype Subst = MkSubst [(Var,Term)]

...essentially mappings from variables to terms.

Support functions for substitutions:

unSubst :: Subst -> [(Var,Term)]
unSubst (MkSubst s) = s

idsubst :: Subst
idsubst = MkSubst []

extend :: Var -> Term -> Subst -> Subst
extend x t (MkSubst s) = MkSubst ((x:t):s)

14.2
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Terms, Substitutions, and Predicates (4)
Applying a substitution:

apply :: Subst -> Term -> Term

apply s t = —-- Replace each variable
case deref s t of -- in t by its image under s
Cons x xs —-> Cons (apply s x) (apply s xs)
t’ -> t’
where
deref :: Subst —> Term -> Term

deref s (Var v) =
case lookup v (unSubst s) of
Just t -> deref s t
Nothing -> Var v 142
deref s t =t
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Terms, Substitutions, and Predicates (5)
Unifying terms:

unify :: (Term, Term) -> Subst -> Maybe Subst
unify (t,u) s =
case (deref s t, deref s u) of
(Nil, Nil) -> Just s
(Cons x xs, Cons y ys) ->
unify (x,y) s >>= unify (xs, ys)
(Int n, Int m) | (n==m) -> Just s
(Var x, Var y) | (x==y) -> Just s
(Var x, t) -> if occurs x t s
then Nothing
else Just (extend x t s)
(t, Var x) -> if occurs x t s
then Nothing
else Just (extend x t s)
_,.) -> Nothing

14.2
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Terms, Substitutions, and Predicates (6)

where

occurs :: Variable -> Term -> Subst -> Bool
occurs x t s =
case deref s t of
Var y > x ==y
Cons y ys -> occurs x y s || occurs x ys s
-> False

14.2
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Modelling Logic Programs (1)

..in our Haskell environment, where m is of type bunch:

type Pred m = Answer -> m Answer

- Logic programs are of type Pred m; intuitively,
-— applied to an "input" answer which provides the
-— information that is already decided about the
-- values of variables, it computes an array of new
—-- answers, each of them satisfing the constraints
-— expressed in the program.

newtype Answer = MkAnswer (Subst,Int)

-- The substitution carries the information about

-— the values of variables; the integer value counts

-- how many variablesh ave been generated so far 141
-- allowing to generate fresh variables when needed. e

1103/16



Modelling Logic Programs (2)

—— Initial answer
initial :: Answer
initial = MkAnswer (idsubst, 0)

-— A program run with a predicate p as query:
-— p 1is applied to the initial answer

run :: Bunch m => Pred m -> m Answer

run p = p initial

-- m, e.g., could be the type constructor Stream
-— as in the below example evaluating the
-— predicate append (specified later)
run (append (list [1,2],list [3,4],var "z"))
:: Stream Answer 141
->> [{z=[1,2,3,4]1}] -- an appropriate show 143
-— function is assumed
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Combinators for Logic Programs (1)

The combinator (=:=) (“equality” of terms) allows us to build
simple predicates as e.g., in:

run (var "x" =:= Int 3) :: Stream Answer

->> [{x=3}]

The implementation of (=:=) by means of unify:

=:=) :: Bunch m => Term -> Term -> Pred m
(t =:= u) (MkAnswer (s,n)) = — Pred m = (Answer -> m Answer)
case unify (t,u) s of
Just s’ -> return (MkAnswer (s’,n))
Nothing -> zero

Intuitively: If the argument terms t and u can be unified wrt
the input answer MkAnswer (s,n), the most general unifier is
returned as the output answer; otherwise there is no answer.

14.2
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Combinators for Logic Programs (2)

The combinator (&&&) allows us forming the conjunction of
predicates as e.g., in:
run (var "x" =:= Int 3 &&& var "y" =:= Int 4)

:: Stream Answer
->> [{x=3,y=4}]
run (var "x" =:= Int 3 &&& var "x" =:= Int 4)

:: Stream Answer
->> []

The implementation of (&&&) by means of the bind operation
(>>=) of the monad bunch:

(&%&) :: Bunch m => Pred m -> Pred m -> Pred m
(p &&& q) s = p s >>=q
—-— or equivalently using the do-notation: 105
dot <-ps; u<-qt; returnu
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Combinators for Logic Programs (3)

The combinator (|| 1) allows us forming the disjunction of
predicates as e.g., in:

run (var "x" =:= Int 3 ||| var "x" =:= Int 4)
:: Stream Answer
->> [{x=3,x=4}]

The implementation of (|||) by means of the alt operation
of the monad bunch:

(I11) :: Bunchm => Pred m -> Pred m -> Pred m
(p Il @ s =alt (p s) (q s)

14.1
14.2
14.3
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Combinators for Logic Programs (4)

Defining priorities for the new infix combinators:

infixr 4 =:=
infixr 3 &&&
infixr 2 |||

14.1
14.2
14.3
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Combinators for Logic Programs (5)

Combinators for introducing new variables in predicates
(exploiting the Int component of answers)

...introducing local variables in recursive predicates:

exists :: Bunch m => (Term -> Pred m) -> Pred m
exists p (MkAnswer (s,n)) =
p (Var (Generated n)) (MkAnswer (s,n+1))

Note:

» The term exists (\x -> ...x...) has the same mean-
ing as the predicate ...x... but with x denoting a fresh
variable which is different from all the other variables used by
the program; n+1 in MkAnswer (s,n+1) ensures that never
the same variable is introduced by nested calls of exists.

» The function exists thus takes as its argument a function,
which expects a term and produces a predicate; it invents a
fresh variable and applies the given function to that variable.

14.2
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Combinators for Logic Programs (6)
Illustrating the difference between named and generated variables:

1) run (var "x" =:= list [1,2,3]
&&& exists (\t -> var "x" =:= Cons (var "y") t))
:: Stream Answer
->> [{x=[1,2,3], y=1}]

2) run (var "x" =:

&&& var "x" =:

list[1,2,3]
Cons (var "y" ) (var "t"))
:: Stream Answer

->> [{t=[2,3], x=[1,2,3], y=1}]

Note
» Example 1: The named variable y is set to the head of the
list, which is the value of x. The value of the generated
variable t is not output.
» Example 2: The same as above but now t denotes a named
variable, whose value is output.

14.2
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Combinators for Logic Programs (7)

Handling recursive predicates:

...ensuring that in connection with the bunch type Matrix the
costs per unfolding of the recursive predicate increases by 1:

step :: Bunch m => Pred m -> Pred m
step p s = wrap (p s)

lllustrating the usage and effect of step:

run (var "x" =:= Int 0) :: Matrix Answer
->> MkMatrix [[{x=0}]] -- Without step: Just the
-- result.
run (step (var "x" =:= Int 0)) :: Matrix Answer

->> MkMatrix [[], [{x=0}]] -- With step: The result ..
-- plus the notification that  us
—-- there are no answers of cost O.
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Writing Logic Programs: Two Examples

We consider two examples:

1. Concatenating lists: The predicate append.

2. Testing and constructing “good” sequences: The
predicate good.

14.1
14.2
14.3
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1st Example: List Concatenation (1)

...implementing a predicate append (a,b,c), where a, b
denote lists and c the concatenation of a and b.

The implementation of the predicate append:

append :: Bunch m => (Term, Term, Term) -> Pred m
append (p,q,r) =
step (p =:= Nil &&& q =:=r
1] exists (\x -> exists (\a -> exists (\b —->
p =:= Cons x a
&&& r =:= Cons x b

&&& append (a,q,b)))))

14.2
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1st Example: List Concatenation (2)

In more detail:

append :: Bunch m => (Term, Term, Term) -> Pred m
append (p,q,r) =
-- Case 1
step (p =:= Nil &&& q =:=r
11
-- Case 2
exists (\x -> exists (\a -> exists (\b —>
p =:= Cons x a &%& r =:= Cons x b &&& append (a,q,b)))))
Intuitively

» Case 1: If p is Nil, then r must be the same as q.

» Case 2: If p has the form Cons x a, then r must have the
form Cons x b, where b is obtained by recursively
concatenating a with the unchanged q.

» Termination: ...is ensured, since the third argument is getting
smaller in each recursive call of append.

1114/16



Ist Example: List Concatenation (3)

As common for logic programs, there is no difference between
input and output variables. Hence, multiple usages of append
are possible, e.g.:

a) Using append for concatenating two lists:

run (append (list [1,2], list [3,4], var "z"))
:: Stream Answer
->> [{z=[1,2,3,4]}]
-- An appropriate implementation of show
-- generating the above output is assumed.

-- More closely related to the internal structure
-- of the value of z would be an output like: s

14.2

-— =>> Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))) e
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Ist Example: List Concatenation (4)

Using append for computing the set of lists which...

b) ...concatenated equal a given list:

run (append (var "x", var "y", list [1,2,3]))
:: Stream Answer

->> [{x = Nil, y = [1,2,3]},
{x = [11, y = [2,3]},
{x = [1,2], y = [3]},
{x = [1,2,3], y = Nil}]

c) ...concatenated with a given list equal a given list:

run (append (var "x", list [2,3], list [1,2,3]))
:: Stream Answer 12

143

->> [{x = [1]1}]
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2nd Example: Good Sequences (1)

...implementing a predicate good allowing to

» generating sequences of Os and 1s, which are considered

» checking, if a sequence of Os and 1s is

We define:
1. The sequence is
2. If the sequences and are , then also the
sequence [1] ++ ++
3. There is no other sequence except of those formed

in accordance to the above two rules.

14.2
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2nd Example: Good Sequences (2)

Examples:

» Good sequences

[0]
[(1]++[0]++[0] = [100]
[1]++[0]++[100] = [10100]

[1]++[100]++[0] = [11000]
[1]++[100]++[10100] = [110010100]

» Bad sequences

(1], (111, [110], [o000], [010100], [1010101],...

14.1
14.2
14.3
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2nd Example: Good Sequences (3)

Lemma 14.2.1 (Properties of Good Sequences)
If a sequence s is good, then
1. the length of s is odd
2. s=0] or there is a sequence t with s = [1]++t++[00]

Note: The converse implication of Lemma 14.2.1(2) does not
hold: the sequence [11100] = [1]++[11]++[00], e.g., is bad.

14.1
14.2
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2nd Example: Good Sequences (4)

The implementation of the predicate good:

good :: Bunch m => Term -> Pred m
good (s) =
step (s =:= Cons (Int 0) Nil
[l exist (\t -> exists (\q -> exists (\r ->

s =:= Cons (Int 1) t
&&& append (q,r,t)
&&& good (q)
&&& good (r)))))

14.2
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2nd Example: Good Sequences (5)

In more detail:
good :: Bunch m => Term -> Pred m
good (s) =
step (
-- Case 1
s =:= Cons (Int 0) Nil
11
-- Case 2
exist (\t -> exists (\q -> exists (\r ->
s =:= Cons (Int 1) t

&&& append (q,r,t) &&& good (q) &&& good (r)))))

Intuitively
> Case 1: ...checks if s is [0].
> Case 2: If s has the form [1]++t for some sequence t, all ways are
checked of splitting t into two sequences q and r with g++r==t
and g and r are good sequences themselves.
> Termination: ...is ensured, since t gets smaller in every recursive
call and the number of its splittings is finite.

14.2

1121/16



2nd Example: Good Sequences (6)

Usage examples of the predicate good.

1) Checking if a sequence is good using Stream:

run (good (list [1,0,1,1,0,0,1,0,01))
:: Stream Answer
->> [{}] -- Returning the empty set as answer,
-- if the argument list is good.

run (good (list [1,0,1,1,0,0,1,0,11))
:: Stream Answer

->> [] -- Returning no answer, if the argument
-—- list is bad.
" " " ” iz;
Note: The “empty answer” and the “no answer” correspond =

to the answers “yes” and “no” of a Prolog system.
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2nd Example: Good Sequences (7)

2a) Constructing good sequences using Stream:

run (good (var "s")) :: Stream Answer
->> [{s=[0]},
{s=[1,0,01},

{s=[1,0,1,0,01},

{s=[1,0,1,0,1,0,0]3},
{s=[1,0,1,0,1,0,1,0,0]}, ..

—-—- Some answers will not be generated,

-— since the depth search induced by

-— Stream is not fair. The computation is
-- thus likely to get stuck at some point.

14.1
14.2
14.3
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2nd Example: Good Sequences (8)

2b) Constructing good sequences using Diag:

run (good (var "s")) :: Diag Answer
->> Diag [{s=[0]},
{s=[1,0,0]},
{s=[1,0,1,0,0]},

{s=[1,1,0,0,1,0,1,0,01}, ..
-- Eventually all answers will be generated,
-- since the diagonalization search induced n
—-— by Diag is fair. However, the output order ™2
—-- can hardly be predicted due to the inter-

-- action of diagonalization and shuffling. hap. 16



2nd Example: Good Sequences (9)
2c) Constructing good sequences using Matrix:

run (good (var "s")) :: Matrix Answer
->> MkMatrix [[],

[({s=[01}]1,01,01,11,
({s=[1,0,0]3],0], 01, (],
[({s=[1,0,1,0,0]1}], ],
[{s=[1,1,0,0,0]13}],0],
[{s=[1,0,1,0,1,0,0]1}], 107,
[{s=[1,0,1,1,0,0,01},{s=[1,1,0,0,1,0,0]1}]1, (7,

-- Using the cost-guided "true" breadth search
-- induced by Matrix, the output order of

—-- results seems more "predictable" than for s
-- the search induced by Diag. Additionally, i’
-- we get '"progress notifications."
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Remarks on Missing Code

Note, code for

» pretty printing terms and answers

» making the types Term, Subst, and Answer instances of
the type class Show

is missing and must be provided by a user of the approach.

14.2
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Summing up

Current functional logic languages aim at balancing
» generality (in terms of paradigm integration)

» efficiency of implementations

Functional logic programming offers
» support of specification, prototyping, and application
programming within a single language

» terse, yet clear, support for rapid development by avoiding
some tedious tasks, and allowance of incremental refine-
ments to improve efficiency

Overall: Functional logic programming

14.2

» an emerging paradigm with appealing features
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Chapter 15.1

Motivation
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Pretty Printing - What's it all about?

A pretty-printer is
» a tool (often a library of routines) designed for converting
a tree value into plain text.

Objective

» Preserving and reflecting the structure of the tree by
indentation while using a minimum number of lines.

Hence

» Pretty printing can be considered the dual problem to
parsing.

15.1
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A “Good” Pretty-Printer

Like parsing, pretty printing is an application often used

» for demonstrating the elegance of functional
programming, i.e., not just the result of a pretty printer
shall be pretty but also the pretty printer itself.

Hence, a good pretty-printer is distinguished by properly
balancing

» Simplicity of usage
» Flexibility of the format
» “Prettiness” of output

15.1
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The presentation in this chapter

...is based on:

» Philip Wadler. A Prettier Printer. In Jeremy Gibbons,
Oege de Moor (Eds.), The Fun of Programming.
Palgrave MacMillan, 2003.

It shall improve (see end of chapter) on the below pretty prin-

ter library proposed by John Hughes that is widely recognized
as a standard:

» John Hughes. The Design of a Pretty-Printer Library. In
Johan Jeuring, Erik Meijer (Eds.), Advanced Functional
Programming, First International Spring School on Ad-

vanced Functional Programming Techniques. Springer-V.,
LNCS 925, 53-96, 1995. 152

15.3
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Chapter 15.2
Pretty Printing
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A Simple Pretty Printer: Basic Approach

Requirement: For every document there shall be only one
possible layout (e.g., no attempt is made to compress
structure onto a single line).

The basic operators needed are:

(<>)

nil

text

line
nest
layout

:: Doc -> Doc -> Doc

:: Doc

: String -> Doc

:: Doc

Int -> Doc -> Doc

:: Doc -> String

associative concate-
nation of documents
The empty document:
Right and left unit
for (<>)

Conversion function:
Converts a string to
a document

Line break

Adding indentation
Output: Converts a
document to a string

15.1
15.2
S
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Convention

» Arguments of text are free of newline characters.
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A Simple Implementation

Implement

>

with

>

>

Doc as strings (i.e. as data type String)

(<>) as concatenation of strings
nil as empty string

text as identity on strings

line as new line

nest i as indentation: adding i spaces (after each line break
by means of 1line) ~~ essential difference to Hughes' pretty
printer that also allows inserting spaces in front of strings
allowing here to drop one concatenation operator

layout as identity on strings
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Example

Converting trees into documents (here: Strings) which are
output as text (here: Strings).

To this end, consider the type of Tree of tree values

data Tree = Node String [Tree]

...and the value B of type Tree:

Node "aaa" [Node "bbbbb" [Node "cc" [], Node "dd" [1];
Node "eee" [],
Node "ffff" [Node "gg" [I,
Node "hhh" [],
Node "ii" []
]
]

Wanted: Pretty plain text representations of B, where the
structure of B is reflected by indentation.

15.2
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...and two possibly desired outputs:

aaa[bbbbb[ccc,
dd],
eee,
ffff[gg,
hhh,
iil]

Layout strategies:

aaal
bbbbb [
ccc,
dd
1,
eee,
fEFf[
gg,
hhh,
ii

> Left: Sibling trees start on a new line, properly indented.

» Right: Every subtree starts on a new line, properly indented.
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Implementation 1: Realizing the “Left” Strat.

data Tree = Node String [Tree]

showTree :: Tree -> Doc
showTree (Node s ts) = text s <>
nest (length s) (showBracket ts)

showBracket :: [Tree] -> Doc
showBracket [] = nil
showBracket ts = text "[" <

nest 1 (showTrees ts) <> text "]"

showTrees :: [Tree] -> Doc
showTrees [t] = showTree t
showTrees (t:ts) = showTree t <> text "," <>

line <> showTrees ts 52
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Implementation 2: Realizing the “Right” Strat.

data Tree = Node String [Tree]

showTree’ :: Tree -> Doc
showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ :: [Tree] -> Doc

showBracket’ [] = nil

showBracket’ ts = text "[" <> nest 2 (line <>
showTrees’ ts) <> line <> text "]"

showTrees’ :: [Tree] -> Doc
showTrees’ [t] = showTree t
showTrees’ (t:ts) = showTree t <> text "," <> line

<> showTrees ts
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Normal Form of Documents

Documents can always be reduced to normal form.

Normal form

» Text alternating with line breaks nested to a given
indentation:
text sO <> nest il line <> text sl <>
<> nest ik line <> text sk
where
» each s; is a (possibly empty) string
» each j; is a (possibly zero) natural number
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Example on Normal Forms (1)

A document

text "bbbbb"

nest 2 (
line <>
line <>

) <>

line <> text

<> text "[" <>

text "ccc" <> text "," <
text "dd"

||] ]

...and how it is output:

bbbbb [
ccc,
dd
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Example on Normal Forms (2)

The same document

text "bbbbb" <> text "[" <>

nest 2 (
line <> text "ccc" <> text "," <>
line <> text "dd"

) <>

line <> text "]"

...and its normal form:

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]" 152
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Why does it work?

...because of the properties (laws) the functions enjoy.

In more detail

...because of
» (<>) is associative with unit nil

» the laws summarized on the next slide.

Note: All of these laws except of the last one are paired;
they are paired with a corresponding law for their units.
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Properties of the Functions/Laws (1)
The following (pairs of) laws (except for the last one) hold:

text (s ++ t) text s <> text t —- text is a homomor-

text "" = nil -- phism from string
—- concatenation to
-— document concate-

-- nation
nest (i+j) x = nest i (nest j x) -- nest is a homomor-
nest 0 x =X —-- phism from addition

-- to composition

nest i (x <> y) = nest i x <> nest i y -- nest distributes
nest i nil = nil -- through document
—-- concatenation

nest i (text s) = text s -- Nesting is absorbed by text;

-— different to Hughes’ pretty o
-- printer) 153
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Properties of the Functions/Laws (2)

Relevance and Impact
» The above laws are sufficient to ensure that documents
can always be transformed into normal form

» First four laws: applied from left to right
» Last three laws: applied from right to left

15.1
15.2
S
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Further Properties/Laws

...that put documents into relation with their layouts:

layout (x <> y)
layout nil

layout (text s)

layout (nest i line)

layout

x ++ layout y

layout is a homomorphism
from document concate-
nation to string conca-
tenation

layout is the inverse
of text

copy 1 >’

layout of a nested line
is a newline followed by
one space for each level
of indentation

G 1L
15.2
S
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The Implementation of Doc

Intuitively

» Represent documents as a concatenation of items, where
each item is a text or a line break indented to a given
amount.

This is realized as a sum type (the algebra of documents):

data Doc = Nil
| String ’Text’ Doc
| Int ’Line’ Doc

The constructors relate to the document operators as follows:

nil
text s <> x
nest 1 line <> x

Nil
s *Text’ x
i ’Line’ x
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Example

Using this new algebraic type Doc, the normal form (consi-
dered previously)

text "bbbbb[" <>

nest 2 line <> text "ccc," <>
nest 2 line <> text "dd" <>
nest 0 line <> text "]"

...is represented by the following value of Doc:

"bbbbb [" ’Text’ (

2 ’Line’ ("ccc," ’Text’ (

2 ’Line’ ("dd," ’Text’ (

0 ’Line’ ("]," ’Text’ Nil)))))
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Derived Implementations (1)

Implementations of the document operators can easily be
derived from the above equations:

nil
text s
line

(s "Text’ x) <>y
(i ’Line’ x) <>y
Nil <>

Nil

s ’Text’ Nil

0 ’Line’ Nil

s 'Text’ (x <> y)

[=N

’Line’ (x <> y)
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Derived Implementations (2)

s ’Text’ nest i x
(i+j) ’Line’ nest i x

nest i (s ’Text’ x)
nest i (j ’Line’ x)
nest 1 Nil = Nil

layout (s ’Text’ x) = s ++ layout x
layout (i ’Line’ x) ’\n’ : copy i ’ ’ ++ layout x
layout Nil ="
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Correctness of the derived Implementations

...can be shown for each of them, e.g.:

» Derivation of
(s ’Text’ x) <>y =8 ’Text’ (x <> y)

(s "Text’ x) <>y

{ Definition of Text }
(text s <> x) <>y

{ Associativity of <> }
text s <> (x <> y)

{ Definition of Text }
s "Text’ (x <> y)

The remaining equations can be shown using similar reasoning. ...
15.2
15.3
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Documents with Multiple Layouts
Adding Flexibility:

» Up to now: Documents were equivalent to a string (i.e.,
they have a fixed single layout)
» Next: Documents shall be equivalent to a set of strings
(i.e., they may have multiple layouts)
where each string corresponds to a layout.

This can be rendered possible by just adding a new function:

group :: Doc -> Doc

Intuitively:

Given a document, representing a set of layouts, group

returns the set with one new element added that represents

the layout in which everything is compressed on one line: e

Replace each newline (plus indentation) by a single space.
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Preferred Layouts

“Beauty” needs to be specified /defined:

» pretty replaces layout
pretty :: Int -> Doc -> String

and picks the prettiest layout depending on the preferred
maximum line width argument.

Remark: pretty's integer-argument specifies the pre-
ferred maximum line length of the output (and hence the
prettiest layout out of the set of alternatives at hand).
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Example

Using the modified showTree function based on group:

showTree (Node s ts)
= group (text s
<> nest (length s) (showBracket ts))

...the call of pretty 30 (once ompletely specified) will yield
the output:

aaa[bbbbblccc, dd],
eee,
ffff[gg, hhh, iil]

This ensures:
» Trees are fit onto one line where possible (i.e., length
< 30).
» Insertion of sufficiently many line breaks in order to avoid 12

exceeding the given maximum line length. 2
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Implementation of the new Functions (1(

The following supporting functions are required:

—-- Forming the union of two sets of layouts
<> :: Doc -> Doc -> Doc

-- Replacement of each line break (and its
-- associated indentation) by a single space
flatten :: Doc —> Doc

G 1L
15.2
S

1164/16



Implementation of the new Functions (2)

» Observation: A document always represents a non-empty
set of layouts.

» Requirements:
» In (x <[> y) all layouts of x and y enjoy the same flat
layout (mandatory invariant of <|[>).
» Each first line in x is at least as long as each first line in
y (second invariant).
» Note: <[> and flatten are not directly exposed to the
user (only via group and other supporting functions).
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Properties/Laws of (<|>)

Operators on simple documents are extended pointwise
through union:

(x <I>y) <>z
x <> (y <> 2)
nest i (x <[> y)

(x <> 2) <> (y <> 2)
(x <> y) <> (x <> 2)
nest i x <[> nest iy
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Properties/Laws of flatten

The interaction of flatten with other document operators:

flatten x —— distribution law

flatten (x <[> y)

flatten (x <> y) flatten x <> flatten y

flatten nil = nil

flatten (text s) text s

flatten line text " " -- the most intere-
-- sting case: line-
-—- breaks are replaced
-- by a single space

flatten (nest i x) = flatten x

15.1
15.2
15.3
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Implementation of group

...by means of flatten and (<>), the implementation of
group can be given:

group x = flatten x <[> x

Intuitively: group adds the flattened layout to a set of layouts.

Note: A document always represents a non-empty set of
layouts where all layouts in the set flatten to the same layout.
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Normal Form

Based on the previous laws each document can be reduced to
a normal form of the form

x1 <[> ... <|> xn

where each xi is in the normal form of simple documents
(which was introduced previously).
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Picking a “best” Layout

. out of a set of layouts by defining an ordering relation on
lines in dependence of the given maximum line length.

Out of two lines
» which do not exceed the maximum length, select the
longer one

» of which at least one exceeds the maximum length, select
the shorter one

Note: Sometimes we have to pick a layout where some line

exceeds the limit (a key difference to the approach of Hughes).
However, this is done only, if this is unavoidable.
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The Adapted Implementation of Doc

The new implementation of Doc as algebraic type. It is similar
to the previous one except for the new construct representing
the union of two documents:

data Doc =
Nil —-- Just as before, the
| String ’Text’ Doc -- first 3 alternatives,
| Int ’Line’ Doc -- no change here.
| Doc ’Union’ Doc  -- New: A construct

—-—- representing the
-— union of two
—— documents.

15.1
15.2
S
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Relationship of Constructors and Document
Operators

The following relationships hold between the constructors and
the document operators:

Nil
s *Text’ x

nil

text s <> x

nest i line <> x
x <[>y

i ’Line’ x
x ’Union’ y
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Example (1)

The document

group (
group (
group (
group( text "hello" <> line <> text "a")
<> line <> text "b")
<> line <> text "c")
<> line <> text "d")
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Example (2)

...has the following 5 possible layouts:

hello a b cd hello a b c hello a b
d c
d

hello a
b
c
d

hello

a

Q 0 o
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Example (3)

Task: Print the above document under the constraint that the
maximum line width is 5.

~> the right-most layout of the previous slide is requested.

A few initial (performance) considerations:

» Factoring out "hello" of all the layouts in x and y

"hello" ’Text’ ((" " ’Text’ x) ’Union’ (0 ’Line’ y))
» Defining additionally the interplay of (<>) and nest with
Union

(x <> z) ’Union’ (y <> z)
nest k x ’Union’ nest k y

(x ’Union’ y) <> z
nest k (x ’Union’ y)
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Example (4)

Implementations of group and flatten are straightforward:

group Nil Nil
group (i ’Line’ x) = (" " ’Text’ flatten x)
’Union’ (i ’Line’ x)

group (s ’Text’ x)
group (x ’Union’ y)

s ’Text’ group x
group x ’Union’ y

flatten Nil Nil

flatten (i ’Line’ x) =" " ’Text’ flatten x
flatten (s ’Text’ x) s ’Text’ flatten x
flatten (x ’Union’ y) = flatten x
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Example (5)
Considerations on correctness (similar reasoning as earlier):

Derivation of group (i ’Line’ x) (see line two) (preserving
the invariant required by union)

group (i ’Line’ x)
{ Definition of Line }
group (nest i line <> x)
{ Definition of group }
flatten (nest i line <> x) <|> (nest i line s <> x)
{ Definition of flatten }
(text " " <> flatten x) <|> (nest i line <> x)
{ Definition of Text, Union, Line }
(" " "Text’ flatten x) ’Union’ (i ’Line’ x)
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Example (6)
Correctness considerations (cont'd):

Derivation of group (s ’Text’ x) (see line three)

group (s ’Text’ x)
{ Definition Text }
group (text s <> x)
= { Definition group }
flatten (text s <> x) <|> (text s <> x)
= { Definition flatten }
(text s <> flatten x) <[> (text s <> x)
= { <> distributes through <|> }
text s <> (flatten x <|> x)
= { Definition group }
text s <> group x
= { Definition Text } e
s ’Text’ group x -
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Example (7)
Picking the “best” layout:

best w k Nil
best w k (i ’Line’ x)
best w k (s ’Text’ x)
= s ’Text’ best w (k + length s) x
best w k (x ’Union’ y)
= better w k (best w k x) (best w k y)

Nil
i ’Line’ best w i1 x

better w k x y
if fits (w-k) x then x else y

Remark:
» best: Converts a “union”-afflicted document into a
“union”-free document.
» Argument w: Maximum line width.
» Argument k: Already consumed letters (including inden-
tation) on current line. ey



Example (8)

Check, if the first document line stays within the maximum
line length w:

fits w x | w<0 = False -- cannot fit
fits w Nil = True -- fits trivially
fits w (s ’Text’ x)
= fits (w - length s) x -- fits if x fits into

-- the remaining space
-- after placing s
fits w (i ’Line’ x) = True -- yes, it fits

Last but not least, the output routine (the layout remains
unchanged):

Pick the best layout and convert it to a string:

pretty w x = layout (best w 0 x)
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Enhancing Performance (1)

Sources of inefficiency:

1. Concatenation of documents might pile up to the left.

2. Nesting of documents adds a layer of processing to
increment the indentation of the inner document.

Problem fixes:

» For 1.): Add an explicit representation for concatenation,
and generalize each operation to act on a list of conca-
tenated documents.

» For 2.): Add an explicit representation for nesting, and
maintain a current indentation that is incremented as
nesting operators are processed.
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Enhancing Performance (2)

Implementing these fixes by means of a new version of the
type of documents:

data DOC = NIL —-— In this version, there
| DOC :<> DOC -- is one constructor for
| NEST Int DOC -- every operator that
| TEXT String -- builds a document
| LINE
| DOC :<|> DOC

Remark: In distinction to the previous document type we here use
capital letters in order to avoid name clashes with the previous
definitions
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Implementing the Document Operators

Defining the operators to build a document are straightfor-
ward:

nil = NIL

x <> y =Xx :<> y
nest i x = NEST i x
text s = TEXT s
line = LINE
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Implementing group and flatten

As before, the following invariants must hold:

» In (x :<|> y) all layouts in x and y flatten to the same
layout.

» No first line in x is shorter than any first line in y.

Definitions of group and flatten are then straightforward:

group x flatten x :<[> x

flatten NIL
flatten (x :<> y)

NIL

flatten x:<> flatten y

flatten (NEST i x) NEST i (flatten x)

flatten (TEXT s) TEXT s

flatten LINE = TEXT " "

flatten (x :<[> y) = flatten x 152
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Representation Function

Generating the document from an indentation-afflicted
document (“indentation-document pair”):

rep z = fold (<>) nil [nest i x | (i,x) <- z ]
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Selecting the “best” Layout

Generalizing the function “best” by composing the old func-
tion with the representation function to work on lists of inden-
tation-document pairs:

be w k z = best w k (rep z) -- Hypothesis
best w k x =be w k [(0,x)]
where the definition is derived from the old one:
be w k [] = Nil
be w k ((i,NIL):z) =be wkz
be w k ((i,x :<>y) : z) =Dbewk ((1,x) : (i,y)
be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)
be w k ((i,TEXT s) : z)

= s ’Text’ be w (kt+length s) z
be w k ((i,LINE) : z) = i ’Line’ bew i z
be w k ((i.x :<[>y) : 2)

better w k (be w k ((i.x) : z))

1 .Z)
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Preparing the XML-Example (1)

First some useful supporting functions:

X <+>y =x <> text " " <>y
x </>y x <> line <>y

folddoc f [] = nil
folddoc f [x] X
folddoc f (x:xs8) f x (folddoc f xs)

folddoc (<+>)
folddoc (</>)

spread
stack
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Preparing the XML-Example (2)

Further supportive functions:

-- An often recurring output pattern

bracket 1 x r = group (text 1 <>
nest 2 (line <> x) <>
line <> text r)

—— Abbreviation of the alternative tree
-- layout function
showBracket’ ts = bracket "[" (showTrees’ ts) "]"

-- Filling up lines (using words out of the

-- Haskell Standard Lib.)

X <+/>y = x <> (text " " :<|> line) <>y
fillwords = folddoc (<+/>) . map text . words |,

S
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Preparing the XML-Example (3)

f£il1, a variant of fillwords
~> collapses a list of documents to a single document.

£fill [] = nil
fill [x] = X
fill (x:y:zs)
= (flatten x <+> fill (flatten y : zs)) :<[|>
(x </> £ill (y : zs)
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Example: Printing XML Documents (1)

...using a simplified syntax:

data XML = Elt String [Att] [XML]

| Txt String
data Att = Att String String
showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a [])
= [text "<" <> showTag n a <> text "/>"
showXMLs (Elt n a c)
= [text "<" <> showTag n a <> text ">" <>
showFill showXMLs c <>
text "</" <> text n <> text ">"]
showXMLs (Txt s) = map text (words s)

showAtts (Att n v)
= [text n <> text "=" <> text (quoted v)]
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Example: Printing XML Documents (2)

Continuation:
quoted s = U\"" 44 g 44 M\

text n <> showFill showAtts a

showTag n a

showFill f []
showFill f xs
= bracket "" (fill (concat (map f xs))) ""

nil
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Example: Printing XML Documents (3)

1st XML Layout: ...for a given maximum line length of 30
letters.

<p
color="red" font="Times"
size="10"

Here is some
<em> emphasized </em> text.
Here is a
<a
href="http://www.eg.com/"
> link </a>
elsewhere.
</p> 152
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Example: Printing XML Documents (4)

2nd XML Layout: ...for a given maximum line length of 60
letters.

<p color="red" font="Times" size="10" >
Here is some <em> emphasized </em> text. Here is a
<a href="http://www.eg.com/" > link </a> elsewhere.
</p>
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Example: Printing XML Documents (5)

3rdd XML Layout: ...after dropping of flatten in £il1:

<p color="red" font="Times" size="10" >
Here is some <em>
emphasized
</em> text. Here is a <a
href="http://www.eg.com/"
> link </a> elsewhere.
</p>

...start and close tags are crammed together with other text
~> less beautifully than before.
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Summing up: Why “prettier” than “pretty”?

The pretty printer library proposed by John Hughes

» John Hughes. The design of a pretty-printer library. In
Johan Jeuring, Erik Meijer (Eds.), Advanced Functional
Programming, Springer-V., LNCS 925, 53-96, 1995.

is widely recognized as a standard.

From a technical perspective, this library enjoys the following
characteristics:
» There are two ways (horizontal and vertical) to conca-
tenate documents, one of which

» without unit (vertical)
» with right-unit but no left-unit (horizontal)
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Summing up (Cont'd)

Philip Wadler considers his “Prettier Printer” an improvement
of the one of John Hughes.

From a technical perspective, a distinguishing feature of the
“Prettier Printer” proposed by Philip Wadler is:
» There is only one way to concatenate documents that is

» associative
» with a left-unit and a right-unit.

Moreover, John Hughes' pretty printer library
» consists of ca. 40% more code,
» is ca. 40% slower

as the “prettier printer” of Philip Wadler.
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Summary of the Code (1)

Source: Philip Wadler. A Prettier Printer. In Jeremy Gibbons,
Oege de Moor (Eds.), The Fun of Programming. Palgrave

MacMillan, 2003.

infixr 5:<|
infixr 6:<>
infixr 6 <>

data DOC =

data Doc = Nil
I
I

>

N
I
I
I
I
I

IL

DOC :<> DOC
NEST Int DOC
TEXT String
LINE

DOC :<|> DOC

String ’Text’ Doc
Int ’Line’ Doc
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Summary of the Code (2)

nil = NIL

x <>y =x <>y

nest i x = NEST 1 x

text s = TEXT s

line = LINE

group X = flatten x :<[|> x
flatten NIL = NIL

flatten (x :<> y)

flatten x:<> flatten y
flatten (NEST i x) = NEST i (flatten x)
flatten (TEXT s) TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x
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Summary of the Code (3)

layout Nil
layout (s ’Text’ x)
layout (i ’Line’ x)

s ++ layout x
’\n’: copy i ’ ’ ++ layout x

copy i x

x | _ <= [1..i]]
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Summary of the Code (4)

best

be
be
be

be
be

be
be

= s =

N = =

= =

w k x = be w k [(0,x)]
k [] = Nil

k ((i,NIL):z) = be w k z

k ((i,x :<>y) : 2)

be w k ((i,x) : (i,y) : z)
k ((i,NEST j x) : z) = be w k ((i+j),x) : 2z)
k ((i,TEXT s) : z)
s ’Text’ be w (k+length s) z
k ((i,LINE) : z) =1 ’Line’ bew i z
k ((A.x :<I>y) : 2)
better w k (be w k ((i.x) : 2))
(be w k (i,y) : z))

better w k x y

if fits (w-k) x then x else y
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Summary of the Code (5)

fits w x | w<0 = False

fits w Nil = True

fits w (s ’Text’ x) = fits (w - length s) x
fits w (i ’Line’ x) = True

pretty w x = layout (best w 0 x)
-- Utility functions

X <+>y =x <> text " " <> y

x </>y = x <> line <> y
folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs)

f x (folddoc f xs)
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Summary of the Code (6)

folddoc (<+>)
folddoc (</>)

spread
stack

bracket 1 x r = group (text 1 <>
nest 2 (line <> x) <>

line <> text r)

x <+/>y = x <> (text " " :<|> line) <>y
fillwords = folddoc (<+/>) . map text . words
fill [] = nil

fill [x] =X

fill (x:y:zs)
= (flatten x <+> fill (flatten y : zs))
:<|> (X </> fill (y : ZS) 15.2
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Summary of the Code (7)

-— Tree example
data Tree

Node String [Tree]

showTree (Node s ts) = group (text s <>
nest (length s) (showBracket ts))

showBracket [] = nil
showBracket ts text "[" <>
nest 1 (showTrees ts) <> text "]"

showTree t
showTree t <> text "," <>
line <> showTrees ts

showTrees [t]
showTrees (t:ts)
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Summary of the Code (8)

text s <> showBracket’ ts

showTree’ (Node s ts)

showBracket’ [] nil
showBracket’ ts

= bracket "[" (showTrees’ ts) "]"
showTrees’ [t] = showTree t

showTrees’ (t:ts)
= showTree t <> text "," <> line <> showTrees ts
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Summary of the Code (9)

tree = Node "aaa"[ Node
1,
Node
Node
]
]

testtree w = putStr(pretty w
testtree’ w = putStr(pretty w

"bbbb" [ Node
Node

"eee"[],

"ffff"[ Node
Node
Node

"eee" [] ,
"dd" []

||ggu [] ,
"hhh" I:l s

"ii" []

(showTree tree))
(showTree’ tree))
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Summary of the Code (10)

-—- XML Example
data XML = E1t String [Att] [XML]
| Txt String
data Att = Att String String
showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a [])
= [text "<" <> showTag n a <> text "/>"
showXMLs (Elt n a c)
= [text "<" <> showTag n a <> text ">" <>
showFill showXMLs c <>
text "</" <> text n <> text ">"]
showXMLs (Txt s) = map text (words s) 152
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Summary of the Code (11)

showAtts (Att n v)
= [text n <> text "=" <> text (quoted v)]

quoted s = "\"" ++ g ++ "\""

showTag n a text n <> showFill showAtts a

showFill f []
showFill f xs
= bracket "" (fill (concat (map f xs))) ""

nil
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Summary of the Code (12)

xml =
Elt "p"[Att "color" "red",
Att "font" "Times",
Att "size" "10"
] [ Txt "Here is some",
Elt "em" [] [ Txt "emphasized"],
Txt "text.",
Txt "Here is a",
Elt "a" [ Att "href" "http://www.eg.com/"]
[ Txt "link" ],
Txt "elsewhere."

testXML w = putStr (pretty w (showXML xml))

15.2
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Background Reading (1)

On an early imperative “Pretty Printer:"

» Derek Oppen. Pretty-printing. ACM Transactions on

Programming Languages and Systems 2(4):465-483,
1980.

...and a functional realization of it:

» Olaf Chitil. Pretty Printing with Lazy Dequeues. In
Proceedings of the ACM SIGPLAN Haskell Workshop
(Haskell 2001), Universiteit Utrecht UU-CS-2001-23,
183-201, 2001.

15.2
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Background Reading (2)

Overview on the evolution of a Pretty Printer Library and

origin of the development of the Prettier Printers proposed by
Philip Wadler:

» John Hughes. The Design of a Pretty-Printer Library. In
Johan Jeuring, Erik Meijer (Eds.), Advanced Functional
Programming, First International Spring School on Ad-

vanced Functional Programming Techniques. Springer-V.,
LNCS 925, 53-96, 1995.

...a variant is implemented in the Glasgow Haskell Compiler:

» Simon Peyton Jones. Haskell pretty-printer library. 1997.
www.haskell.org/libraries/#prettyprinting

15.1
15.2
15.3
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Chapter 15.3

References, Further Reading
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Chapter 15: Further Reading (1)

[ Manuel M.T. Chakravarty, Gabriele Keller. Einfiihrung in
die Programmierung mit Haskell. Pearson Studium, 2004.
(Kapitel 13.1.2, Ausdriicke formatieren; Kapitel 13.2.1,
Formatieren und Auswerten in erweiterter Version)

[ Olaf Chitil. Pretty Printing with Lazy Dequeues. In Pro-
ceedings of the ACM SIGPLAN 2001 Haskell Workshop
(Haskell 2001), Universiteit Utrecht UU-CS-2001-23,
183-201, 2001.

[§ John Hughes. The Design of a Pretty-Printer Library. In
Johan Jeuring, Erik Meijer (Eds.), Advanced Functional
Programming, First International Spring School on Ad-
vanced Functional Programming Techniques. Springer-V.,
LNCS 925, 53-96, 1995. o
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Chapter 15: Further Reading (2)
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Derek Oppen. Pretty-printing. ACM Transactions on Pro-
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Tillmann Rendel, Klaus Ostermann. Invertible Syntax
Descriptions: Unifying Parsing and Pretty Printing. In
Proceedings of the 3rd ACM Haskell Symposium on
Haskell (Haskell 2010), 1-12, 2010.

Bryan O'Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O'Reilly, 2008. (Chapter 5, Writing a Library:
Working with JSON Data — Pretty Printing a String,
Fleshing Out the Pretty-Printing Library)
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Chapter 15: Further Reading (3)

[§ Simon Peyton Jones. Haskell pretty-printer library. 1997.
www.haskell.org/libraries/#prettyprinting

[§ Philip Wadler. A Prettier Printer. In Jeremy Gibbons,
Oege de Moor (Eds.), The Fun of Programming. Palgrave
MacMillan, 223-243, 2003.
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Chapter 16

Functional Reactive Programming

Chap. 16
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Motivation

Systems which are composed of

» continuous and

» discrete

components are called hybrid systems.

Chap. 16
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Mobile Robots

Mobile robots are special hybrid systems:

» From a physical perspective:
» Continuous components: Voltage-controlled motors,
batteries, range finders, ...
» Discrete components: Microprocessors, bumper
switches, digital communication,...

» From a logical perspective:

» Continuous notions: Wheel speed, orientation, distance
from a wall,...

» Discrete notions: Running into another object, receiving
a message, achieving a goal,...

Chap. 16
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Objective of this Chapter

Designing and implementing two

» imperative-style languages for controlling robots which
will be done in terms of a simulation (in order to allow
running the simulations at home without having to buy
(possibly expensive) robots first).

This will deliver two examples of a
» domain specific language (DSL).

Simultaneously, it yields a nice application of the
» type constructor classes

» Functor
» Monad
» Arrow

Chap. 16
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Reading for this Chapter

For Chapter 16.1:

» Paul Hudak. The Haskell School of Expression — Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 19, An Imperative
Robot Language)

~~ using monads!

For Chapter 16.2:
» Paul Hudak, Antony Courtney, Herik Nilsson, John Peter-
son. Arrows, Robots, and Functional Reactive Program-

ming. Summer School on Advanced Functional Program-
ming 2002, Springer-V., LNCS 2638, 159-187, 2003.

~~ using arrows!

Note: Chapter 16.1 and 16.2 are independent of each other; Chap. 16
they do not build on each other.
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Chapter 16.1

An Imperative Robot Language

16.1
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The World of Robots — Illustration (1)

Our robots’ world:

000000

000000

000000 o
R

...is a two-dimensional world with as treasures! 161
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The World of Robots — Illustration (2)

In more detail:

The world the robots live in is
» a finite two-dimensional grid of square form

» equipped with walls
» that might form rooms and might have doors
» with placed on some grid points

The preceding illustration shows an example of a
» robot’s world with one room full of
» and a robot sitting in the centre of the world ready for
exploring it!
161
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The World of Robots — lllustration (3)

A robot's mission:

...explore the world, collect treasures, leave footprints! !

16.3
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The World of Robots — Illustration (4)

In more detail:

A robot's mission is

» to explore its world, to collect the treasures in it, and to
leave footprints of its exploration, i.e.,

» to systematically stroll through its world, e.g., in the
form of an outward-oriented spiral

» picking up the it finds and saving them in its
pocket
» dropping at some grid points

» marking its way with a colored pen

16.1
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Objective
...enabling the robots to explore and shape their world!

In other words, we would like to write programs such as:

(1) drawSquare = (2) moveToWall =
do penDown while (isnt blocked)
move do move
turnRight
move
turnRight  (3) getRich =
move while (isnt blocked) $
turnRight do move
move checkAndPickCoin

Note: (>>) is relevant for this application! 1ox
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Modeling the World

Modeling the world our robots live and act in:
type Grid = Array Position [Direction]
type Position = (Int,Int)

data Direction = North | East | South | West
deriving (Eq, Show, Enum)

16.1
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Modeling the Robots (1)

The internal states of the robots are made up by:

oA W =

Robot position

Robot orientation

Pen status (up or down)

Pen color

Placement of gold coins on the grid

Number of coins in the robot’s pocket

16.1
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Modeling the Robots (2)

Modeling the internal states of the robots:

data RobotState

= RobotState
{position :: Position
, facing :: Direction
, pen :: Bool
, color :: Color
, treasure :: [Position]
, pocket :: Int
}

deriving Show
where

data Color = Black | Blue | Green | Cyan
| Red | Magenta | Yellow | White
deriving (Eq, Ord, Bounded, Enum, Ix, Show, Read)

1228/16
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Remarks (1)

Note that the above definition takes advantage of Haskell's
field-label syntax (record syntax):

» Field labels (here position, facing, pen, color,
treasure, pocket) allow access to components by
names instead of position without necessitating specific
selector functions.

16.1
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Remarks (2)

Robot states could have been equivalently defined without
referring to field label syntax:

data RobotState

= RobotState
Position
Direction
Bool
Color
[Position]
Int

deriving Show

...losing the advantage of accessing fields by names.

16.1
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Remarks (3)

lllustrating the usage of field labels: Generating, accessing,
modifying values of state components.

Example 1: Generating field values

The definition

s1 = RobotState (0,0) East True Green
[(2,3),(7,9),(12,42)] 2 :: RobotState

is equivalent to
s2 = RobotState { position = (0,0)

, facing = East

, pen = True

, color = Green

, treasure = [(2,3),(7,9),(12,42)]

pocket 2
} :: RobotState 161
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Remarks (4)

Advantages of using field label syntax:

» |t is more “informative.”

» The order of fields gets irrelevant.

For example: The definition of s3

s3 = RobotState
{ position = (0,0)

, pocket =2

, pen = True

, color = Green

, treasure = [(2,3),(7,9),(12,42)]
, facing = East

} :: RobotState

is equivalent to that of s2. o
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Remarks (5)

Example 2: Accessing field values

position s2 ->> (0,0)
color s3 ->> (Green

Example 3: Modifying field values

s3 { position = (22,43), pen = False }
->> RobotState { position = (22,43)
, facing = East
, pen = False
, color = Green
, treasure = [(2,3),(7,9),(12,42)]
, pocket = 2
} :: RobotState 161
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Remarks (6)

Example 4: Using field names in patterns

jump (RobotState { position = (x,y) }) = (x+2,y+1)

16.1
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Robots as a Member of Type Class Monad

Defining Robot as a new algebraic data type

newtype Robot a
= Robot (RobotState —-> Grid
-> Window -> I0 (RobotState,a))

...allows making Robot an instance of type class Monad:

instance Monad Robot where

Robot sf0 >>= f = Robot $ \sO g w -> do
(sl,al) <- sf0 sO g w
let Robot sfl = f al
(s2,a2) <- sfl sl gw
return (s2,a2)

return a = Robot (\s -> return(s,a))

16.1
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Remarks (1)

Note that

instance Monad Robot where
return a = Rob (\s _ _ -> return(s,a))

Rob sf0 >>=f = Rob $ \sO g w -> do
(sl,al) <- sf0 sO g w

let Rob sfl1 = f al
(s2,a2) <- sfl sl g w
return (s2,a2)

requires function application “$", not function composition
(For clarity, Robot has been replaced by Rob (cp. next slide)).

16.1
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Remarks (2)

The Window argument

newtype Robot a
= Rob (RobotState -> Grid
-> Window -> I0 (RobotState,a))

...allows to specify the window, in which the graphics is
displayed.

16.1
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Robots — Simulation and Control
The implementation environment:

module Robot where

import Array

import List

import Monad

import SOEGraphics

import Win32Misc (timeGetTime)

import qualified GraphicsWindows as GW (getEvent)

Note:
» Graphics, SOEGraphics are two commonly used
graphics libraries being Windows-compatible.
» Double-check the SOE homepage at haskell.org/soe

regarding the availability of the modules SOEGraphics
and GraphicsWindows.

16.1
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IRL — The Imperative Robot Language (1)

Key insight:
» Taking state as input
» Possibly querying the state in some way

» Returning a possibly modified state

...makes the imperative nature of IRL commands obvious.

16.1
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IRL — The Imperative Robot Language (2)

IRL commands and their implementation

» Commands not related to graphics:

right, left :: Direction -> Direction

right d = toEnum (succ (mod (fromEnum d) 4))
left d = toEnum (pred (mod (fromEnum d) 4))

» Supporting functions for updating and querying states:
updateState :: (RobotState -> RobotState)
-> Robot ()

updateState u = Robot (\s -> return (u s, O))

queryState :: (RobotState -> a) -> Robot a
queryState q = Robot (\s _ _ -> return (s, q s))

16.1
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The Type Class Enum (1)
...of the Standard Prelude:

class Enum a where

succ, pred 1t a > a

toEnum :: Int -> a

fromEnum :: a -> Int

enumFrom a —> [a] -= [n..]
enumFromThen :ra -> a —> [a] -- [n,n’..]
enumFromTo a -> a —> [a] -= [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

succ = toEnum . (+1) . fromEnum

pred = toEnum . (subtract 1) . fromEnum
enumFrom x = map toEnum [fromEnum x..]
enumFromThen x y = map toEnum [fromEnum x, fromEnum y..]
enumFromTo x y = map toEnum [fromEnum x..fromEnum y]
enumFromThenTo x y z = map toEnum [fromEnum x,

fromEnum y..fromEnum z]
toEnum, fromEnum = ...implementation is type-dependent B
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The Type Class Enum (2)

The following equalities hold:

enumFrom n “ [mn..]
enumFromThen n n’ ~ [n,n’..]
enumFromTo n m ~ [n..m]
enumFromThenTo n n’ m ~ [n,n’..m]

Example:
data Color = Red | Orange | Yellow | Green
| Blue | Indigo | Violet

instance Enum Color where

[Red. .Greenl] ->> [Red, Orange, Yellow, Green]
[Red, Yellow..] ->> [Red, Yellow, Blue, Violet]
fromEnum Blue ->> 4

toEnum 3 ->> Green

16.1
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IRL — The Imperative Robot Language (3)

» Commands for robot orientation:
turnLeft :: Robot ()
turnLeft =
updateState (\s -> s {facing

left (facing s)})

turnRight :: Robot ()
turnRight =
updateState (\s -> s {facing = right (facing s)})

turnTo :: Direction -> Robot ()
turnTo d = updateState (\s -> s {facing = d})

direction :: Robot Direction
direction = queryState facing

16.1
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IRL — The Imperative Robot Language (4)

» Commands for blockade checking:

blocked :: Robot Bool
blocked =
Robot $ \s g _ —>
return(s, facing s ’notElem’ (g ’at’ position s))

16.1
16.2

16.3
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IRL — The Imperative Robot Language (5)

» Commands for moving a robot
move :: Robot ()
move =
condl (isnt blocked)
(Rob $ \s _ w -> do
let newPos = movePos (position s) (facing s)
graphicsMove w s newPos

return (s {position = newPos}, ())

)
movePos :: Position -> Direction -> Position
movePos (x,y) d

= case d of
North -> (x,y+1)
South -> (x,y-1)
East -> (x+1,y) 161
West -> (x-1,y)

1245/16



IRL — The Imperative Robot Language (6)

» Commands for using the pen:
penUp :: Robot ()
penUp = updateState (\s -> s {pen = Falsel})

penDown :: Robot ()
penDown = updateState (\s -> s {pen = Truel})

setPenColor :: Color -> Robot ()
setPenColor c¢ = updateState (\s -> s {color = c})

16.1
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IRL — The Imperative Robot Language (7)

» Commands for handling coins:

onCoin :: Robot Bool
onCoin = queryState (\s ->
position s ’elem’ treasure s)

coins :: Robot Int
coins = queryState pocket

16.1

1247/16



IRL — The Imperative Robot Language (8)

» Commands for handling coins (cont'd):

pickCoin :: Robot ()
pickCoin =
condl onCoin
(Robot $ \s _ w —>
do eraseCoin w (position s)
return (s {treasure =
position s ’delete’ treasure s,

pocket = pocket s+1}, ())

16.1
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IRL — The Imperative Robot Language (9)

» Commands for handling coins (cont'd):

dropCoin :: Robot ()
dropCoin =
condl (coins >* return 0)
(Robot $ \s _ w —>
do drawCoin w (position s)
return (s {treasure =
position s : treasure s,

pocket = pocket s-1}, ())

16.1
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Logic and Control (1)

» Logic and control functions:
cond :: Robot Bool -> Robot a
-> Robot a -> Robot a
cond p ¢ a = do pred <- p
if pred then c else a

condl p ¢ = cond p ¢ (return ())

while :: Robot Bool -> Robot () -> Robot ()
while p b = condl p (b >> while p b)

(ll*) :: Robot Bool -> Robot Bool -> Robot Bool
bl [[* b2 = do p <- bl
if p then return True
else b2

16.1
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Logic and Control (2)

» Logic and control functions (cont'd):

(&&*) :: Robot Bool —-> Robot Bool -> Robot Bool
bl &&* b2 = do p <- bl
if p then b2
else return False

isnt :: Robot Bool -> Robot Bool
isnt = 1iftM not

(>*) :: Robot Int -> Robot Int -> Robot Bool
(>x%) = 1iftM2 ()

(<*) :: Robot Int -> Robot Int -> Robot Bool
(<%) = 1iftM2 (<)

16.1
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Logic and Control (3)

The higher-order functions 1iftM and 1iftM2 are defined in
the library Monad (as well as 1iftM3,...,1iftM5):

1iftM :: (Monad m) => (a -=>Db) > (ma ->mb)
1liftM f = \a -> do a’ <- a
return (f a’)

1iftM2 :: (Monad m) => (a -> b -> ¢)
> (ma->mb ->mc)
liftM2 f = \a b -> do a’ <- a
b’ <- b
return (f a’ b’)

16.1

1252/16



Logic and Control (4)

Note:

» Basing the implementations of isnt, (>*) and (<*) on
1iftM and 1iftM2 allows to dispense the usage of special
lift funcions.

» No basing of the implementations of (| [*) and (&&x*)
on 1iftM2 in order to avoid (unnecessary) strictness in
their second arguments.

16.1
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Further Data Structures

colors :: Array Int Color
colors = array (0,7)
[(0,Black), (1,Blue), (2,Green), (3,Cyan),
(4,Red), (5,Magenta), (6,Yellow), (7,White)]

where (as a reminder!)

data Color = Black | Blue | Green | Cyan
| Red | Magenta | Yellow | White
deriving (Eq, Ord, Bounded, Enum, Ix, Show, Read)

Note:
» Color is defined as in the library Graphics.
» Equivalently we could have defined more concisely:
colors :: Array Int Color

colors = array (0,7) (zip [0..7] [Black..White])
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Shaping the Robots’ Initial World g0
The robots’ world is a grid of type Array:

type Grid = Array Position [Direction]
We can access the grid points using:

at :: Grid -> Position -> [Direction]
at = (1)

The size of the inital grid g0 is given by:

size :: Int
size = 20
with

» centre (0,0) and

» corners (size,size), ((-size),size),
((-size),(-size)) and (size, (-size)).

16.1
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The Initial World g0 (1)

...and the 4 surrounding walls (no walls inside):

» Inner points of g0 are given by:
interior = [North, South, East, West]

» Extremal points on the grid borders (north border, north-
east corner, etc.) are given by:

nb
sb
eb
wb
nwc
nec
swc
sec

[South,
[North,
[North,
[North,
[South,
[South,
[North,
[North,

East, West] -- nb: north border
East, West]

South, West]

South, East] -- wb: west border
East] -- nwc: northwest corner
West]

East]

West] -- sec: southeast corner

16.1
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The Initial World g0 (2)

This allows:

...enumerating inner and border grid points using a list
comprehension:
g0 :: Grid
g0 = array ((-size, -size), (size, size))
([((d, size), nb) | i <- 1 ] ++
([((i, -size), sb) | 1 <= r ] ++
([((size, 1), eb) | 1 <=1 ] ++
([((-size, i), wb) | 1 <= r ] ++
([((size, 1), eb) | i <—r ] ++
([((i,j), interior) | i < r, j <- 1 ] ++
([((size, size), nec), ((size, -size), sec),
((-size, size), nwc),
((-size, -size), swc)])
where r = [1-size..size-1]

16.1
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The new World g1 that extends World g0 (1)

...evolves from building new walls using the array library
functions (//):

(//) :: Ix a => Array a b -> [(a,b)] -> Array a b

Example: Application of (//)
» Reversing the positions of “black” und “white” in
colors:

colors//[(0,White), (7,Black)]

->> array (0,7)
[(0,White), (1,Blue), (2,Green), (3,Cyan),

(4,Red), (5,Magenta), (6,Yellow),
(7,Black)] :: Array Integer Color

16.1
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The new World g1 that extends World g0 (2)

Supporting functions for building new walls:

-— Building horizontal and vertical walls
mkHorWall, mkVerWall ::
Int -> Int -> Int -> [(Position, [Direction])]

-- Building west/east-oriented walls
-- leading from (x1,y) to (x2,y)
mkHorWall x1 x2 y
= [((x,y), nb) | x <= [x1..x2]] ++
[((x,y+1), sb) | x <= [x1..x2]]

-- Building north/south-oriented walls
-- leading from (x,yl) to (x,y2)
mkVerWall y1 y2 x
= [((x,y), eb) | y <= [yl..y2]] ++
[((x+1,y), wb) | y <= [yl..y2]] o

16.3
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The new World g1 that extends World g0 (3)

World g1 evolves from world g0 by

» building a west/east-oriented wall leading from (-5,10)
to (5,10):

gl :: Grid
gl = g0//mkHorWall (-5) 5 10

16.1
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The World g2 that extends g0 (1)

Supporting functions for building a “room:”

mkBox :: Position -> Position
-> [(Position, [Direction])]
mkBox (x1, y1) (x2, y2)
= mkHorWall (x1+1) x2 y1 ++
mkHorWall (x1+1) x2 y2 ++
mkVerWall (y1l+1) y2 x1 ++

mkVerWall (yl+1) y2 x2
Note:

» The above function creates two field entries for each of
the four inner corners.

» After creation the value of these entries are still undefined.

» Using the function accum allows initializing these entries
on-the-fly of their creation:
accum :: (Ix a) => (b -> ¢ => b)

-> Array a b -> [(a,c)] -> Array a b

16.1
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The World g2 that extends g0 (2)

Recall the function accum:

accum :: (Ix a) => (b -> ¢ -> Db)
-> Array a b -> [(a,c)] -> Array a b

The function accum
» is quite similar to the function (//).

» in case of replicated entries the function of the first
argument is used for resolving conflicts.

» the List-library function intersect is suitable for this
for the case of our example:
Example:

[South, East, West] ’intersect’
[North, South, West] ->> [South, West]

which corresponds to a northeast corner.

16.1
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The World g2 that extends g0 (3)

Example: Building a room with (-10,5) as lower left corner
and (-5,10) as upper right corner

» using accum und intersect.

World g2 then extends world gO:

g2 :: Grid
g2 = accum intersect g0 (mkBox (-15,8) (2,17))

16.1
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The World g3 that extends g2

Continuing the example: Adding a door (to the middle of the
top wall of the room)

» using accum und union.

World g2 evolves to world g3:

g3 :: Grid
g3 = accum union g2 [((-7,17), interior),
((-7,18), interior)]

16.1
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Animation: Robot Graphics (1)

Animation

» by means of incrementally updating the world.

To this end we make use of the function:

drawLine :: Window -> Color
-> Point -> Point -> I0 ()
drawLine w ¢ pl p2
= drawInWindowNow w (withColor c (line pl p2))

which makes use of the Graphics-library function
drawInWindowNow.

16.1
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Animation: Robot Graphics (2)

The incremental update of the world must ensure

» absence of interferences of graphics actions.

To this end we assume:

1. Grid points are 10 pixels apart.
2. Wall are drawn halfway between grid points.

3. Lines drawn by a robot's pen directly connects two grid
points.

4. Coins are drawn as yellow circles just to the above and to
to the left of a grid point.

5. Erasing coins is done by drawing black circles over already
existing yellow ones.

16.1
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Animation: Robot Graphics (3)

Using the below top level constants ensures the absence of

interferences:

d
d

wC, cC
we
cc

xWin, yWin ::

xWin
yWin

. Int

5

:: Color

Blue
Yellow

Int
600
500

-- half the distance
-— between grid points

-- color
-- color

of walls
of coins

16.1
16.2

16.3
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Animation in Action (1)

Putting it all together.

User-control of program progress by the program'’s awaiting
the user's hitting the spacebar:

spaceWait  :: Window -> I0 ()
spaceWait w = do k <- getKey w
if k==’ ’ then return ()
else spaceWait w

16.1

1268/16



Animation in Action (2)

Running an IRL program:

runRobot :: Robot () -> RobotState -> Grid -> I0 ()
runRobot (Robot sf) s g =
runGraphics $
do w <- openWindowEx "Robot World" (Just (0,0))
(Just (xWin, yWin)) drawGraphic (Just 10)
drawGrid w g
drawCoins w s
spaceWait w
st sgw
spaceClose w

16.1
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Animation in Action (3)

Intuitively, runRobot causes:

» Opening a window

» Drawing a grid

v

Drawing the coins

v

Waiting for the user to hit the spacebar

v

Continuing running the program with starting state s and
grid g

16.1
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Animation in Action (4)

Fixing a suitable starting state:

sO :: RobotState
sO = RobotState {position = (0,0)
, pen = False
, color = Red
, facing = North
, treasure = tr
, pocket =0

tr :: [Positionl]
tr = [(x,y) | x <= [-13,-11..1], y <= [9,11..15]]

...L.e., all coins are placed inside of the room of grid g3. .

1271/16



Animation in Action (5)
Last but not least:
main = runRobot spiral sO g0

...leads to the “spiral” example shown and discussed at the
beginning of this chapter:

16.1
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Additional Supporting Functions (1)

For drawing a grid:

drawGrid :: Window -> Grid -> I0 ()

drawGrid w wld =

let (low@(xMin,yMin),hi@(xMax,yMax)) = bounds wld
(x1,y1)
(x2,y2)

trans low

trans hi
in
do
drawLine w wc (x1-d,yl+d) (x1-d,y2-d)
drawLine w wc (x1-d,y1+d) (x1+d,y2+d)
sequence_ [drawPos w (trans (x,y)) (wld ’at’ (x,y))
| x <~ [xMin..xMax], y <- [yMin..yMax]]

16.1
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Additional Supporting Functions (2)

drawPos :: Window -> Point -> [Direction] -> I0 ()
drawPos x (x,y) ds
= do if North ’notElem’ ds
then drawLine w wc (x-d,y-d) (x+d,y-d)
else return ()
if East ’notElem’ ds
then drawline w wc (x+d,y-d) (x+d,y+d)
else return ()

16.1
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Additional Supporting Functions (3)

For dropping and erasing coins:

drawCoins :: Window -> RobotState -> I0 ()
drawCoins w s mapM_ (drawCoin w) (treasure s)

drawCoin :: Window -> Position -> I0 ()
drawCoin w p =
let (x,y) = trans p
in drawInWindowNow w
(withColor cc (ellipse (x-5,y-1) (x-1,y-5)))

eraseCoin :: Window -> Position -> I0 ()
eraseCoin w p =
let (x,y) = trans p
in drawInWindowNow w
(withColor Black (ellipse (x-5,y-1) (x-1,y-5)))

16.1
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Further Supporting Functions (4)

graphicsMove :: Window -> RobotState
-> Position -> I0 ()
graphicsMove w s newPos
= do
if pen s
then
drawLine w (color s) (trans (position s))
(trans newPos)
else return ()
getWindowTick w

16.1
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Further Supporting Functions (5)

trans :: Position
trans (x,y) = (div xWin

getWindowTick :: Window
—-- causes a short delay

bounds :: Ix a => Array

-> Point
2+2xd*x, div yWin 2-2%d*y)

-> I0 )
after each robot move

ab -> (a,a)

-- from the Array-library; yields the bounds

-- of an array argument

16.1
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Chapter 16.2
Robots on Wheels
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Outline

Next, we consider a simulation of

» mobile robots (called Simbots) by means of functional
reactive programming.

The simulation will make use of

» the type class Arrow that is another example of a type
constructor class generalizing the concept of a monad.
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Setting the Scene (1)

Mobile robots are assumed to be configured as follows:

“Robots are differential drive robots having two wheels that are
each driven by an independent motor. The relative velocity of
these two wheels governs the turning rate of the robot. If the
velocities are identical, the robot will go straight.

A robot has several kinds of sensors. Among these, (1) a bumper
switch to detect when the robot gets “stuck” because of being
blocked by something, (2) a range finder to determine the nearest
object in any given direction (in the following it is assumed that
there are four independent range finders that only look forward,
backward, left and right; the range finder will thus only be queried
at these four angles), (4) an animate object tracker that gives the
current position of all other robots and possibly those of some
free-moving balls that are within a certain distance from the robot.
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Setting the Scene (2)

This object tracker can be thought of as modelling either a visual
subsystem that can “see” these objects, or a communication
subsystem through which the robots and balls share each other’s
coordinates. Some further capabilities will be introduced as need
occurs.

Last but not least, each robot has a unique ID."”
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The Application Scenario: Robot Soccer

The overall task:

“Write a program to play “robocup soccer” as follows:
Use wall segments to create two goals at either end of the field.

Decide on a number of players on each team and write generic
controllers, such as one for a goalkeeper, one for attack, and one
for defense.

Create an initial world where the ball is at the center mark, and

each of the players is positioned strategically while being on-side
(with the defensive players also outside of the center circle. Each
team may use the same controller, or different ones.”
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Simulation Code for “Robots on Wheels"

...can be down-loaded at the Yampa homepage at

http://www.haskell.org/yampa

In the following we will consider some code snippets.
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Preliminaries

» Simbot is short for simulated robot.

» SF denotes the type signal function. It is defined in
Yampa, which also provides a number of primitive signal
functions together with a set of special composition
operators (or “combinators”) allowing the construction of
more complex signal functions (abstract data type).

» SF is an instance of the type constructor class Arrow.

» Signal functions, i.e., values of type SF, are signal
transformers, i.e., functions that map signals to signals.

» Signals are not allowed as first-class values in Yampa.
Signals can only be manipulated by means of signal
functions to avoid time- and space-leaks.
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Robot Controller

type Time = Double
type Signal a” = Time -> a

type SimbotController =
SimbotProperties -> SF SimbotInput SimbotOutput

Class HasRobotProperties i where

rpType :: 1 -> RobotType -— Type of robot

rpld i -> RobotId -- Identity of robot
rpDiameter :: i -> Length -- Distance between wheels
rpAccMax i -> Acceleration -- Max translational acc
rpWSMax i -> Speed —-- Max wheel speed

type RobotType = String

type RobotId = Int
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The World

type WorldTemplate =

data ObjectTemplate

0TBlock
0TVWall
OTHWall
0TBall
0TSimbotA

0TSimbotB

otPos
otPos
otPos
otPos
otRId
otPos

otHdng ::

otRId
otPos

otHdng ::

[ObjectTemplate]

:: Position2 -—-
:: Position2 -—-
:: Position2 -—-
:: Position2 --
:: RobotlId, -
:: Position2,
Heading

:: RobotId, -
:: Position2,
Heading

Square obstacle
Vertical wall
Horizontal wall
Ball

Simbot A robot

Simbot B robot
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Structure of the Program

module MyRobotShow where
import AFrob
import AFrobRobotSim

main :: I0 Q)
main = runSim (Just world) rcA rcB

world :: WorldTemplate

world = ...

rcA :: SimbotController -- controller for simbot A’s
rchA =

rcB :: SimbotController -- controller for simbot B’s

rcB = ...
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Robot Simulation in Action

Running the robot simulation:

runSim :: Maybe WorldTemplate
-> SimbotController
-> SimbotController -> I0 ()
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Robot Control

rcA :: SimbotController
rcA rProps =
case rrpld rProps of
1 -> rcAl rProps
2 -> rcA2 rProps
3 —> rcA3 rProps

rcAl, rcA2, rcA3 :: SimbotController
rcAl = ...

rcA2
rcA3
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Robot Actions: Control Programs (1)
A stationary robot:

rcStop :: SimbotController
rcStop _ = constant (mrFinalize ddBrake)

A blind robot moving at constant speed:

rcBlindl _ =
constant (mrFinalize $ ddVelDiff 10 10)

A blind robot moving at half the maximum speed:

rcBlind2 rps =
let max = rpWSMax rps
in constant (mrFinalize $
ddVelDiff (max/2) (max/2))
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Robot Actions: Control Programs (2)

A robot rotating at a pre-given speed:

rcTurn :: Velocity -> SimbotController
rcTurn vel rps =
let vMax = rpWSMax rps

rMax = 2 * (vMax - vel) / rpDiameter rps
in constant (mrFinalize $ ddVelTR vel rMax)
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Classes of Robots (1)

» Usually, there are different types of robots with different
features (2 wheels, 3 wheels, camera, sonar, speaker,
blinker, etc.)

» The kind of a robot is fixed by its input and output types.

The kind of robots is encoded in input and output classes
together with the functions operating on them.
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Classes of Robots (2)

Input classes and functions operating on them:

class HasRobotStatus i where

rsBattStat :: i -> BatteryStatus -- Current battery
-- status
rsIsStuck :: i -> Bool -- Currently stuck

-- or not stuck

data BatteryStatus = BSHigh | BSLow | BSCritical
deriving (Eq, Show)

—-- derived event sources:

rsBattStatChanged :: HasRobotStatus i
=> SF i (Event BatteryStatus)
rsBattStatLow :: HasRobotStatus i => SF i (Event ())

rsBattStatCritical :: HasRobotStatus i => SF i (Event ())
rsStuck :: HasRobotStatus i => SF i (Event ())
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Classes of Robots (3)

class HasOdometry where

odometryPosition :: i —-> Position2 -- Current
—-— position

odometryHeading :: i -> Heading -- Current
—-- heading

class HasRangeFinder i where
rfRange :: 1 —-> Angle -> Distance
rfMaxRange :: i -> Distance

—-- derived range finders:

rfFront :: HasRangeFinder i => i -> Distance
rfBack :: HasRangeFinder i => i -> Distance
rflLeft :: HasRangeFinder i => i -> Distance
rfRight :: HasRangeFinder i => i -> Distance
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Classes of Robots (4)

class HasAnimateObjectTracker i where
aotOtherRobots :: i -> [(RobotType, Angle, Distance)]
aotBalls :: 1 -> [(Angle, Distance)]

class HasTextualConsoleInput i where
tciKey :: i -> Maybe Char

tciNewKeyDown :: HasTextualConsoleInput i =>
Maybe Char -> SF i (Event Char)
tciKeyDown :: HasTextualConsolelInput i =>

SF i (Event Char)
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Classes of Robots (5)

Output classes and functions operating on them:

class MergeableRecord o => HasDiffDrive o where
ddBrake :: MR o -- Brake both wheels
ddVelDiff :: Velocity -> Velocity
-> MR o -- Set wheel
-- velocities
ddVelTR :: Velocity —> RotVel
-> MR o -- Set veloc.
-- and rotat.

class MergeableRecord o =>
HasTextConsoleOutput o where
tcoPrintMessage :: Event String -> MR o
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Arrows and Mobile Robots

SF is an instance of class Arrow:

SF a b = Signal a -> Signal b
Signal a = Time -> a

type Time = Double

Recall:

» Values of type SF are signal transformers resp. signal
functions; therefore the name SF.
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Chapter 16.3
More on the Background of FRP
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Origins of FRP

The origins of functional reactive programming (FRP) lie in
functional reactive animation (FRAnN):

» Conal Elliot, Paul Hudak. Functional Reactive Animation.
In Proceedings of the 2nd ACM SIGPLAN 1997
International Conference on Functional Programming
(ICFP'97), 263 - 273, 1997.

» Conal Elliot. Functional Implementations of Continuous
Modeled Animation. In Proceedings of PLILP/ALP'98,
Springer-Verlag, 1998.

16.3
1299/16



Seminal Works on FRP

Seminal works on function reactive programming (FRP):

» Zhanyong Wan, Paul Hudak. Functional Reactive Pro-
gramming from First Principles. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming
Languages Design and Implementation (PLDI 2000),
ACM Press, 2000.
http://www.haskell.org/frp/manual.html

» John Peterson, Zhanyong Wan, Paul Hudak, Henrik
Nilsson. Yale FRP User's Manual. Department of
Computer Science, Yale University, January 2001.

» Henrik Nilsson, Antony Courtney, John Peterson.
Functional Reactive Programming, Continued. In Procee-
dings of the ACM SIGPLAN'02 Haskell Workshop,
October 2002.
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Applications of FRP (1)

On Functional Animation Languages (FAL):

» Paul Hudak. The Haskell School of Expression — Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000. (Chapter 15, A Module of
Reactive Animations)

On Functional Reactive Robotics (FRob):

» |zzet Pembeci, Henrik Nilsson, Gregory Hager. Functional
Reactive Robotics: An Exercise in Principled Integration
of Domain-Specific Languages. In Proceedings of the
International Conference on Principles and Practice of
Declarative Programming (PPDP’'02), October 2002.
» John Peterson, Gregory Hager, Paul Hudak. A Language
for Declarative Robotic Programming. In Proceedings of
the International Conference on Robotics and Automa-
tion, 1999. /16



Applications of FRP (2)

On Functional Vision Systems (FVision):

» Alastair Reid, John Peterson, Gregory Hager, Paul Hudak.
Prototyping Real-Time Vision Systems: An Experiment in
DSL Design. In Proceedings of the International
Conference on Software Engineering, May 1999.

On Functional Reactive User Interfaces (FRUIt):

» Antony Courtney, Conal Elliot. Genuinely Functional User

Interfaces. In Proceedings of the 2001 Haskell Workshop,
September 2001.
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Applications of FRP (3)

Towards Real-Time FRP (RT-FRP):

» Zhanyong Wan, Walid Taha, Paul Hudak. Real-Time
FRP. In Proceedings of the 6th ACM SIGPLAN'01

International Conference on Functional Programming
(ICFP 2001), ACM Press, 2001.
» Zhanyong Wan. Functional Reactive Programming for

Real-Time Embedded Systems. PhD thesis. Department
of Computer Science, Yale University, December 2002.

Towards Event-Driven FRP (ED-FRP):

» Zhanyong Wan, Walid Taha, Paul Hudak. Event-Driven
FRP. In Proceedings of the 4th International Symposium
on Practical Aspects of Declarative Languages (PADL
2002), ACM Press, January 2002.
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Chapter 17.1

Parallelism in Functional Languages
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Motivation

Recall:

» Konrad Hinsen. The Promises of Functional Program-
ming. Computing in Science and Engineering
11(4):86-90, 2009.

...adopting a functional programming style could make
your programs more robust, more compact, and more
easily parallelizable.
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Reading for this Chapter

» Kapitel 21, Massiv Parallele Programme

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung, Springer-V., 2006. (In German).
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Parallelism in Imperative Languages

Predominant:

» Data-parallel Languages (e.g., High Performance Fortran)

» Libraries (PVM, MPI) ~» Message Passing Model (C,
C++, Fortran)
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Parallelism in Functional Languages

Predominant:

» Implicit (expression) parallelism
» Explicit parallelism

» Algorithmic skeletons
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Implicit Parallelism

...also known as expression parallelism.

Let f(el,...,en) be a functional expression:

Then
» Arguments (and functions) can be evaluated in parallel.
» Most important advantage: Parallelism for free! No effort
for the programmer at all.

» Most important disadvantage: Results often unsatisfying;
e.g. granularity, load distribution, etc. is not taken into
account.

Summing up, expression parallelism is

» easy to detect (i.e., for the compiler) but hard to fully
exploit.

17.1
1319/16



Explicit Parallelism

By means of

» Introducing meta-statements (e.g., to control the data
and load distribution, communication)

» Most important advantage: Often very good results
thanks to explicit hands-on control of the programmer.

» Most important disadvantage: High programming effort
and loss of functional elegance.
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Algorithmic Skeletons

...a compromise between

» explicit imperative parallel programming

» implicit functional expression parallelism
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In the following

We assume a scenario with

» Massively parallel systems

» Algorithmic skeletons
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Massively Parallel Systems

...Characterized by

» large number of processors with

» local memory
» communication by message exchange

» MIMD-Parallel Processor Architecture (Multiple
Instruction/Multiple Data)

Here we restrict ourselves to

» SPMD-Programming Style (Single Program/Multiple
Data)
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Algorithmic Skeletons

Algorithmic skeletons

» represent typical patterns for parallelization (Farm, Map,
Reduce, Branch&Bound, Divide& Conquer,...)

» are easy to instantiate for the programmer

» allow parallel programming at a high level of abstraction
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Implementation of Algorithmic Skeletons

...in functional languages
» by special higher-order functions
» with parallel implementation

» embedded in sequential languages

Advantages:

» Hiding of parallel implementation details in the skeleton

» Elegance and (parallel) efficiency for special application
patterns.
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Example: Parallel Map on Distributed List

Consider the higher-order function map on lists:

map :: (a -> b) -> [a] -> [b]
map _ [1 = []
map f (x:xs) = (f x) : (map f xs)

Observation:

» Applying f to a list element does not depend on other list
elements.

Obviously:

» Dividing the list into sublists followed by parallel applica-
tion of map to the sublists: parallelization pattern Farm.
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Parallel Map on Distributed Lists

Illustration:

f[al,...,ak, ak+1,...,am, am+1,...am]

/

f[al,...,ak] f [ak+1,...

|

[bl,...,bk] [bk+1,..

N

Decompositix

,am] f [am+1,...am]
Parallel
Computation

.,bm] [bm+1,...bm]

Compositioi/

[bl,...bk, bk+1,...,bm, bm+1,...bm]

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 445.
1L
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On the Implementation

Implementing the parallel map function requires

» special data structures, which take into account the
aspect of distribution (ordinary lists are inefficient for this
purpose).

Skeletons on distributed data structures

» so-called data-parallel skeletons.

Note the difference:

» Data-parallelism: Supposes an a priori distribution of data
on different processors.

» Task-parallelism: Processes and data to be distributed are
not known a priori but dynamically generated.

17.1
1328/16



Programming of a Parallel Application

...using algorithmic skeletons:

» Recognizing problem-inherent parallelism.

v

Selecting an adequate data distribution (granularity).

v

Selecting a suitable skeleton from a library.

v

Instantiating a problem-specific skeleton.

Remark:

» Some languages (e.g., Eden) support the implementation
of skeletons (in addition to those which might be provi-
ded by a library).
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Data Distribution on Processors

...Is crucial for
» the structure of the complete algorithm
» efficiency

The hardness of the distribution problems depends on

» Independence of all data elements (like in the
map-example): Distribution is easy.
» Independence of subsets of data elements.

» Complex dependences of data elements: Adequate
distribution is challenging.

Auxiliary means:

» So-called covers (investigated by various researchers).

17.1
1330/16



Covers

...describe the

» decomposition and communication pattern of a data
structure.
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Example (1)
...illllustrating a Simple List Cover.

Distributing a list on 3 processors pg, p1, and ps:

al ak ak+1 am |am+1 am

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.
Springer, 2006, S. 446.
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Example (2)

...illlustrating a List Cover with Overlapping Elements.

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.
Springer, 2006, S. 446.
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The General Structure of a Cover

Cover =
Type S a -—- Whole object
Chb -- Cover
Uc -- Local sub-objects

split :: S a -> C (U a) —- Decomposing the
—-— original object

glue :: C (U a) -> S a -- Composing the
-- original object

It is required:

glue . split = id

Note: The above code snippet is not (valid) Haskell
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Implementation in a Programming Language

Implementing covers requires support for

» the specification of covers.
» the programming of algorithmic skeletons on covers.

» the provision of often used skeletons in libraries.

It is currently

» a hot research topic in functional programming.
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Last but not least

Implementing skeletons

» by message passing via skeleton hierarchies.

17.1
1336/16



Chapter 17.2
Haskell for “Real World Programming”
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“Real World" Haskell (1)

Haskell these days provides considerable, mature, and stable
support for:

>

>

>

Systems Programming

(Network) Client and Server Programming

Data Base and Web Programming

Multicore Programming

Foreign Language Interfaces

Graphical User Interfaces

File 1/0 and filesystem programming

Automated Testing, Error Handling, and Debugging

Performance Analysis and Tuning
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“Real World" Haskell (2)

This support, which comes mostly in terms of

» sophisticated libraries

makes Haskell a reasonable choice for addressing and solving

» Real World Problems

since such a choice depends much on the ability and support a
programming language provides for linking and connecting to
the “outer world:" the language’s eco-system.

1339/16



Chapter 17.3

References, Further Reading

1340/16



Chapter 17.1: Further Reading (1)

[@ Joe Armstrong, Robert Virding, Claes Wikstrom, Mike
Williams. Concurrent Programming in Erlang. Prentice-
Hall, 2nd edition, 1996.

[M Manuel M.T. Chakravarty, Yike Guo, Martin Kohler,
Hendrik C.R. Lock. GOFIN: Higher-Order Functions meet
Concurrency Constraints. Science of Computer Program-
ming 30(1-2):157-199 1998.

[ Manuel M.T. Chakravarty, Roman Leshchinsky, Simon
Peyton Jones, Gabriele Keller, Simon Marlow. Data
Parallel Haskell: A Status Report. In Proceedings on the
Workshop on Declarative Aspects of Multicore Program-
ming (DAMP 2007), ACM, New York, 10-18, 2007.

17.1
1341/16



Chapter 17.1: Further Reading (2)

[@ Koen Claessen. A Poor Man's Concurrency Monad.
Journal of Functional Programming 9:313-323, 1999.

[§ Murray Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. The MIT Press, 1989.

[d Antonie J.T. Davie. An Introduction to Functional Pro-

gramming Systems using Haskell. Cambridge University
Press, 1992. (Chapter 11, Parallel Evaluation)

[§ Soren Holmstrom. PFL: A Functional Language for
Parallel Programming. In Declarative Programming
Workshop, 114-139, 1983.

[@ Peng Li, Simon Marlow, Simon Peyton Jones, Andrew
Tolmach. Lightweight Concurrency Primitives for GHC. In
Proceedings of the ACM SIGPLAN Workshop on Haskell
(Haskell 2007), 107-118, 2007.

17.1
1342/16



Chapter 17.1: Further Reading (3)

[@ Hans-Werner Loidl et al. Comparing Parallel Functional
Languages: Programming and Performance. Higher-Order
and Symbolic Computation 16(3):203-251, 2003.

[§ Simon Marlow. Parallel and Concurrent Programming in
Haskell. O'Reilley, 2013.

[§ Bryan O'Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O'Reilly, 2008. (Chapter 24, Concurrent and
Multicore Programming)

[§ Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 21, Massiv Parallele
Programme)

17.1
1343/16



Chapter 17.1: Further Reading (4)

[§ Simon Peyton Jones, Andrew Gordon, Sigbjorn Finne.
Concurrent Haskell. In Conference Record of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'96), 295-308, 1996.

[§ Robert F. Pointon, Philip W. Trinder, Hans-Wolfgang
Loidl. The Design and Implementation of Glasgow Distri-
buted Haskell. In Proceedings of the 12th International

Workshop on Implementation of Functional Languages
(IFL 2000), LNCS 2011, Springer-V., 53-70, 2000.

[§ Fethi Rabhi, Guy Lapalme. Algorithms — A Functional
Programming Approach. Addison-Wesley, 1999. (Chapter
10.3, Parallel Algorithms)

17.1
1344/16



Chapter 17.1: Further Reading (5)

[§ Simon Peyton Jones, Satnam Sing. A Tutorial on Parallel
and Concurrent Programming in Haskell. Advanced
Functional Programming — Revised Lectures. Springer-V .,
LNCS 5832, 267-305, 2008.

[§ Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl,
Simon Peyton Jones. Algorithms + Strategy = Parallelism.
Journal of Functional Programming 8(1):23-60, 1998.

[§ Philip W. Trinder, Hans-Wolfgang Loidl, Robert F. Poin-
ton. Parallel and Distributed Haskells. Journal of Func-
tional Programming 12(4&5):469-510, 2002.

17.1
1345/16



Chapter 17.2: Further Reading (6)

[ Magnus Carlsson, Thomas Hallgren. Fudgets — A Graphi-
cal User Interface in a Lazy Functional Language. In Pro-
ceedings of the 6th ACM International Conference on
Functional Programming Languages and Computer
Architecture (FPCA'93), 321-330, 1993.

[§ Antony Courtney, Conal Elliot. Genuinely Functional User
Interfaces. In Proceedings of the 2001 Haskell Workshop
(Haskell 2001), September 2001.
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Chapter 17.2: Further Reading (7)

[§ Bryan O'Sullivan, John Goerzen, Don Stewart. Real World
Haskell. O'Reilly, 2008. (Chapter 17, Interfacing with C:
The FFI; Chapter 19, Error Handling; Chapter 20, Systems
Programming in Haskell; Chapter 21, Using Data Bases;
Chapter 22, Extended Example: Web Client Programming;
Chapter 23, GUI Programming with gtk2hs; Chapter 24,
Concurrent and Multicore Programming; Chapter 27,
Sockets and Syslog; Chapter 25, Profiling and Optimiza-
tion; Chapter 28, Software Transactional Memory)

[4 Thomas Hallgren, Magnus Carlsson. Programming with
Fudgets. In Johan Jeuring, Erik Meijer (Eds.), Advanced
Functional Programming, First International Spring School
on Advanced Functional Programming Techniques.
Springer-V., LNCS 925, 137-182, 1995.
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Chapter 17.2: Further Reading (8)

[§ Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-V., 2006. (Kapitel 19, Agenten und Pro-
zesse; Kapitel 20, Graphische Schnittstellen (GUIs))

[§ “Haskell community.” Hackage: A Repository for Open
Source Haskell Libraries. hackage .haskell.org

[§ “Haskell community.” Haskell wiki.
haskell.org/haskellwiki/Applications _and libraries

[§ Useful search engines: Hoogle and Hayoo.
www.haskell.org/hoogle,
holumbus.fh-wedel.de/hayoo/hayoo.html

17.1
1348/16



Chapter 18

Conclusions and Perspectives

Groy fife



Chapter 18.1

Research Venues, Research Topics, and More
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Research Venues, Research Topics, and More

...for functional programming and functional programming
languages:

» Research/publication/dissemination venues

» Conference and Workshop Series
» Archival Journals

» Summer Schools

» Research Topics

» Functional Programming in the Real World
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Relevant Conference and Workshop Series

For functional programming:

» Annual ACM SIGPLAN International Conference on
Functional Programming (ICFP) Series, since 1996.

» Annual Symposium on Functional and Logic Program-
ming (FLPS) Series, since 2000.

» Annual ACM SIGPLAN Haskell Workshop Series, since
2002.

» HAL workshop series, since 2006.

For programming in general:

» Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages and Systems (POPL),
since 1973.

» Annual ACM SIGPLAN Conference on Programming
Language Design and Implementation PLDI), since 1988
(resp. 1973).
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Relevant Archival Journals

For functional programming:

» Journal of Functional Programming, since 1991.

For programming in general:

» ACM Transactions on Programming Languages and
Systems (TOPLAS), since 1979.

» ACM Computing Surveys, since 1969.
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Summer Schools

Focused on functional programming:

» Summer School Series on Advanced Functional Program-
ming. Springer-V., LNCS series.
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Hot Research Topics (1)

...in theory and practice of functional programming considering
the 2012 Call for Papers of the Haskell Symposium:

“The purpose of the Haskell Symposium is to discuss experiences
with Haskell and future developments for the language.

Topics of interest include, but are not limited to:

» Language Design, with a focus on possible extensions and
modifications of Haskell as well as critical discussions of the
status quo;

» Theory, such as formal treatments of the semantics of the
present language or future extensions, type systems, and
foundations for program analysis and transformation;

» |mplementations, including program analysis and
transformation, static and dynamic compilation for sequential,
parallel, and distributed architectures, memory management
as well as foreign function and component interfaces;
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Hot Research Topics (2)

» Tools, in the form of profilers, tracers, debuggers,
pre-processors, testing tools, and suchlike;

> Applications, using Haskell for scientific and symbolic
computing, database, multimedia, telecom and web
applications, and so forth;

» Functional Pearls, being elegant, instructive examples of using
Haskell;

» Experience Reports, general practice and experience with
Haskell, e.g., in an education or industry context.

More on Haskell 2012, Copenhagen, DK, 13 Sep 2012:
http://www.haskell.org/haskell-symposium/2012/
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Hot Research Topics (3)

...in theory and practice of functional programming considering
the 2012 Call for Papers of ICFP:

“ICFP 2012 seeks original papers on the art and science of
functional programming. Submissions are invited on all topics from
principles to practice, from foundations to features, and from
abstraction to application. The scope includes all languages that
encourage functional programming, including both purely
applicative and imperative languages, as well as languages with
objects, concurrency, or parallelism.

Topics of interest include (but are not limited to):

» Language Design: concurrency and distribution; modules;
components and composition; metaprogramming;
interoperability; type systems; relations to imperative,
object-oriented, or logic programming
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Hot Research Topics (4)

» |Implementation: abstract machines; virtual machines;
interpretation; compilation; compile-time and run-time
optimization; memory management; multi-threading;
exploiting parallel hardware; interfaces to foreign functions,
services, components, or low-level machine resources

» Software-Development Techniques: algorithms and data
structures; design patterns; specification; verification;
validation; proof assistants; debugging; testing; tracing;
profiling

» Foundations: formal semantics; lambda calculus; rewriting;
type theory; monads; continuations; control; state; effects;
program verification; dependent types

» Analysis and Transformation: control-flow; data-flow; abstract
interpretation; partial evaluation; program calculation
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Hot Research Topics (5)

» Applications and Domain-Specific Languages: symbolic
computing; formal-methods tools; artificial intelligence;
systems programming; distributed-systems and web
programming; hardware design; databases; XML processing;
scientific and numerical computing; graphical user interfaces;
multimedia programming; scripting; system administration;
security

» Education: teaching introductory programming; parallel
programming; mathematical proof; algebra

» Functional Pearls: elegant, instructive, and fun essays on
functional programming

» Experience Reports: short papers that provide evidence that
functional programming really works or describe obstacles
that have kept it from working”
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Contest Announcement at ICFP 2012 (1)

The ICFP Programming Contest 2012 is the 15th instance of the
annual programming contest series sponsored by The ACM
SIGPLAN International Conference on Functional Programming.
This year, the contest starts at 12:00 July 13 Friday UTC and ends
at 12:00 July 16 Monday UTC. There will be a lightning division,
ending at 12:00 July 14 Saturday UTC.

The task description will be published at
icfpcontest2012.wordpress.com/task when the contest
starts. Solutions to the task must be submitted online before the
contest ends. Details of the submission procedure will be
announced along with the contest task.

This is an open contest. Anybody may participate except for the
contest organisers and members of the same group as the contest
chairs. No advance registration or entry fee is required.
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Contest Announcement at ICFP 2012 (2)

Any programming language(s) may be used as long as the
submitted program can be run by the judges on a standard Linux
environment with no network connection. Details of the judges’
environment will be announced later.

There will be cash prizes for the first and second place teams, the
team winning the lightning divison, and a discretionary judges’
prize. There may also be travel support for the winning teams to
attend the conference. (The prizes and travel support are subject
to the budget plan of ICFP 2012 pending approval by ACM.)...

More on ICFP 2012, Copenhagen, DK, 10-12 Sep 2012:
http://icfpconference.org/icfp2012/cfp.html
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Contest Announcement at ICFP 2017

This year
» the contest is going to take place from August 4, 2017 to
August 7, 2017.
» Detailed information on it will be announced soon.

» Stay tuned for news on this year’s contest at
http://conf.researchr.org/home/icfp-2017

» Programming Contest Chair: N.N.

More on ICFP 2017, Oxford, UK, September 3-9, 2017:
http://conf.researchr.org/home/icfp-2017
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Functional Programming in the Real World

» Curt J. Simpson. Experience Report: Haskell in the “Real
World": Writing a Commercial Application in a Lazy
Functional Language. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional
Programming (ICFP 2009), 185-190, 2009.

» Jerzy Karczmarczuk. Scientific Computation and
Functional Programming. Computing in Science and
Engineering 1(3):64-72, 1999.

» Bryan O'Sullivan, John Goerzen, Don Stewart. Real
World Haskell. O’Reilly, 2008.

» Yaron Minsky. OCaml for the Masses. Communications
of the ACM, 54(11):53-58, 2011.

» Haskell in Industry and Open Source:
www.haskell.org/haskellwiki/Haskell in_industry
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Recall Edsger W. Dijkstra’s Prediction

The clarity and economy of expression that the language
of functional programming permits is often very impressive,
and, but for human inertia, functional programming can

be expected to have a brilliant future.*)

Edsger W. Dijkstra (11.5.1930-6.8.2002)
1972 Recipient of the ACM Turing Award

(*) Quote from: Introducing a course on calculi. Announcement of a
lecture course at the University of Texas at Austin, 1995.
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In the Words of John Carmack

Sometimes, the elegant implementation is a function.
Not a method. Not a class. Not a framework.
Just a function.

John Carmack
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Relations

Let M;, 1 </ < k, be sets.

Definition A.1.1 (k-ary Relation)

A (k-ary) relation is a set R of ordered tuples of elements of
My, ..., My, ie., RC M; x ... x M, is a subset of the
cartesian product of the sets M;, 1 </ < k.

Examples

» () is the smallest relation on M; x ... x M.
» My x ... x My is the biggest relation on M; x ... x M,.
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Binary Relations
Let M, N be sets.

Definition A.1.2 (Binary Relation)

A (binary) relation is a set R of ordered pairs of elements of
M and N, i.e., R is a subset of the cartesian product of M and
N, RC M x N, called a relation from M to N.

Examples

» () is the smallest relation from M to N.
» M x N is the biggest relation from M to N.

Note

» If R is a relation from M to N, it is common to write
mRn, R(m, n), or R mn instead of (m, n) € R.
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Between, On

Definition A.1.3 (Between, On)

A relation R from M to N is called a relation between M and
N or, synonymously, a relation on M x N.

If M equals N, then R is called a relation on M, in symbols:
(M,R).
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Domain and Range of a Binary Relation

Definition A.1.4 (Domain and Range)
Let R be a relation from M to N.

The sets
» dom(R) =4 {m|3n € N. (m,n) € R}
» ran(R)=4r {n|3me M. (m,n) € R}

are called the domain and the range of R, respectively.
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Properties of Relations on a Set M

Definition A.1.5 (Properties of Relations on M)

A relation R on a set M is called

v

reflexive iff Vme M. mR m

irreflexive iff Vme M. -mRm

transitive iff Vm,n.pe M. mRn AN nRp = mRp
intransitive ifft Ymn,pe M. mRn AN nRp = —-mRp
symmetric iff Vmne M. mRn <= nRm
antisymmetric iff Vmne M. mRn A nRm = m=n
asymmetric iff Ymne M. mRn = —-nRm

linear iff Vmne M. mRn VnRm V m=n

total iff Ym,ne M. mRn V nRm
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(Anti-) Example

Let G=(N,E,s=1,e =7) be the below (flow) graph, and
let R be the relation ' is linked to - via a (directed) edge’ on
N of G (e.g., node 4 is linked to node 6 but not vice versa).

The relation R is not reflexive, not irreflexive, not transitive,
not intransive, not symmetric, not antisymmetric, not

asymmetric, not linear, and not total.
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Equivalence Relation

Let R be a relation on M.
Definition A.1.6 (Equivalence Relation)

R is an equivalence relation (or equivalence) iff R is reflexive,
transitive, and symmetric.
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A.2
Ordered Sets
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A2.1
Pre-Orders, Partial Orders, and More
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Ordered Sets

Let R be a relation on M.

Definition A.2.1.1 (Pre-Order)

R is a pre-order (or quasi-order) iff R is reflexive and transitive.

Definition A.2.1.2 (Partial Order)

R is a partial order (or poset or order) iff R is reflexive,
transitive, and antisymmetric.

Definition A.2.1.3 (Strict Partial Order)

R is a strict partial order iff R is asymmetric and transitive.
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Examples of Ordered Sets

Pre-order (reflexive, transitive)

» The relation = on logical formulas.

Partial order (reflexive, transitive, antisymmetric)

» The relations =, < and > on IN.
» The relation m|n (m is a divisor of n) on IN.

Strict partial order (asymmetric, transitive)

» The relations < and > on IN.
» The relations C and D on sets.

Equivalence relation (reflexive, transitive, symmetric)

» The relation <= on logical formulas.
» The relation ‘have the same prime number divisors' on IN.

» The relation ‘are citizens of the same country’ on people.
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Note

» An antisymmetric pre-order is a partial order; a symmetric
pre-order is an equivalence relation.

» For convenience, also the pair (M, R) is called a pre-order,
partial order, and strict partial order, respectively.

» More accurately, we could speak of the pair (M, R) as of
a set M which is pre-ordered, partially ordered, and
strictly partially ordered by R, respectively.

» Synonymously, we also speak of M as a pre-ordered,
partially ordered, and a strictly partially ordered set,
respectively, or of M as a set which is equipped with a
pre-order, partial order and strict partial order,
respectively.

» On any set, the equality relation = is a partial order,
called the discrete (partial) order.
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The Strict Part of an Ordering

Let C be a pre-order (reflexive, transitive) on P.

Definition A.2.1.4 (Strict Part of C)
The relation  on P defined by

Vp,qeP.pCg+=aupEq AN p#q
is called the strict part of C.

Corollary A.2.1.5 (Strict Partial Order)
Let (P,C) be a partial order, let  be the strict part of C.

Then: (P,C) is a strict partial order.
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Useful Results

Let C be a strict partial order (asymmetric, transitive) on P.

Lemma A.2.1.6

The relation C is irreflexive.

Lemma A.2.1.7
The pair (P,C), where C is defined by

Vp,geP.pCg<=4ypCqgV p=q

is a partial order.
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Induced (or Inherited) Partial Order

Definition A.2.1.8 (Induced Partial Order)

Let (P,Cp) be a partially ordered set, let @ C P be a subset
of P, and let C be the relation on Q defined by

Vgre@.gqCqr <=a qLCpr

Then: Cg is called the induced partial order on Q (or the
inherited order from P on Q).
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Exercise

Which of the below diagrams are Hasse diagrams (cf. Chapter
A.2.8) of partial orders?

a) b)

c) d) e)
0 00 @ B o

PN ”%ﬂ” )
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A.2.2

Bounds and Extremal Elements
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Bounds in Pre-Orders

Definition A.2.2.1 (Bounds in Pre-Orders)
Let (Q,C) be a pre-order, let g € Q and Q' C Q.

q is called a

>

>

>

lower bound of @', insigns: gC Q',ifVg € Q.qC ¢
upper bound of @', insigns: Q' C q,ifVqg € Q.q Cq
greatest lower bound (glb) (or infimum) of @', in signs:

[1Q, if g is a lower bound of Q" and for every other
lower bound § of @' holds: G C q.

least upper bound (lub) (or supremum) of Q’, in signs:
| | @', if g is an upper bound of Q' and for every other
upper bound § of Q' holds: g C §.
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Extremal Elements in Pre-Orders

Definition A.2.2.2 (Extremal Elements in Pre-Ord’s)

Let (Q,C) be a pre-order, let  be the strict part of C, and
let @ CQandge Q.

q is called a

v

minimal element of Q’, if there isno ¢’ € Q" with ¢’ C q.

v

maximal element of Q’, if thereis no ¢’ € Q' with g C ¢'.

v

least (or minimum) element of Q', if ¢ C Q'.

v

greatest (or maximum) element of Q', if Q' C q.

Note: The least element and the greatest element of Q itself
are usually denoted by | and T, respectively, if they exist. A
least (greatest) element is also a minimal (maximal) element.
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Existence and Uniqueness

...of bounds and extremal elements in partially ordered sets.

Let (P, ) be a partial order, and let @ C P be a subset of P.

Lemma A.2.2.3 (lub/glb: Unique if Existent)

Least upper bounds, greatest lower bounds, least elements,
and greatest elements in @ are unique, if they exist.

Lemma A.2.2.4 (Minimal/Maximal El.: Not Unique)

Minimal and maximal elements in @ are usually not unique.

Note: Lemma A.2.2.3 suggests considering | | and [ ] partial
maps | |,[]: P(P)— P from the powerset P(P) of P to P.
Lemma A.2.2.3 does not hold for pre-orders.
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Characterization of Least, Greatest Elements

...in terms of infima and suprema of sets.

Let (P,C) be a partial order.

Lemma A.2.2.5 (Characterization of L and T)

The least element | and the greatest element T of P are
given by the supremum and the infimum of the empty set, and
the infimum and the supremum of P, respectively, i.e.,

L=[|0=[1]P and T= []o=||P

if they exist.
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Lower and Upper Bound Sets

Considering | | and [] partial functions | |,[]: P(P)— P on
the powerset of a partial order (P, C) suggests introducing
two further maps LB, UB : P(P)— P(P) on P(P):

Definition A.2.2.6 (Lower and Upper Bound Sets)
Let (P,C) be a partial order. Then:

LB, UB : P(P)— P(P) denote two maps, which map a subset
R C P to the set of its lower bounds and upper bounds,
respectively:

1L.VQCP.LB(Q)=a4{lIbe P| IbC Q}

2. VQ CP. UB(Q)=g4r{ub € P|Q C ub}
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Properties of Lower and Upper Bound Sets

Lemma A.2.2.7
Let (P,C) be a partial order, and let @ C P. Then:

| |@=[1]UB(Q) and []Q=]| |LB(Q)

if the supremum and the infimum of @ exist.

Lemma A.2.2.8
Let (P,C) be a partial order, and let Q, @1, @> C P. Then:

1. @ CQ = LB(Q) DLB(@) N UB(Q1) 2 UB(Q)
2. UB(LB(UB(Q)))=UB(Q)
3. LB(UB(LB(Q)))=LB(Q)

Note: Lemma A.2.2.8(1) shows that LB and UB are antitonic
maps (cf. Chapter A.2.5).
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Exercise

Which of the elements of the below diagrams are minimal,
maximal, least or greatest?

a) b) ©) d) e)
0 0 @ @ B i

SRyY

2
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A.2.3

Noetherian Orders, Artinian Orders, and
Well-founded Orders
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Noetherian Orders and Artinian Orders

Let (P,C) be a partial order.

Definition A.2.3.1 (Noetherian Order)

(P,C) is called a Noetherian order, if every non-empty subset
() # Q C P contains a minimal element.

Definition A.2.3.2 (Artinian Order)

(P,C) is called an Artinian order, if the dual order (P, ) of
(P,C) is a Noetherian order.

Lemma A.2.3.3

(P,C) is an Artinian order iff every non-empty subset
() # Q C P contains a maximal element.
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Well-founded Orders

Let (P,C) be a partial order.

Definition A.2.3.4 (Well-founded Order)

(P,C) is called a well-founded order, if (P,C) is a Noetherian
order and totally ordered.

Lemma A.2.35

(P,C) is a well-founded order iff every non-empty subset
() # Q@ C P contains a least element.
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Noetherian Induction

Theorem A.2.3.6 (Noetherian Induction)

Let (N,C) be a Noetherian order, let N,,;, C N be the set of

minimal elements of N, and let ¢ : N — IB be a predicate on
N. Then:

If

1. Vn € Npjp. ¢(n) (Induction base)
2. Vn e N\Npin. (YmZ n. ¢p(m)) = ¢(n) (Induction step)

then:
Vne N ¢(n)
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Chains, Antichains
Let (P,C) be a partial order.

Definition A.2.4.1 (Chain)

A set C C P is called a chain, if the elements of C are totally
ordered, i.e.,, Vo, € C.ciCE Vo E q.

Definition A.2.4.2 (Antichain)

A set C C P is called an antichain, if
Ve, oelC.cgCo=cag=0.

Definition A.2.4.3 (Finite, Infinite (Anti-) Chain)

Let C C P be a chain or an antichain. C is called finite, if the
number of its elements is finite; C is called infinite otherwise.

Note: Any set P may be converted into an antichain by giving
it the discrete order: (P, =).
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Ascending Chains, Descending Chains

Definition A.2.4.4 (Ascending, Descending Chain)
Let C C P be a chain. C given in the form of

» C={cCalolC..}

» C={cdaded...}
is called an ascending chain and descending chain, respectively.
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Eventually Stationary Sequences

Definition A.2.4.5 (Stationary Sequence)
1. An ascending sequence of the form
pPpEpmEpPpLC...
is called to get stationary, if 3n € IN. Vj € IN. ppyj = p,.

2. A descending sequence of the form
pod p1dppd...
is called to get stationary, if 3n € IN. Vj € IN. p,yj = pn.
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Chains and Sequences

Lemma A.2.4.6
An ascending or descending sequence of the form
pEprEpp ... or ppdprdpd...

1. is a finite chain iff it gets stationary.
2. is an infinite chain iff it does not get stationary.

Note the subtle difference between the notion of chains in
terms of sets

{PEPEpE...} or {ppdprdpd...}
and in terms of sequences
pEpEpPpL... or ppdpr JdppJd...

Sequences may contain duplicates, which would correspond to
a definition of chains in terms of multisets.
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Examples of Chains

» The set S=4 {n € IN| n even} is a chain in IN.
» The set S=4{z € Z |z odd} is a chain in Z.

» The set S=4 { {k € IN| k <n}|n € IN} is a chain in the
powerset P(IN) of IN.

Note: A chain can always be given in the form of an ascending
or descending chain.
» {0<2<4<6<...}:IN as ascending chain.
» {...>6>42>22>0}: IN as descending chain.
» {..<-3<-1<1<3<...}: Z as ascending chain.
{...> 3 >1>-1>-3>...}: Z as descending chain.

>

>
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Chains and Noetherian Orders

Let (P,C) be a partial order.

Lemma A.2.4.7 (Noetherian Order)

The following statements are equivalent:

1. (P,C) is a Noetherian order

2. Every chain of the form
po2prdp2d...
gets stationary, i.e.: 3n € IN. Vj € IN. ppyj= p,.
3. Every chain of the form

Po Jp1 Ip2 ...

is finite.
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Chains and Artinian Orders

Let (P,C) be a partial order.

Lemma A.2.4.8 (Artinian Order)

The following statements are equivalent:

1. (P,C) is an Artinian order

2. Every chain of the form
pEpEp ...

gets stationary, i.e.: 3n € IN. Vj € IN. ppyj= p,.
3. Every chain of the form

PpoLpr L pplC ...

is finite.
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Chains and Noetherian, Artinian Orders

Let (P,C) be a partial order.

Lemma A.2.4.9 (Noetherian and Artinian Order)

(P,C) is a Noetherian order and an Artinian order iff every
chain C C P is finite.
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Directed Sets

Let (P,C) be a partial order, and let ) # D C P.

Definition A.2.5.1 (Directed Set)
D = () is called a directed set (in German: gerichtete Menge),

if
| Vd,ec D.3f e D. fe UB({d,e}), ie.,

for any two elements d and e there is a common upper bound
of d and e in D, i.e.,, UB({d,e})N D # 0.
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Properties of Directed Sets

Let (P, C) be a partial order, and let D C P.

Lemma A.2.5.2

D is a directed set iff any finite subset D’ C D has an upper
bound in D, i.e., 3d € D. d € UB(D'), i.e., UB(D') N D # .

Lemma A.2.5.3

If D has a greatest element, then D is a directed set.
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Properties of Finite Directed Sets

Let (P,C) be a partial order, and let D C P.

Corollary A.2.5.4

Let D be a directed set. If D is finite, then | | D exists € D
and is the greatest element of D.

Proof. Since D a directed set, we have:

Id € D. d € UB(D), i.e., UB(D)N D # 0.

This means D C d. The antisymmetry of C yields that d is
unique enjoying this property. Thus, d is the (unique) greatest
element of D given by | | D, i.e., d=||D.

Note: If D is infinite, the statement of Corollary A.2.5.4 does
usually not hold.
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Strongly Directed Sets

Let (P,C) be a partial order with least element L, and let
DCP.

Definition A.2.5.5 (Strongly Directed Set)
D = () is called a strongly directed set (in German: stark
gerichtete Menge), if

1. LeD

2.Vd,ee D.3f e D. f=||{d, e}, ie,
for any two elements d and e the supremum | |{d, e} of
d and e exists in D.

1483 /16



Properties of Strongly Directed Sets (1)

Let (P,C) be a partial order with least element L, and let
DCP.

Lemma A.2.5.6

D is a strongly directed set iff every finite subset D’ C D has a
supremum in D, i.e., 3d € D. d= | | D'.

Lemma A.2.5.7

Let D be a strongly directed set. If D is finite, then
| | D exists € D and is the greatest element of D.

Note: The statement of Lemma A.2.5.7 does usually not hold,
if D is infinite.
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Directed Sets, Strongly Directed Sets, Chains

Let (P,C) be a partial order with least element L.

Lemma A.2.5.8
Let ) # D C P be a non-empty subset of P. Then:

1. D is a directed set, if D is a strongly directed set.
2. D is a strongly directed set, if L € D and D is a chain.

Corollary A.2.5.9
Let ) # D C P be a non-empty subset of P. Then:

1 € D A D chain = D strongly directed set = D directed set
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Exercise (1)

Which of the below partial orders are (strongly) directed sets?
Which of their subsets are (strongly) directed sets?

11N B A
A P

1486 /16



Exercise (2)

Which of the below partial orders are (strongly) directed sets?
Which of their subsets are (strongly) directed sets?

a) b) ©) d)

®
e) f 9 h)
O, (® ()
O S O
© & @ & 6 6 @ O
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A.2.6
Maps on Partial Orders
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Monotonic and Antitonic Maps on POs

Let (C,C¢) and (D, Cp) be partial orders, and let
f € [C — D] be a map from C to D.

Definition A.2.6.1 (Monotonic Maps on POs)
f is called monotonic (or order preserving) iff

Ve,deC.cCed = f(c) Ep f(c)
(Preservation of the ordering of elements)

Definition A.2.6.2 (Antitonic Maps on POs)
f is called antitonic (or order inversing) iff

Ve,deC.cCed = f(c)Cp f(c)
(Inversion of the ordering of elements)
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Expanding and Contracting Maps on POs

Let (C,C¢) be a partial orders (PO), let f € [C — C] be a
map on C, and let ¢ € C be an element of C.

Definition A.2.6.3 (Expanding Maps on POs)

f is called

» expanding (or inflationary) for ¢ iff & C f(¢)
» expanding (or inflationary) iff Vc € C. ¢ C f(c)

Definition A.2.6.4 (Contracting Maps on POs)

f is called

» contracting (or deflationary) for ¢ iff f(&) C &
» contracting (or deflationary) iff Vc € C. f(c) C ¢
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A.2.7

Order Homomorphisms and Order
Isormorphisms between Partial Orders
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PO Homomorphisms, PO Isomorphisms
Let (P,Cp) and (R,Cg) be partial orders, and let

f € [P — R] be a map from P to R.

Definition A.2.7.1 (PO Hom. & Isomorphism)

f is called an

1. order homomorphism between P and R, if f is monotonic
(or order preserving), i.e.,

Vp,ge P.pCpqg= f(p) Cr f(q)
2. order isomorphism between P and R, if f is a bijective

order homomorphism between P and R and the inverse
f~1 of f is an order homomorphism between R and P.

Definition A.2.7.2 (Order Isomorphic)

(P,Cp) and (R,Cg) are called order isomorphic, if there is an
order isomorphism between P and R.
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PO Embeddings

Let (P,Cp) and (R,Cg) be partial orders, and let
f € [P — R] be a map from P to R.

Definition A.2.7.3 (PO Embedding)
f is called an order embedding of P in R iff

Vp,qe P.pCpq < f(p)Crf(q)

Lemma A.2.7.4 (PO Embeddings and Isomorphisms)

f is an order isomorphism between P and R iff f is an order
embedding of P in R and f is surjective.

Intuitively: Partial orders, which are order isomorphic, are
“essentially the same.”
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A.2.8

Hasse Diagrams
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Hasse Diagrams

...are an economic graphical representation of partial orders.

-
o’e

The links of a Hasse diagram

» are read from below to above (lower means smaller).

» represent the relation R of - is an immediate predecessor
of -" defined by
pRq<—=4 pCqgANAreP.pCrCgq
of a partial order (P, C), where [ is the strict part of C.
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Reading Hasse Diagrams

The Hasse diagram representation of a partial order

» omits links which express reflexive and transitive relations
explicitly

» focuses on the ‘immediate predecessor’ relation.

This focused representation of a Hasse diagram

» is economical (in the number of links)
» while preserving all relevant information of the
represented partial order:
» pC gA p=q (reflexivity): trivially represented (just
without an explicit link)
» pLC g A p# q (transitivity): represented by ascending
paths (with at least one link) from p to g.
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A3
Complete Partially Ordered Sets
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A.3.1
CCPOs and DCPOs
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Complete Partially Ordered Sets

...or Complete Partial Orders:

» a slightly weaker ordering notion than that of a lattice
(cf. Appendix A.4), which is often more adequate for the
modelling of problems in computer science, where full
lattice properties are often not required.

» come in two different flavours as so-called
» Chain Complete Partial Orders (CCPOs)
» Directed Complete Partial Orders (DCPOs)

based on the notions of chains and directed sets,
respectively, which turn out to be equvialent (cf. Theorem
3.1.7)
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Complete Partial Orders: CCPOs

Let (P,C) be a partial order.

Definition A.3.1.1 (Chain Complete Partial Order)
(P,C)is a
1. chain complete partial order (pre-CCPO), if every

non-empty (ascending) chain () 2 C C P has a least upper
bound | |C in P, i.e., | | C exists € P.

2. pointed chain complete partial order (CCPO), if every
(ascending) chain C C P has a least upper bound | | C in
P,ie. | |C exists €P.
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Complete Partial Orders: DCPOs

Definition A.3.1.2 (Directedly Complete Partial Ord.)
A partial order (P,C) is a
1. directedly complete partial order (pre-DCPO), if every

directed subset D C P has a least upper bound | | D in P,
i.e., || D exists € P.

2. pointed directedly complete partial order (DCPO), if it is
a pre-DCPO and has a least element L.
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Remarks about CCPOs and DCPOs

About CCPOs
» A CCPO is often called a domain.

» ‘Ascending chain’ and ‘chain’ can equivalently be used in
Definition A.3.1.1, since a chain can always be given in
ascending order. ‘Ascending chain’ is just more intuitive.

About DCPOs

» A directed set S, in which by definition every finite subset
has an upper bound in S, does not need to have a
supremum in S, if S is infinite. Therefore, the DCPO
property does not trivially follow from the directed set
property (cf. Corollary A.2.5.5).
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Existence of Least Elements in CCPOs

Lemma A.3.1.3 (Least Elem. Existence in CCPOs)

Let (C,C) be a CCPO. Then there is a unique least element
in C, denoted by L, which is given by the supremum of the
empty chain, i.e: L=1]]0.

Corollary A.3.1.4 (Non-Emptyness of CCPOs)
Let (C,C) be a CCPO. Then: C # 0.

Note: Lemma A.3.1.3 does not hold for pre-DCPOs, i.e., if
(D,C) is a pre-DCPO, there does not need to be a least
element in D.
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Relating Finite POs, DCPOs and CCPOs

Let P be a finite set, and let C be a relation on P.

Lemma A.3.1.5 (Finite POs, DCPOs and CCPOs)

The following statements are equivalent:
» (P,C) is a partial order.
» (P,C) is a pre-CCPO.
» (P,C) is a pre-DCPO.

Lemma A.3.1.6 (Finite POs, DCPOs and CCPOs)
Let p € P with p C P. Then the following statements are

equivalent.
» (P,C) is a partial order.
» (P,C)is a CCPO.
» (P,C) is a DCPO.
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Equivalence of CCPOs and DCPOs

Theorem A.3.1.7 (Equivalence)

Let (P,C) be a partial order. Then the following statements
are equivalent:

» (P,C)is a CCPO.
» (P,C)is a DCPO.
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SDCPOs: A DCPO Variant

About DCPOs based on Strongly Directed Sets

» Replacing directed sets by strongly directed sets in
Definition A.3.1.2 leads to SDCPOs.

» Recalling that strongly directed sets are not empty
(cf. Lemma A.2.5.9), there is no analogue of pre-DCPOs
for strongly directed sets.

» A strongly directed set S, in which by definition every
finite subset has a supremum in S, does not need to have
a supremum itself in S, if S is infinite. Therefore, the
SDCPOQO property does not trivially follow from the
strongly directed set property (cf. Corollary A.2.5.3).
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Examples of CCPOs and DCPOs (1)

» (P(IN),C) is a CCPO and a DCPO.

» Least element: ()
» Least upper bound | | C of C chain CP(IN): |J ('

» The set of finite and infinite strings S partially oCrdEeCred by
the prefix relation C 5 defined by
Vs,s"€S. sCpp s <gr
s=s"V (s finite NIs' € S. s4++s'=5")
is a CCPO and a DCPO.

» ({—n|neIN},<)is apre-CCPO and a pre-DCPO but
not a CCPO and not a DCPO.
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Examples of CCPOs and DCPOs (2)

» (0,0) is a pre-CCPO and a pre-DCPO but not a CCPO
and not a DCPO.
(Both the pre-CCPO (absence of non-empty chains in )
and the pre-DCPO (0 is the only subset of () and is not
directed by definition) property holds trivially. Note also
that P =0 implies C =0 C P x P).

» The partial order P given by the below Hasse diagram is a
CCPO and a DCPO.
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Examples of CCPOs and DCPOs (3)

» The set of finite and infinite strings S partially ordered by
the lexicographical order C ., defined by

Vs, t€S. sCix t <y
s=tV(3p finite,s';t' € S.s=p++s A t=p++t' A
(s'=e V sp<th))
where € denotes the empty string, w; denotes the first

character of a string w, and < the lexicographical
ordering on characters, is a CCPO and a DCPO.
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(Anti-) Examples of CCPOs and DCPOs

» (IN, <) is not a CCPO and not a DCPO.
» The set of finite strings Sy, partially ordered by the
» prefix relation C g defined by
Vs,s' € Shin. s Cppc ' <=gr 35" € Sfip. s ++5" =+’
is not a CCPO and not a DCPO.
» lexicographical order C ., defined by
Vs, t € Sfin. s Ejex t <=ar
dp,s',t' € Sp. s=p++s' N t=p++t' A
(s'=e Vv sl <t'l1)

where € denotes the empty string, w|; denotes the first
character of a string w, and < the lexicographical

ordering on characters, is not a CCPO and not a DCPO.

» (Psin(IN), C) is not a CCPO and not a DCPO.
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Exercise

Which of the partial orders given by the below Hasse diagrams
are (pre-) CCPOs? Which ones are (pre-) DCPOs?

a) b) 9] d) e)

0 ® @@i

h) i)

PEN
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Continuous Maps on CCPOs

Let (C,C¢) and (D,Cp) be CCPOs, and let f € [C — D] be
a map from C to D.

Definition A.3.1.7 (Continuous Maps on CCPOs)
f is called continuous iff f is monotonic and

VC" %0 chain C C. f(I |- C) =p Lp F(C")
(Preservation of least upper bounds)

Note: VS C C. f(S)=ar {f(s)|s € S}
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Continuous Maps on DCPOs

Let (D,Cp) and (E,Cg) be DCPOs, and let f € [D — E] be
a map from D to E.

Definition A.3.1.8 (Continuous Maps on DCPOs)
f is called continuous iff

V D' # () directed set C D. f(D') directed set C E A
f(Up D) =€ e f(D)

(Preservation of least upper bounds)

Note: VS C D. f(S)=ur {f(s)|s €S}
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Characterizing Monotonicity

Let (C,C¢),(D,Cp) be CCPOs, let (E,Cg),(F,CF) be
DCPO:s.

Lemma A.3.1.9 (Characterizing Monotonicity)
1. f: C— D is monotonic
iff V. C" # (0 chain C C.
f(C") chain C DA F( - C') Db Ly F(C)
2. g E— F is monotonic
if VE' = () directed set C E.
g(E’) directed set C F A g(Ug E') ZF LUr g(E)
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Strict Functions on CCPOs and DCPOs

Let (C,C¢), (D,Ep) be CCPOs with least elements L and
1 p, respectively, let (E,Cg),(F,CF) be DCPOs with least
elements | £ and LF, respectively, and let f € [C <% D] and
g € [E < F] be continuous functions.

Definition A.3.1.10 (Strict Functions on CPOs)

f and g are called strict, if the equalities

» f(Uc C)=plUp f(C), g(Ue E)=F LUr g(E)
also hold for C'=0 and E' =0, i.e., if the equalities

» f(Uc0) =c f(Lc)=p Lo =p [0

» f(Ue0) = g(Le)=F Lr =[]0

are valid.
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A.3.2

Constructing Complete Partial Orders
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Common CCPO and DCPO Constructions

The following construction principles hold for

» CCPOs
» DCPOs

Therefore, we simply write CPO.
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Common CPO Constructions: Flat CPOs

Lemma A.3.2.1 (Flat CPO Construction)
Let C be a set. Then:

(C U {L}, Cqae) with Cg; defined by
Ve,de CU{L}. cChedec=1 V c=d
is a CPO, a so-called flat CPO.

G, & & € C C C .

\\\///

1
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Common CPO Constructions: Flat pre-CPOs

Lemma A.3.2.2 (Flat Pre-CPO Construction)
Let D be a set. Then:

(D U{T},Criae) with Ty, defined by
Vd,ec DU{T}. dChre<e=T V d=e
is a pre-CPO, a so-called flat pre-CPO.

///l\\\

1 2 3 4 (1 d6 d7 o
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Common CPO Constructions: Products (1)

Lemma A.3.2.3 (Non-strict Product Construction)
Let (P1,C4), (P2, 55), ..., (Ps, E,) be CPOs. Then:

The non-strict product (X P;, C.), where
» X P;=g4 Py X P, x ... X P, is the cartesian product of
all P, 1 <i<n
» C, is defined pointwise by
V(p1;---spPn)s (q1,---,qn) € XP;.
(P1s---sPn) Ex (qu,- -+, Gn) >ar
Vie{l,...,n}. pi C; q;

is a CPO.
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Common CPO Constructions: Products (2)

Lemma A.3.2.4 (Strict Product Construction)
Let (P1,C1), (P2, 5), ..., (P, C,) be CPOs. Then:

The strict (or smash) product (&) P;, C), where
» & P; =4 X P; is the the cartesian product of all P;
» Co=4r C« defined pointwise with the additional setting

(Pla’Pn):l@)’HIG{l,,n} Pi:J—i
is a CPO.
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Common CPO Constructions: Sums (1)

Lemma A.3.2.5 (Separated Sum Construction)
Let (P1,C1), (P2, C2), ..., (Ps,C,) be CPOs. Then:
The separated (or direct) sum (5, P;,Cq ), where

» P, Pi=4r PLUP, U ... U P, U{L} is the disjoint union
of all P;, 1 < i < n, and a fresh bottom element L

» Cg, is defined by
Vp,qe @ Pi. pCo, g =ur
p=L Vv (3ie{l,....n}. p,ge Pi N pC;q)

is a CPO.
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Common CPO Constructions: Sums (2)

Lemma A.3.2.6 (Coalesced Sum Construction)
Let (P1,C4), (P2, 55), ..., (Py, E,) be CPOs. Then:

The coalesced sum (B, Pi, Ce, ), where

> @\/P’ =df Pl\{J_l}UPQ\{J_Q} U Ce U Pn\{J—n} U {J_}
is the disjoint union of all P;, 1 < < n, and a fresh
bottom element L, which is identified with and replaces
the least elements L; of the sets P;, i.e., L=g4 L;,
ie{l,... ,n}

» Cg, is defined by
vpa q < @\/Pi' P EEBV q <——df

p:J— v (EllE {17'-'7,7}' p,q € Pi A PE/ q)

is a CPO.
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Common CPO Constructions: Function Space

Lemma A.3.2.7 (Continuous Function Space Con.)
Let (C,C¢) and (D, Cp) be pre-CPOs. Then:
The continuous function space ([C <¥ D], C.s), where

» [C 2! D] is the set of continuous maps from C to D
» C % is defined pointwise by
Vige[CE D] fCu g <=a Yc C. f(c)Cpg(c)
is a pre-CPO. It is a CPO, if (D,Cp) is a CPO.

Note: The definition of C .4 does not require C to be a pre-
CPO. This requirement is only to ensure continuous maps.
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Applications of CPOs in Funct. Programming

» Flat CCPOs: Modeling, ordering the values of, e.g., the
polymorphic type Maybe a.

» Non-strict Product CCPOs: Modeling, ordering the values
of tuple types, approximating the values of streams,
modeling non-strict functions.

» Strict Product CCPOs: Modeling, ordering the values of
tuple types, modeling strict functions.

» Sum CCPOs: Modeling, ordering the values of union
types (called sum types in Haskell).

» Function-space CCPOs: Defining the semantics of
programs.
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A4l

Lattices, Complete Lattices, and Complete
Semi-Lattices
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Lattices and Complete Lattices

Let P = () be a non-empty set, and let (P, C) be a partial
order on P.

Definition A.4.1.1 (Lattice)

(P,C) is a lattice, if every non-empty finite subset P’ of P has
a least upper bound and a greatest lower bound in P.

Definition A.4.1.2 (Complete Lattice)

(P,C) is a complete lattice, if every subset P’ of P has a least
upper bound and a greatest lower bound in P.

Note: Lattices and complete lattices are special partial orders.
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Properties of Complete Lattices

Lemma A.4.1.3 (Existence of Extremal Elements)

Let (P,C) be a complete lattice. Then there is
1. a least element in P, denoted by 1, satisfying:
L=l0=1]P.
2. a greatest element in P, denoted by T, satisfying:

T=M0=LIP.

Lemma A.4.1.4 (Characterization Lemma)

Let (P,C) be a partial order. Then the following statements
are equivalent:

1. (P,C) is a complete lattice.

2. Every subset of P has a least upper bound.

3. Every subset of P has a greatest lower bound.
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Properties of Finite Lattices

Lemma A.4.1.5 (Finite Lattices, Complete Lattices)
If (P,C) is a finite lattice, then (P,C) is a complete lattice.

Corollary A.4.1.6 (Finite Lattices, 1, and T)

If (P,C) is a finite lattice, then (P, C) has a least element
and a greatest element.
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Complete Semi-Lattices

Let (P,C) be a partial order, P # ().

Definition A.4.1.7 (Complete Semi-Lattices)
(P,C) is a complete
1. join semi-lattice iff V() £ S C P. | |S exists € P.
2. meet semi-lattice iff V) # S C P. []S exists € P.

Proposition A.4.1.8 (Spec. Bounds in Com. Semi-L.)
If (P,C) is a complete

1. join semi-lattice, then | | P exists € P, while | | () does
usually not exist in P.

meet semi-lattice, then [ | P exists € P, while []() does
usually not exist in P.
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Properties of Complete Semi-Lattices (1)

Lemma A.4.1.9 (Greatest Elem. in a C. Join Semi-L.)

Let (P,C) be a complete join semi-lattice. Then there is a
greatest element in P, denoted by T, which is given by the
supremum of P, i.e,, T=||P.

Lemma A.4.1.10 (Least Elem. in a C. Meet Semi-L.)

Let (P,C) be a complete meet semi-lattice. Then there is a
least element in P, denoted by L, which is given by the
infimum of P, ie., L=[]P.
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Properties of Complete Semi-Lattices (2)

Lemma A.4.1.11 (Extremal Elements in C. Semi-L.)
If (P,C) is a complete

1. join semi-lattice where | |() exists € P, then | |( is the

least element in P, denoted by L, i.e., L=|]0.

meet semi-lattice where []0) exists € P, then [0 is the
greatest element in P, denoted by T, i.e., T =[1]0.

1533 /16



Characterizing Upper and Lower Bounds

...in complete semi-lattices.

Lemma A.4.1.12 (Ex. &Char. of Bounds in C. S.-L.)
1. Let (P,C) be a complete join semi-lattice, and let S C P
be a subset of P.

If there is a lower bound for S in P, i.e, if
{pe P|pC S} #0, then[]S exists € P and
[1S=H{peP|pC S}

2. Let (P,C) be a complete meet semi-lattice, and let
S C P be a subset of P.
If there is an upper bound for S in P, i.e, if
{pe P|SC p}#0, then | |S exists € P and
LUS=THpeP|SCp}
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Relating Semi-Lattices and Complete Lattices

Lemma A.4.1.13 (Semi-Lattices, Complete Lattices)
If (P,C) is a complete

1. join semi-lattice with | |0 exists € P

2. meet semi-lattice with [ exists € P
then (P,C) is a complete lattice.
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Lattices and Complete Partial Orders

Lemma A.4.1.14 (Lattices and CCPQOs, DCPOs)
If (P,C) is a complete lattice, then (P,C) is a CCPO and a

DCPO.
Corollary A.4.1.15 (Finite Lattices, CCPOs, DCPOs)

If (P,C) is a finite lattice, then (P,C) is a CCPO and a
DCPO.

Note: Lemma A.4.1.14 does not hold for lattices.
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Examples of Complete Lattices

a) {ab.c) b)

T True

{a,b} {a,c} {b,c}

>

fa}  {b}  {c} False
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(Anti-) Examples

» The partial order (P, C) given by the below Hasse dia-
gram is not a lattice (while it is a CCPO and a DCPO).

» (Psin(IN), C) is not a complete lattice (and not a CCPO
and not a DCPO).
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Exercise

Which of the partial orders given by the below Hasse diagrams
are lattices? Which ones are complete lattices?

a) b) <) d) e

0 ® ORNO) ® ?

¢
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Descending, Ascending Chain Condition

Let (P,C) be a lattice.

Definition A.4.1.14 (Chain Condition)
P satisfies the
1. descending chain condition, if every descending chain gets

stationary, i.e., for every chain py Jp, J ... Jp, J
there is an index m > 1 with pp, = ppyj for all j € IN.

2. ascending chain condition, if every ascending chain gets
stationary, i.e., for every chain py C po C ... C p, C
there is an index m > 1 with p,, = ppy; for all j € IN.
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Distributive and Additive Functions on Lattices

Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P.

Definition A.4.1.15 (Distributive, Additive Function)
f is called

» distributive (or IM-continuous) iff f is monotonic and
VP CP.f([P)=T]f(P)
(Preservation of greatest lower bounds)
» additive (or Li-continuous) iff f is monotonic and
VP CP.f(LIP) =LIF(P)
(Preservation of least upper bounds)

Note: V'S C P. £(S)=ar { f(s)|s € S}
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Characterizing Monotonicity

...in terms of the preservation of greatest lower and least
upper bounds:

Lemma A.4.1.16 (Characterizing Monotonicity)

Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P. Then:

f is monotonic < VP C P. f(l_IP/) c I_lf(P/)
= VP CP f(|P) 3| ]Ff(P)

Note: VS C P. f(S)=u4r { f(s)|s € S}
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Useful Results on Mon., Distr., and Additivity

Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P.

Lemma A.4.1.17

f is distributive iff f is additive.

Lemma A.4.1.18

f is monotonic, if f is distributive (or additive).
(i.e., distributivity (or additivity) implies monotonicity.)
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A.4.2

Lattice Homomorphisms, Lattice
Isomorphisms
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Lattice Homomorphisms, Lattice Isomorphisms

Let (P,Cp) and (R, Cg) be two lattices, and let f € [P — R]
be a function from P to R.

Definition A.4.2.1 (Lattice Homorphism)

f is called a lattice homomorphism, if

Vp,q € P.f(plpq)="~f(p)Uqf(q) A f(prrq)=1(p)Nqf(q)

Definition A.4.2.2 (Lattice Isomorphism)

1. f is called a lattice isomorphism, if f is a lattice
homomorphism and bijective.

2. (P,Cp) and (R, CR) are called isomorphic, if there is
lattice isomorphism between P and R.
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Useful Results (1)

Let (P,Cp) and (R,Cg) be two lattices, and let f € [P — R]
be a function from P to R.

Lemma A.4.2.3
Fe[P"™ Rl = fe[P™ R]

The reverse implication of Lemma A.4.2.3 does not hold,
however, the following weaker relation holds:

Lemma A.4.2.4
felP™R]=

Vp,qe P. f(pUpq) Jo f(p) Ug f(q) A
f(pMp q) Eq f(p) Mg f(q)
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Useful Results (2)

Let (P,Cp) and (R,Cg) be two lattices, and let f € [P — R]
be a function from P to R.

Lemma A.4.2.5
fFelPBR = FlelRB P

Lemma A.4.2.6

felPBR] < felP™ " Rlwrt Cpand Co
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A4.3

Modular, Distributive, and Boolean Lattices
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Modular Lattices

Let (P,C) be a lattice with meet operation I and join
operation LI.

Lemma A.4.3.1
Vp,qreP.pCr=pU(qgnr)C(pUq)rr

Definition A.4.3.2 (Modular Lattice)
(P,C) is called modular, if

Vp,qreP.pCr=pU(qnr) = (pugq)rr
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Characterizing Modular Lattices

Let (P,C) be a lattice.

Theorem A.4.3.3 (Characterizing Modular Lat. 1)

(P,C) is not modular iff (P, C) contains a sublattice, which is
isomorphic to the below lattice:

N
b\/

Theorem A.4.3.4 (Characterizing Modular Lat. Il)
(P,C) is modular iff

Vp,qre P.pCq, pfir=qlr, pUur=qUr = p=q
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Distributive Lattices

Let (P,C) be a lattice with meet operation M and join
operation L.

Lemma A.4.4.5
1. Vp,greP.pl(qgnr)
2. Vp,q,re P.pf(qUr)

(pUq)N(pUr)

C
J(pMg)u(prr)

Definition A.4.3.6 (Distributive Lattice)
(P,C) is called distributive, if
1. Vp,greP.pU(gnr) = (puUqg)n(pUr)
2.Vp,q,reP.pfi(qur) = (pNg)U(pmr)
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Towards Characterizing Distributive Lattices

Lemma A.4.3.7

The following two statements are equivalent:
L. Vp,greP.pu(gnr)=(puq)N(pUr)
2.Vp,gqreP.pfi(qur)=(pMq)U(pnr)

Hence, it is sufficient to require the validity of property (1) or
of property (2) in Definition A.4.3.6.
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Characterizing Distributive Lattices

Let (P,C) be a lattice.

Theorem A.4.3.8 (Characterizing Distributive Lat.)
(P, ) is not distributive iff (P, C) contains a sublattice,

which is isomorphic to one of the below two lattices:
b)

) e
7N\ |
N / N

a

Corollary A.4.3.9
If (P,C) is distributive, then (P, ) is modular.
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Boolean Lattices

Let (P,C) be a lattice with meet operation 1, join operation
LI, least element 1, and greatest element T.

Definition A.4.3.10 (Complement)
Let p,qg € P. Then:
1. g is called a complement of p, if pLig=T and plg=_L.

2. P is called complementary, if every element in P has a
complement.

Definition A.4.3.11 (Boolean Lattice)

(P,C) is called Boolean, if it is complementary, distributive,
and L # T.

Note: If (P,C) is Boolean, then every element p € P has an

unambiguous unique complement in P, which is denoted by p.
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Useful Result

Lemma A.4.3.12
Let (P,C) be a Boolean lattice, and let p,q,r € P. Then:

1. p=p (Involution)
2. pUg=png, plig=pUg (De Morgan)
3. pCE g < pUg=T < plig=_L1

4. pCqUlr < pMNgCr < gL pUr
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Boolean L. Homomorphisms, L. Isomorphisms

Let (P,Cp) and (Q,Cg) be two Boolean lattices, and let
f € [P— Q] be a function from P to Q.

Definition A.4.3.13 (Boolean Lattice Homorphism)

f is called a Boolean lattice homomorphism, if f is a lattice
homomorphism and

VpeP. f(p)=1f(p)
Definition A.4.3.14 (Boolean Lattice Isomorphism)

f is called a Boolean lattice isomorphism, if f is a Boolean
lattice homomorphism and bijective.
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Useful Results

Let (P,Cp) and (Q,Cq) be two Boolean lattices, and let

felP bhom Q] be a Boolean lattice homomorphism from P to

Q.

Lemma A.4.3.14
f(LY=L AFf(T)=T

Lemma A.4.3.15

f is a Boolean lattice isomorphism iff f(L)=1 A f(T)=T
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A4.4

Constructing Lattices
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Lattice Constructions: Flat Lattices

Lemma A.4.4.1 (Flat Construction)

Let C be a set. Then:

(CU{L, T}, Cpat) with Egsy defined by

Ve,de CU{L, T} cCprdec=1L Vc=d Vd=T

is a complete lattice, a so-called flat lattice (or diamond

lattice).

7

¢ &6 G & G G

N
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Lattice Constructions: Products, Sums,...

Like the principle underlying the construction of flat CPOs and
flat lattices, also CPO construction principles for

>

>

>

>

>

non-strict products
strict products
separate sums
coalesced sums

continuous (here: additive, distributive) function spaces

carry over to lattices and complete lattices (cf. Appendix
A.3.2).
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A.4.5

Algebraic and Order-theoretic View of
Lattices
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Motivation

In Definition A.4.1.1, we introduced lattices in terms of

» ordered sets (P, C), which induces an order-theoretic
view of lattices.

Alternatively, lattices can be introduced in terms of

» algebraic structures (P, M, ), which induces an algebraic
view of lattices.

Next, we will show that both views are equivalent in the sense
that a lattice defined order-theoretically can be considered
algebraically and vice versa.

1562 /16



Lattices as Algebraic Structures

Definition A.4.5.1 (Algebraic Lattice)

An algebraic lattice is an algebraic structure (P, M, ), where

» P () is a non-empty set
» M,J: P x P— P are two maps such that for all
p,q,r € P the following laws hold (infix notation):
» Commutative Laws: pfg=qnp
pUg=qUp
» Associative Laws:  (pMg)Mr=pM(gmr)
(pUq)Ur=pU(qUr)
» Absorption Laws:  (pMg)Up=p
(pUg)p=p
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Properties of Algebraic Lattices
Let (P,1,L!) be an algebraic lattice.

Lemma A.4.5.2 (Idempotency Laws)

For all p € P, the maps M, LI : P x P — P satisfy the following
law:

» |dempotency Laws: plMp=p
pUp=p

Lemma A.4.5.3
For all p,q € P, the maps M, : P x P — P satisfy:

L. pMg=p<= plqg=gq
2. pflg=pUg<—=p=gq
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Induced (Partial) Order

Let (P,1,L!) be an algebraic lattice.

Lemma A.4.5.4
The relation £ C P x P on P defined by

Vp,ge P.pC q<=u4 plig=p

is a partial order relation on P, i.e., C is reflexive, transitive,
and antisymmetric.

Definition A.4.5.5 (Induced Partial Order)

The relation T defined in Lemma A.4.5.4 is called the induced
partial order of (P, I, LJ).
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Properties of the Induced Partial Order

Let (P,1,L1) be an algebraic lattice, and let C be the induced
partial order of (P, 1, L).

Lemma A.4.5.6

For all p, g € P, the infimum (= greatest lower bound) and
the supremum (= least upper bound) of the set {p, g} exists
and is given by the image of ' and LI applied to p and q,
respectively, i.e.,

Vp,geP. [ {p.at=pNg A | [{p.a}=pUg

Lemma A.4.5.6 can inductively be extended yielding:
Lemma A.4.5.7
Let ) # Q C P be a finite non-empty subset of P. Then:

glb,lube P.glb=[]Q A glb=] | @
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Algebraic Lattices Order-theoretically

Corollary A.4.5.8 (From (P,1,U) to (P,C))
Let (P,1,11) be an algebraic lattice. Then:

(P,C), where C is the induced partial order of (P,I1, L), is an
order-theoretic lattice in the sense of Definition A.4.1.1.
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Induced Algebraic Maps

Let (P,C) be an order-theoretic lattice.

Definition A.4.5.9 (Induced Algebraic Maps)

The partial order C of (P, C) induces two maps 1 and U from
P x P to P defined by

1. Vp,ge P.prig=a [ {p,q}
2. Vp,ge P.pUqg=u | {p, q}
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Properties of the Induced Algebraic Maps (1)

Let (P,C) be an order-theoretic lattice, and let 1 and LI be
the induced maps of (P, C).

Lemma A.4.5.10
Let p,qg € P. Then the following statements are equivalent:

1.pEgq
2. pfig=p
3. pUg=gq
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Properties of the Induced Algebraic Maps (2)

Let (P,C) be an order-theoretic lattice, and let M and LI be
the induced maps of (P, LC).

Lemma A.4.5.11
The induced maps M and LI satisfy, for all p,q,r € P,
» Commutative Laws: pfg=qnp
pUg=qUp
» Associative Laws:  (pMg)Mr=pf(gnr)
(pUq)Ur=puU(qUr)
» Absorption Laws:  (pMq)Up=p
(pUg)Mp=p
» |ldempotency Laws: plMp=p
pUp=p
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Order-theoretic Lattices Algebraically

Corollary A.4.5.12 (From (P,C) to (P,1,L))
Let (P,C) be an order-theoretic lattice. Then:

(P,11,L1), where I and LI are the induced maps of (P, 1,L), is
an algebraic lattice in the sense of Definition A.4.5.1.
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Equivalence of Order-theoretic and Algebraic
View of a Lattice (1)

From order-theoretic to algebraic lattices:

» An order-theoretic lattice (P, C) can be considered
algebraically by switching from (P,C) to (P,1,L1), where
M and L are the induced maps of (P,C).

From algebraic to order-theoretic lattices:

» An algebraic lattice (P,M, L) can be considered
order-theoretically by switching from (P,M,U) to (P,C),
where C is the induced partial order of (P, M, L).
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Equivalence of Order-theoretic and Algebraic
View of a Lattice (2)

Together, this allows us to simply speak of a lattice P, and to
speak only more precisely of P as an

» order-theoretic lattice (P, C)
» algebraic lattice (P, 1, L)

if we want to emphasize that we think of P as a special
ordered set or as a special algebraic structure.

1573 /16



Bottom and Top vs. Zero and One (1)

Let P be a lattice with a least and a greatest element.

Considering P

» order-theoretically as (P, C), it is appropriate to think of
its least and greatest element in terms of bottom 1 and

top T with
> J_:l_l@
> T:H@

» algebraically as (P,1,L), it is appropriate to think of its
least and greatest element in terms of zero 0 and one 1,
where (P, 1, U) is said to have a

» zero element, if 30 e P.Vpe P. puU0=p
» one element, if 31 € P.Vpe P. pfl=p
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Bottom and Top vs. Zero and One (2)

Lemma A.4.5.13
Let P be a lattice. Then:

» (P,C) has a top element T iff (P,M, ) has a one

element 1, and in that case [ |0 =T =
(

» (P,C) has a bottom element L iff
element 0, and in that case | | =1 =

Y

L)
1.
M,U) has a zero
0.
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On the Adequacy of the Order-theoretic and
the Algebraic View of a Lattice

In mathematics, usually the

» algebraic view of a lattice is more appropriate as it is in
line with other algebraic structures (“a set together with
some maps satisfying a number of laws”), e.g., groups,
rings, fields, vector spaces, categories, etc., which are
investigated and dealt with in mathematics.

In computer science, usually the

» order-theoretic view of a lattice is more appropriate, since
the order relation can often be interpreted and under-
stood as " carries more/less information than -, “ is
more/less defined than -,” - is stronger/weaker than -,
etc., which often fits naturally to problems investigated
and dealt with in computer science.

1576 /16



A.5

Fixed Point Theorems
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Fixed Points of Functions

Definition A.5.1 (Fixed Point)

Let M be a set, let f € [M — M] be a function on M, and let
m € M be an element of M. Then:

m is called a fixed point of f iff f(m) = m.
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| east, Greatest Fixed Points in Partial Orders

Definition A.5.2 (Least, Greatest Fixed Point)

Let (P,C) be a partial order, let f € [P — P] be a function
on P, and let p be a fixed point of f, i.e., f(p)=p. Then:

p is called the

» least fixed point of f, denoted by puf,
iffVge P.f(q)=q=pLCq

» greatest fixed point of f, denoted by v/f,
iffVge P. f(q)=qg=qgCp
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Towers in Chain Complete Partial Orders

Definition A.5.3 (f-Tower in C)

Let (C,C) be a CCPO, let f € [C — C] be a function on C,
and let T C C be a subset of C. Then:

T is called an f-tower in C iff

1. LeT.
2. If t € T, then also f(t) € T.
3. If T"C Tisachainin C, then | |T" € T.
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Least Towers in Chain Complete Partial Orders

Lemma A.5.4 (The Least f-Tower in C)

The intersection
I=qr ﬂ{T| T f-tower in C}
of all f-towers in C is the least f-tower in C, i.e.,

1. | is an f-tower in C.
2. VT f-towerin C. | C T.

Lemma A.5.5 (Least f-Towers and Chains)

The least f-tower in C is a chain in C, if f is expanding.
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Ab5.1

Fixed Point Theorems for Complete
Partial Orders
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Fixed Points of Exp./Monotonic Functions

Fixed Point Theorem A.5.1.1 (Expanding Function)

Let (C,C) be a CCPO, and let f € [C ¥ C] be an expanding
function on C. Then:

The supremum of the least f-tower in C is a fixed point of f.

Fixed Point Theorem A.5.1.2 (Monotonic Function)

Let (C,C) be a CCPO, and let f € [C ™" C] be a monotonic
function on C. Then:

f has a unique least fixed point uf, which is given by the
supremum of the least f-tower in C.
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Note

» Theorem A.5.1.1 and Theorem A.5.1.2 ensure the
existence of a fixed point for expanding functions and of a
unique least fixed point for monotonic functions,
respectively, but do not provide constructive procedures
for computing or approximating them.

» This is in contrast to Theorem A.5.1.3, which does so for
continuous functions. In practice, continuous functions
are thus more important and considered where possible.
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Least Fixed Points of Continuous Functions

Fixed Point Theorem A.5.1.3 (Knaster Tarski,Kleene)

Let (C,C) be a CCPO, and let f € [C =¥ C] be a continuous
function on C. Then:

f has a unique least fixed point uf € C, which is given by the
supremum of the (so-called) Kleene chain

{L (L), F2(L),.. .} ie.
pf=| | ()= J{L F(L). L)}

i€INg

Note: fo—df/dc f—dffOf’ ! , 1> 0.
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Proof of Fixed Point Theorem A.5.1.3 (1)

We have to prove:
pf= L f(L)=LHF (L) |i=0}
ieNg
1. exists,
2. is a fixed point of f,
3. is the least fixed point of f.
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Proof of Fixed Point Theorem A.5.1.3 (2)

1. Existence

» By definition of L as the least element of C and of f° as
the identity on C we have: | =f(L)C f1(L)=f(L).

» Since f is continuous and hence monotonic, we obtain by
means of (natural) induction:
Vi,jeINg. i<j= fi(L)C (L) Ff(L).

» Hence, the set {f'(_L) | i > 0} is a (possibly infinite)
chain in C.

» Since (C,C) is a CCPO and {f/(L) | i > 0} a chain in
C, this implies by definition of a CPO that the least
upper bound of the chain {f’(L) | i >0}

|_|{fi(J—) | i>0}= |_| (L) exists.

iE|N0
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Proof of Fixed Point Theorem A.5.1.3 (3)

2. Fixed point property

(L] £
(f continuous) = II_Ile fo(fi(J_))
= ’|€j‘|0 (L)
(C'=g4¢ {f'L | i>1}is a chain = .
L C exists =LU]C) = Lu||f(L)

(FP(L=ar L) = |] (L)
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Proof of Fixed Point Theorem A.5.1.3 (4)

3. Least fixed point property

>

>

Let ¢ be an arbitrary fixed point of f. Then: L C c.
Since f is continuous and hence monotonic, we obtain by
means of (natural) induction:
VieNg. fi(L)C fi(c) (=c).
Since c is a fixed point of f, this implies:
Vi€ INg. fi(L)C c (=Fi(c)).
Thus, c is an upper bound of the set {f/(L) | i € INg}.
Since {f'(L) | i € INo} is a chain, and | |;c, /(L) is by
definition the least upper bound of this chain, we obtain
the desired inclusion

|| fl(h)Ce

fE'NO

OJ
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Least Conditional Fixed Points

Let (C,C) be a CCPO, let f € [C — C] be a function on C,
and let d, ¢y € C be elements of C.

Definition A.5.1.4 (Least Conditional Fixed Point)
¢y is called the

» least conditional fixed point of f wrt d (in German:
kleinster bedingter Fixpunkt) iff ¢4 is the least fixed point
of C with d C ¢y, i.e.,

VxeC.f(x)=x N dCx = ¢ C x.
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Least Cond. Fixed Points of Cont. Functions

Theorem A.5.1.5 (Conditional Fixed Point Theorem)

Let (C,C) be a CCPO, let d € C, and let f € [C =¥ C] be a
continuous function on C which is expanding for d, i.e.,
d C f(d). Then:

f has a least conditional fixed point ufy; € C, which is given by
the supremum of the (generalized) Kleene chain

{d.f(d),f?(d),.. } ie.
pha= | | £i(d)=| [{d.f(d),*(d),...}

i€INg
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Finite Fixed Points

Let (C,C) be a CCPO, let d € C, and let f € [C "3 C] be a
monotonic function on C.

Theorem A.5.1.6 (Finite Fixed Point Theorem)

If two succeeding elements in the Kleene chain of f are equal,
i.e., if there is some i € IN with f/(L)=f""1(L), then we
have: uf =f/(L).

Theorem A.5.1.7 (Finite Conditional FP Theorem)

If f is expanding for d, i.e., d C f(d), and two succeeding
elements in the (generalized) Kleene chain of f wrt d are
equal, i.e., if there is some i € IN with f'(d) = f""1(d), then
we have: ufy=f'(d).

Note: Theorems A.5.1.6 and A.5.1.7 do not require continuity
of f. Monotonicity (and expandingness) of f suffice(s).
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Towards the Existence of Finite Fixed Points

Let (P,C) be a partial order, and let p,r € P.

Definition A.5.1.8 (Chain-finite Partial Order)
(P,C) is called

» chain-finite (in German: kettenendlich) iff P does not
contain an infinite chain.

Definition A.5.1.9 (Finite Element)

p is called
» finite iff the set Q=4 {q € P|q C p} does not contain
an infinite chain.

» finite relative to r iff the set Q=4 {g € P|rC qC p}
does not contain an infinite chain.
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Existence of Finite Fixed Points

There are numerous conditions, which often hold in practice
and are sufficient to ensure the existence of a least finite fixed
point of a function f (cf. Nielson/Nielson 1992), e.g.

» the domain or the range of f are finite or chain-finite,
» the least fixed point of f is finite,

» f is of the form f(c)=c L g(c) with g a monotonic
function on a chain-finite (data) domain.
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Fixed Point Theorems, DCPOs, and Lattices

Note: Complete lattices (cf. Lemma A.4.1.13) and DCPOs
with a least element (cf. Lemma A.3.1.5) are CCPOs, too.

Thus, we can conclude:

Corollary A.5.1.10 (Fixed Points, Lattices, DCPOs)

The fixed point theorems of Chapter A.5.1 hold for functions
on complete lattices and on DCPOs with a least element, too.
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A.5.2

Fixed Point Theorems for Lattices
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Fixed Points of Monotonic Functions

Fixed Point Theorem A.5.2.1 (Knaster, Tarski)

Let (P,C) be a complete lattice, and let f € [P ™% P] be a
monotonic function on P. Then:
1. f has a unique least fixed point uf € P, which is given by
pf =[Hp e Plf(p) E p}.
2. f has a unique greatest fixed point vf € P, which is
given by vf = | [{p € P[p E f(p)}.

Characterization Theorem A.5.2.2 (Davis)
Let (P,C) be a lattice. Then:
(P,C) is complete iff every f € [P ™3" P] has a fixed point.
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The Fixed Point Lattice of Mon. Functions

Theorem A.5.2.2 (Lattice of Fixed Points)

Let (P,C) be a complete lattice, let f € [P ™3 P] be a
monotonic function on P, and let Fix(f) =4 {p € P|f(p)=
p} be the set of all fixed points of . Then:

Every subset F C Fix(f) has a supremum and an infimum in
Fix(f), i.e., (Fix(f),E|Fix(r)) is a complete lattice.

Theorem A.5.2.3 (Ordering of Fixed Points)

Let (P,C) be a complete lattice, and let f € [P ™% P] be a
monotonic function on P. Then:

|| Fi(L) CoufCufC []|F(T)

i€INg i€INg
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Fixed Points of Add./Distributive Functions

For additive and distributive functions, the leftmost and the
rightmost inequality of Theorem A.5.2.3 become equalities:

Fixed Point Theorem A.5.2.4 (Knaster,Tarski,Kleene)

Let (P,C) be a complete lattice, and let f € [P — P] be a
function on P. Then:
1. f has a unique least fixed point uf € P given by
uf = ian, F(L), if £ is additive, i.e., f € [P % P].
2. f has a unique greatest fixed point vf € P given by

vf=[ien, f'(T), if f is distributive, i.e., f € [P L Pl.

Recall: fozdf Ild¢; fi:df fo fiil, i >0.

1599 /16



A.6

Fixed Point Induction
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Admissible Predicates

Fixed point induction allows proving properties of fixed points.
Essential is the notion of an admissible predicate:

Definition A.6.1 (Admissible Predicate)

Let (P,C) be a complete lattice, and let ¢ : P — IB be a
predicate on P. Then:

¢ is called admissible (or L-admissible) iff for every chain
C C P holds:
(Vee C ¢(c)) = o |C)

Lemma A.6.2

Let (P,C) be a complete lattice, and let ¢ : P — IB be an
admissible predicate on P. Then: ¢(L)= true.

Proof. The admissibility of ¢ implies ¢(| | #) = true. Moreover,
we have L = | |(), which completes the proof.
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Sufficient Conditions for Admissibility

Theorem A.6.3 (Admissibility Condition 1)

Let (P,C) be a complete lattice, and let ¢ : P— IB be a
predicate on P. Then:

¢ is admissible, if there is a complete lattice (Q, Zq) and two
additive functions f, g € [P B Q], such that

VpeP.¢(p) < f(p) Co glp)

Theorem A.6.4 (Admissibility Condition 2)

Let (P,C) be a complete lattice, and let ¢, : P — IB be two
admissible predicates on P. Then:

The conjunction of ¢ and 1), the predicate ¢ A 1 defined by
VpeP. (¢ N ¥)(p)=ard(p) A(p)

is admissible.
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Fixed Point Induction on Complete Lattices

Theorem A.6.5 (Fixed Point Induction on C. Lat.)

Let (P,C) be a complete lattice, let f € [P 2 P] be an
additive function on P, and let ¢ : P — IB be an admissible
predicate on P. Then:

The validity of

» VpeP. ¢(p) = o(f(p)) (Induction step)
implies the validity of ¢(uf).
Note: The induction base, i.e., the validity of ¢(L), is implied
by the admissibility of ¢ (cf. Lemma A.6.2) and proved when
verifying the admissibility of ¢.

1603 /16



Fixed Point Induction on CCPOs

The notion of admissibility of a predicate carries over from
complete lattices to CCPOs.

Theorem A.6.6 (Fixed Point Induction on CCPOs)

Let (C,C) be a CCPO, let f € [C ™" C] be a monotonic
function on C, and let ¢ : C — IB be an admissible predicate
on C. Then:

The validity of
» Vce C. ¢(c) = o(f(c)) (Induction step)

implies the validity of ¢(uf).

Note: Theorem A.6.6 holds (of course still), if we replace the
CCPO (C,C) by a complete lattice (P, C).

) =
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A7
Completion and Embedding
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A.T7.1

Downsets: From POs to Complete Lattices,

CCPOs, and DCPOs
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Downsets

Definition A.7.1.1 (Downset)

Let (P,C) be a partial order, let D C P be a subset of P, and
let p,g € P with p C g. Then:

1. D is called a downset (or lower set or order ideal) (in
German: Abwartsmenge) of P, if: g€ D = p € D.

2. D(P) denotes the set of all downsets of P.
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Example

Let (P,C) be the partial order given by the below Hasse
diagram.

Then, e.g.:
1. ),PeD(P),VgeP.{peP|pCq}ecDP)
2. {1,3},{1,2,3},{1,2,3,4} € D(P)
3. {2,3},{2,4,5},{1,2,4,5} ¢ D(P)
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Properties of Downsets

Lemma A.7.1.2
Let (P,C) be a partial order, let g € P, and Q@ C P. Then:
1. 0 € D(P), P € D(P), are (trivial) downsets of P.
2. Lg=a4r {p € P|p C q} € D(P).
3. 1Q=u{peP|Iqge Q. pC q} € D(P).
4. Qe DP) <= Q=1Q

Lemma A.7.1.3

Let (P,C) be a partial order, and let p, g € P. Then the
following statements are equivalent:

1.pEgq
2. lp Clgq
3. VDeD(P).qe D= peD.
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Characterization of Downsets

Lemma A.7.1.4 (Downsets of a PO)
Let (P,C) be a partial order. Then:

D(P)={lQ|Q C P}

Corollary A.7.1.5

Let (P,C) be a partial order, let D € D(P), and let p,q € P
with pC g. Then: ge D = pe D.
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The Lattice of Downsets: Complete & Distr.

Let (P,C) be a partial order, let D(P) be the set of downsets
of P, and let C denote set inclusion.
Theorem A.7.1.6 (Complete & Distr. L. of Downsets)

(D(P), C) is a complete and distributive lattice, the so-called
downset lattice of P, with set intersection N as meet
operation, set union U as join operation, least element (), and
greatest element P.

Recall: Complete lattices are CCPOs and DCPOs, too (cf.
Lemma A.4.1.13). Thus, we have:

Corollary A.7.1.7 (The CCPO/DCPO of Downsets)
(D(P),<C) is a CCPO and a DCPO with least element (.
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From POs to Lattices, CCPOs, and DCPOs

Construction Principle:
Theorem A.7.1.6 and Corollary A.7.1.7 yield a construction
principle that shows how to construct

» a complete lattice and thus also a CCPO and a DCPO

from a given partial order (P,C) (cf. Appendix A.3.2 and
Appendix A.4.4).
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Principal Downsets

The downsets of the form {p € P | p C g} of a partial order
(P,C) considered in Lemma A.7.1.2(2) are peculiar, and will
reoccur as so-called principal ideals (cf. Chapter A.7.2) and
principal cuts (cf. Chapter A.7.3) of lattices. Therefore, we
introduce these distinguished downsets explicitly.

Definition A.7.1.8 (Principal Downsets of a PO)

Let (P,C) be a partial order, and let g € P be an element of
P. Then:

1. Llg=4r{p € P | p C q} denotes the principal downset (in
German: Hauptabwartsmenge) generated by q.

2. PD(P)={lq|q € P} denotes the set of all principal
downsets of P.
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Downsets, Directed Sets (1)

...principal downsets of partial orders are directed but usually
not strongly directed.

Example 1: Consider the below partial order (P, C):

-

» VpeP. Ip=g{r|rC p} directed € D(P).

» Vpe P\{6}. |p strongly directed € D(P).

» 6=4{r| rC6}={1,2,3,456}=PecD(P)isa
downset of P, however, it is not strongly directed, since
its subsets {2,3},{1,2,3} C|6 do not have a least upper
bound in |6 = P (though upper bounds: 4,5,6).
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Downsets, Directed Sets (2)

Example 2: Consider the below lattice (Z, <):

2
1
0

-2

» D(Z)=0UPD(Z)UZ=
@U{iz:df{r62| I’SZ}lZEZ}UZ

» VSe D(Z). S directed but not strongly directed (since
it lacks a least element).
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Downsets, Directed Sets (3)

...arbitrary downsets even of complete lattices are usually not
strongly directed, though directed.

Example 3: Consider the below complete lattice (P, C):

» E.g., the downsets
» {45 =4 {r | rC4vrC5}}={1,2,3,4,5} € D(P)
» L {3,4}=ur{r| rC3VvrC4}}={1,2,3,4} € D(P)
of P are directed but not strongly directed: The subsets
{2,3} € {4,5} and {1,2,3} C | {3,4} do not have a
least upper bound in | {4,5} and | {3, 4}, respectively.
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A.7.2

|ldeal Completion: Embedding of Lattices
into Complete Lattices
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Lattice ldeals

Definition A.7.2.1 (Lattice Ideal)

Let (P,C) be a lattice, let ) # I C P be a non-empty subset
of P, and let p,q € P. Then:
1. I is called an ideal (or lattice ideal) of P, if:
» pgel = plqgel
»gel=phigel.
2. Z(P) denotes the set of all ideals of P.
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Properties of Lattice ldeals

Lemma A.7.2.2 (Ideal Properties 1)
Let (P,C) be a lattice, let / € Z(P), and let g € I. Then:

1. {peP|pCq}CI.
2. P € Z(P) is a (trivial) ideal of P.

Lemma A.7.2.3 (Ideal Properties 2)

Let (P,C) be a lattice with least element L, and let
I € Z(P). Then:

1. L el
2. {L} € Z(P) is a (trivial) ideal of P.
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Characterizing Lattice Ideals

Theorem A.7.2.4 (Ideal Characterization)

Let (P,C) be a lattice, and let ) # | C P be a non-empty
subset of P. Then:

I € Z(P) iff Vp,ge P.p,gel <= pligel
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Lattice Ideals and Order Ideals

Lemma A.7.2.5

Let (P,C) be a lattice, let | € Z(P), and let p, g € P with
pCqg. Thenigel = pel.

Corollary A.7.1.5 — recalled

Let (P,C) be a partial order, let D € D(P), and let p,q € P
with pC q. Then: g€ D = pe D.

Corollary A.7.2.6
Let (P,C) be a lattice, and let / C P. Then:

1€ Z(P) = I € D(P) (ie., I(P) C D(P)).

Note: The reverse implication of Corollary A.7.2.6 does not
hold.
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The Complete Lattice of ldeals

Theorem A.7.2.7 (The Complete Lattice of Ideals)

Let (P,C) be a lattice with least element L, and let C7 be
the following ordering relation on the set Z(P) of ideals of P:

VI1,JeT(P). I Ty Jiff I C J

Then: (Z(P),Cz) is a complete lattice, the so-called lattice of
ideals of P, with join operation L7 defined by
VI,JeZ(P). | Uzd=4{peP|Ji€l, jed pCilj}
and meet operation M7 defined by
VI,JeZ(P). INgd=gr I NJ

and with least element { L} and greatest element P.
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Principal ldeals

Lemma A.7.2.8
Let (P,C) be a lattice, and let g € P be an element of P.

Then:
lg={p € P|pC q} ideal € Z(P).

Definition A.7.2.9 (Principal Ideal)

Let (P,C) be a lattice, and let g € P be an element of P.
Then:

1. | g is called the principal ideal of P generated by q.

2. PZL(P)=4r {1 q| g € P} denotes the set of all principal
ideals of P.
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Towards the Sublattice of Principal ldeals

Lemma A.7.2.10

Let (P,C) be a lattice with least element, and let (Z(P),Cz)
be the complete lattice of ideals of P. Then:

Vag,reP. Lqhzlr= 1(qgrr)A LqUzlr= L(qUr)
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The Sublattice of Principal ldeals

Theorem A.7.2.11 (Sublattice of Principal ldeals)

Let (P,C) be a lattice with least element, let (Z(P),C7) be
the complete lattice of ideals of P, let PZ(P) be the set of

the principal ideals of P, and let Cp7 be the restriction of =7
onto PZ(P). Then:

(PZ(P),Cpz) is a sublattice of (Z(P),Cz).

Note: The sublattice (PZ(P), Cpz) of (Z(P),Cz) is

» usually not complete, not even if (P,C) is complete.

(The lattice (Z, <), e.g., enriched with a least element L
and a greatest element T is complete, while the lattice of
its principal ideals (PZ(Z), Cpz) is not.)
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|deal Completion and Embedding of a Lattice

Theorem A.7.2.12 (ldeal Completion & Embedding)

Let (P,C) be a lattice with least element, and let (Z(P),C7)
be the complete lattice of its ideals. Then:

The mapping
er . P— PZ(P) defined by Vp € P. ez(p) =ar I p

is a lattice isomorphism between P and the (sub)lattice
PZ(P) of its principal ideals.
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Intuitively

Theorem A.7.2.12 shows how a lattice (P, C) with least
element

» can be considered a sublattice of the complete lattice of
the ideals of P; in more detail, how it can be considered
the sublattice (PZ(P), Cpz) of the complete lattice
(Z(P), E1).
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A.7.3

Cut Completion: Embedding of POs and
Lattices into Complete Lattices
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Cuts

Definition A.7.3.1 (Cut)

Let (P,C) be a partial order, and let @ C P be a subset of P.
Then:

1. Q is called a cut (in German: Schnitt) of P, if
Q=LB(UB(Q)).
2. C(P) denotes the set of all cuts of P.
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Properties of Cuts

Lemma A.7.3.2

Let (P,C) be a partial order, and let g € P be an element of
P. Then:

1. LB({q})=d4r Lq=ar{p € P|pC q} € C(P)
2. LB(UB({g})={pec P|pC qt=LB({q})

Note: If (P,C) is a lattice,
1. Lemma A.7.3.2(1) yields that principal ideals are cuts of
P:
VqgeP. (g)=ar{pcP|pC q}=LB({q}) € C(P)
(or:VQ C P. Q € PZ(P) = Q € C(P))

2. Lemma A.7.3.2(2) characterizes the principal ideals of P
in terms of the function composition LB o UB.
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Principal Cuts

Definition A.7.3.3 (Principal Cut)

Let (P,C) be a partial order, and let g € P be an element of
P. Then:

1. Lg=4r LB(UB({q})) is called the principal cut of P
generated by gq.

2. PC(P)=ar{{q|q € P} denotes the set of all principal
cuts of P.
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Properties of Cuts and Ideals of Lattices

Lemma A.7.3.4

Let (P,C) be a lattice with least element, and let Q C P.
Then:
QeC(P)= QeI(P)

Corollary A.7.3.5

Let (P,C) be a lattice with least element, and let Q@ C P.
Then:
QeCP)= Q#0

Note: Corollary A.7.3.5 does not hold for partial orders.
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The Complete Lattice of Cuts

Theorem A.7.3.6 (The Complete Lattice of Cuts)

Let (P,C) be a partial order, and let C¢ be the following
ordering relation on the set C(P) of cuts of P:

VC,DeC(P). CCeDiffCCD

Then: (C(P),C¢) is a complete lattice, the so-called lattice of
cuts of P, with join operation Llo defined by

VC,D e C(P). ClcD=g4 [ {E €C(P)|CUD C E}
and meet operation ¢ defined by
VC,D € C(P) CNeD=y4 CND

and with least element { L} and greatest element P.
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Cut Completion and Embedding of a PO

Theorem A.7.3.7 (PO Cut Completion & Embedd'g)

Let (P,C) be a partial order, and let (C(P),C¢) be the
complete lattice of its cuts. Then:

The mapping
ec : P—PC(P) defined by Vp € P. ex(p)=ar LB(UB({p}))

is an order isomorphism between P and the partial order
(PC(P),Cpc) of the principal cuts of P.
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Cut Completion and Embedding of a Lattice

Theorem A.7.3.8 (Lattice Cut Completion & Emb'g)

Let (P,C) be a lattice, let (C(P),Cc) be the complete lattice
of its cuts, and let ez : P — PC(P) be the mapping of
Theorem A.7.3.7. Then:

(PC(P),Cpc) is a sublattice of (C(P),C) and ec is a lattice
isomorphism between P and the sublattice PC(P) of the
principal cuts of P.
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AT.4

Downset Completion: Embedding of POs
into Complete Lattices
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Downsets, Ideals, and Cuts

Lemma A.7.4.1
We have:

1. C(P) C D(P), if (P,C) is a partial order.

2. C(P) CZ(P) CD(P), if (P,C) is a lattice with least
element.
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Downset Completion and Embedding of a PO

Theorem A.7.4.2 (Downset Completion and Emb.'g)

Let (P,C) be a partial order, and let (D(P), C) be the
complete and distributive lattice of its downsets (cf. Theorem
A.7.1.6). Then:

The mapping e; : P— PC(P) (of Theorem A.7.3.7) defined

by Vp e P. ec(p)=ar LB(UB({p}))

is an order isomorphism between P and the partial order
(PC(P), C) of the principal cuts of P, or, equivalently, the
mapping e : P — D(P) defined as above is a partial order
embedding of (PC(P), Q) into (D(P), C).
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Intuitively

Theorem A.7.4.2 shows how a partial order (P,C)

» can be considered a partial order of the complete and
distributive lattice of its downsets; in more detail, how it
can be considered the partial order (PC(P), Epc) of the
complete and distributive lattice (D(P),Cp) .
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A.7.5

Application: Lists and Streams
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Technically

...the construction of Chapter A.7.4 works by

» switching from the elements p of a set P partially ordered
by a relation C to the principal downsets | p € PD(P) of
the set of downsets D(P) of P ordered by the subset
inclusion C.

|dentifying

» every element p € P with its principal downset
bp=ar{r|rEp} €PD(P)

yields an

» embedding of P into PD(P)=u4{lq|q€ P}, ie.,a
function e : P — PD(P) with

Vp,geP.pCqg < [pClg

1641 /16



From Monotonic to Continuous Functions

...completion is the key to Theorem A.7.5.1:

Let (P,Cp) be a partial order, let | g=4 {p € P|p C q} for
qge P, let PD(P)=u4r{lq|q € P} andlet (C,C¢) be a
CPO.

Theorem A.7.5.1 (From Monotonicity to Continuity)

A monotonic function f € [P ™% C] can uniquely be extended
to a continuous function f € [PD(P) =¥ C].
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Application: Lists and Streams (1)

Lemma A.7.5.2 (The CPO of Lists and Streams)

Let L be the set of all finite and infinite lists, and let T, be
the prefix relation “- is a prefix of - on L defined by

VI e Lol Cop " <=>qr
[=1"V (I finite NII' € L. [ 4++I"=1")
Then: (L, C,s) is a CCPO and a DCPO.

Lemma A.7.5.3 (Downsets of the Set of Lists)

Let L be the set of all finite and infinite lists, and let PD(L) =
{} 11 € L} be the set of principal downsets of L. Then:

1. J =g {lI' € L|I' Cps I} is a directed set (even a strongly
directed set), i.e., a directed downset of lists.
2. (PD(L),C) is a CCPO and a DCCPO .
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Application: Lists and Streams (2)

Putting these findings together, we obtain:

>

>

The set of downsets of lists ordered by set inclusion is a CPO.

Every (infinite) chain of ever longer finite lists represents the
corresponding stream, the supremum of this chain.

Theorem A.7.4.3 allows the application of a function to a
stream to be approximated and computed by applying the
function to the finite prefixes of the stream yielding a chain of
approximations of the stream that would result from the
application of the function to the stream itself.

Continuity ensures the correctness of this procedure: it yields
the equality of the supremum of the computed chain of
approximations and the result of applying the continuous
function to the argument stream itself.

1644 /16



Application: Lists and Streams (3)

Together, this implies:

» Recursive equations and functions on streams as
considered in Chapter 2 are well defined.
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