Today’s Topic

Testing of programs
- Specification-based
- Tool-supported
- Automatically

Questions

How can we gain (sufficient) confidence that...
- our programs are *sound*,
- other people’s programs are *sound*?

Answers

- Verification
 - Formal soundness proof (soundness of the specification, soundness of the implementation)
 - High confidence, high effort
- Testing
 - Variants: *systematically* vs. *ad hoc*
 - Controllable effort, undefined quality statement

Remember:
“Testing can only show the presence of errors, not their absence” (Dijkstra)

Observation

Testing is...
- often amazingly successful in disclosing errors

On the other hand...
Requirements

Reporting on...

• What has been tested?
• How thoroughly, how comprehensively has been tested?
• How was success defined?

Additionally desirable...

• Reproducibility of tests
• Repeated testing after program modifications

Preconditions

Indispensable...

• Specification of the meaning of the program
 – Informally (commentary in the program, in a separate documentation)
 – ...often ambiguous, open to interpretation
 – Formally
 – ...precise semantics, unique

In the following

Specification-based, tool-supported testing in Haskell

• QuickCheck (a combinator library)
 – defines a formal specification language
 – ...allows property definition inside the (Haskell) source code
 – defines a test data generator language
 – ...allows a simple and concise description of a large number of tests
 – allows automatic testing of all properties specified in a module, including failure reports
 – allows tests to be repeated at will

Note

Specification- and test data generator language are...

• Examples of so-called domain-specific embedded languages
 – ...special strength of functional programming
• implemented as a combinator library in Haskell
 – ...allows to make use of the full expressiveness of Haskell when defining properties and test data generators
• Part of the standard Haskell-distribution (both GHC and Hugs) (see module QuickCheck)
 – ...ensures simple and direct usability
Reference

The following presentation is based on...

For implementation details and applications...

Property Definition w/ QuickCheck 1

In the most basic case properties are defined as predicates, i.e., Boolean valued functions.

Example 1

Inside the program:

prop_PlusAssociative :: Integer -> Integer -> Integer -> Bool
prop_PlusAssociative x y z = (x+y)+z == x+(y+z)

In Hugs:

Main>quickCheck prop_PlusAssociative
OK, passed 100 tests

Note:

• Type specification for prop_PlusAssociative is required because of the overloading of + (otherwise error message)
• Type specification allows a type-specific generation of test data

Property Definition w/ QuickCheck 2

Example 2

In the program:

prop_PlusAssociative :: Float -> Float -> Float -> Bool
prop_PlusAssociative x y z = (x+y)+z == x+(y+z)

In Hugs (falsifiable for type Float; think e.g. of rounding errors):

Main>quickCheck prop_PlusAssociative
Falsifiable, after 13 tests:
1.0
-5.16667
-3.71429

Note:

The error report contains:

• Number of tests successfully passed

More Complex Property Definitions w/ QuickCheck 1(3)

Consider as the property to be checked:

...to insert in a sorted list

...we suppose that a function insert and a predicate ordered are given)

The straightforward property definition, however,

prop_InsertOrdered x xs = ordered (insert x xs)

...is falsifiable.

It is too strong/naive (note that xs is not supposed to be sorted).
More Complex Property Definitions w/ QuickCheck 2(3)

Remedy:

\[
\text{prop_InsertOrdered :: Integer -> [Integer] -> Property}
\]
\[
\text{prop_InsertOrdered x xs = ordered xs ==\> ordered (insert x xs)}
\]

Note:

• ordered xs ==\>: Adding a precondition
 \sim Test data, which do not match the precondition, are dropped

• ==\>: ...is not a Boolean operator; it is an operator, which affects the selection of test data
 \sim Property definitions, which rely on such operators, always have the type Property

More Complex Property Definitions w/ QuickCheck 3(3)

Another option supported by QuickCheck:

• Direct quantification over sorted lists

\[
\text{prop_InsertOrdered :: Integer -> Property}
\]
\[
\text{prop_InsertOrdered x =}
\]
\[
\text{forall orderedLists $ \text{\$} \text{\$_xs } ==\> \text{ordered (insert x xs)}}
\]

Also more sophisticated properties could be specified:

• Refining the specification such that the result list coincides with the argument list (except of the inserted element)

The Operator $

See Standard Prelude:

\[
(\olin{x}) :: (a \rightarrow b) \rightarrow a \rightarrow b
\]
\[
\text{f \olin{x} = } f x
\]

Note

• The operator $ is Haskell’s infix function application

• It is useful to avoid the usage of parentheses:

Example: \text{f \olin{g x}} can be written as \text{f \olin{g x}}

An Extended Example

...abstract data type for (first-in-first-out) queues.

Simple (yet inefficient) implementation, which serves as abstract model – as reference model of a queue:

\[
\text{type Queue a = [a]}
\]
\[
\text{empty} = []
\]
\[
\text{add x q} = q ++ [x] \quad \text{-- inefficient!}
\]
\[
\text{isEmpty q} = \text{null q}
\]
\[
\text{front (x:q)} = x
\]
\[
\text{remove (x:q)} = q
\]
A More Efficient Implementation

...the implementation of interest. Its basic idea:

• Split the list into two portions (list front and list back)
• Back of the list in reverse order

\(\sim \) This ensures: Efficient access to list front and list back

```haskell
type QueueI a = ([a],[a])
emptyI = ([],[])
addI x (f,b) = (f,x:b)
isEmptyI (f,b) = null f
frontI (x:f,b) = x
removeI (x:f,b) = flipQ (f,b)
where
  flipQ ([],b) = (reverse b, [])
  flipQ q = q
```

Advanced Functional Programming (SS 2011) / Part 4 (Thu, 04/07/11) 18

In the following

Think of

• Queue and
• QueueI

in terms of

• specification and
• implementation

We now want to check/test if operations of the implementation (QueueI) behave properly according to the operations of the specification (Queue)...

List Representations and Represented Abstract Lists: The Relation

...by means of a retrieve function:

```haskell
retrieve :: QueueI Integer -> [Integer]
retrieve (f,b) = f ++ reverse b
```

The function retrieve...

• transforms the (usually many) representations of an abstract list as values of QueueI into the underlying abstract list as values of Queue

The understanding of QueueI and Queue as lists on integers allows us to drop type specifications in the definitions of properties defined next...

Advanced Functional Programming (SS 2011) / Part 4 (Thu, 04/07/11) 19

Soundness Properties for Functions on QueueI

...by means of retrieve we can check, if

• the results of applying the efficient functions on QueueI coincide with those of the abstract functions on Queue
Soundness Properties: 1st Try 1(3)

Apparently, the following properties are expected to hold:

\[
\begin{align*}
\text{prop_empty} &= \text{retrieve emptyI} == \text{empty} \\
\text{prop_add x q} &= \text{retrieve (addI x q)} == \text{add x (retrieve q)} \\
\text{prop_isEmpty q} &= \text{isEmptyI q} == \text{isEmpty (retrieve q)} \\
\text{prop_front q} &= \text{frontI q} == \text{front (retrieve q)} \\
\text{prop_remove q} &= \text{retrieve (removeI q)} == \text{remove (retrieve q)}
\end{align*}
\]

However, this is not true...

Soundness Properties: 1st Try 2(3)

E.g., testing \text{prop_isEmpty} using QuickCheck yields:

```haskell```
Main> quickCheck prop\_isEmpty
Falsifiable, after 4 tests:
([], [-1])
```

Problem:

- The specification of \text{isEmpty} implicitly assumes that the following invariant holds:
 - The front of the list is only empty, if the back of the list is empty, too

Soundness Properties: 1st Try 3(3)

In fact:

- \text{prop_isEmpty}, \text{prop_front}, and \text{prop_remove} are falsifiable because of this!
- The implementations of \text{isEmptyI}, \text{frontI}, and \text{removeI} implicitly assume that the front of a queue will only be empty if the back also is.

This silent assumption has to be made explicit as \text{invariant}...

Soundness Properties: 2nd Try 1(2)

We define the following invariant:

\[
\text{invariant} :: \text{QueueI Integer} \to \text{Bool} \\
\text{invariant} (f, b) = \text{not (null f)} \lor \text{null b}
\]

...and add them to all property definitions:

\[
\begin{align*}
\text{prop_empty} &= \text{retrieve emptyI} == \text{empty} \\
\text{prop_add x q} &= \text{invariant q} \Rightarrow \text{retrieve (addI x q)} == \text{add x (retrieve q)} \\
\text{prop_isEmpty q} &= \text{invariant q} \Rightarrow \text{isEmptyI q} == \text{isEmpty (retrieve q)} \\
\text{prop_front q} &= \text{invariant q} \Rightarrow \text{frontI q} == \text{front (retrieve q)} \\
\text{prop_remove q} &= \text{invariant q} \Rightarrow \text{retrieve (removeI q)} == \text{remove (retrieve q)}
\end{align*}
\]
Soundness Properties: 2nd Try 2(2)

Now, testing `prop_isEmpty` using QuickCheck yields:

```
Main> quickCheck prop_isEmpty
OK, passed 100 tests
```

However, testing `prop_front` still fails:

```
Main> quickCheck prop_front
Program error: front ([], [])
```

Problem:
- `frontI` (as well as `removeI`) may only be applied to non-empty lists. So far, this is not taken into account.

Remedy:
- Add `not (isEmptyI q)` to the preconditions of the relevant properties

Soundness Properties: Corrected Version

We obtain:

- `prop_empty = retrieve emptyI == empty`
- `prop_add x q = invariant q ==> retrieve (addI x q) == add x (retrieve q)`
- `prop_isEmpty q = invariant q ==> isEmptyI q == isEmpty (retrieve q)`
- `prop_front q = invariant q && not (isEmptyI q) ==> frontI q == front (retrieve q)`
- `prop_remove q = invariant q && not (isEmptyI q) ==> retrieve (removeI q) == remove (retrieve q)`

Now
- All properties pass the test successfully!

Soundness Properties: Still to be Done

We still need to check:
- Operations producing queues do only produce queues, which satisfy this invariant.

Since so far we only tested:
- Operations on queues behave correctly on representations of queues which satisfy the invariant

 \[\text{invariant (f,b) = not (null f) | null b} \]

Soundness Properties: Towards This

The formulation of appropriate properties for functions producing queues:

- `prop_inv_empty = invariant emptyI`
- `prop_inv_add x q = invariant q ==> invariant (addI x q)`
- `prop_inv_remove q = invariant q && not (isEmptyI q) ==> invariant (removeI q)`
Soundness Properties: Still to be Done

Testing by means of QuickCheck yields:

Main>quickCheck prop_inv_add
Falsifiable, after 0 tests:
0
([],[])

Problem:
- The invariant must hold
 - not only after applying removeI,
 - but also after applying addI to the empty list; adding to the back of a queue breaks the invariant in this case.

Soundness Properties: Done Now!

To this end:
- Adjust the function addI as follows:
 \[addI \ x \ (f,b) = \text{flipQ}(f,x:b) \] -- instead of: \[addI \ x \ (f,b) = (f,x:b) \]
 with \text{flipQ} defined previously.

Now
- All properties pass the test successfully!

Observation

In the course of developing this example it turned out:
- Testing disclosed (only) one bug in the implementation (this was in function addI)
- \textit{But}: Several missing preconditions and a missing invariant in the original definitions of properties were found and added

Both is typical, and valuable:
- The additional conditions and invariants are now explicitly given in the program text
- They add to understanding the program and are valuable as documentation, both for the program developer and for future users (think of program maintaining!)

Algebraic Specifications

...(often a desired) alternative to the abstract model

An algebraic specification...
- provides equational constraints the operations ought to satisfy
Algebraic Specifications

For the example of queues, for instance, as follows:

\[
\begin{align*}
\text{prop_isEmpty } q & = \text{invariant } q \Rightarrow \text{isEmptyI } q = (q == \text{emptyI}) \\
\text{prop_front_empty } x & = \text{frontI } (\text{addI } x \text{ emptyI}) == x \\
\text{prop_front_add } x q & = \text{invariant } q \&\& \text{not (isEmptyI } q) \Rightarrow \\
& \quad \text{frontI } (\text{addI } x q) == \text{frontI } q \\
\text{prop_remove_empty } x & = \text{removeI } (\text{addI } x \text{ emptyI}) == \text{emptyI} \\
\text{prop_remove_add } x q & = \text{invariant } q \&\& \text{not (isEmptyI } q) \Rightarrow \\
& \quad \text{removeI } (\text{addI } x q) == \text{addI } x (\text{removeI } q)
\end{align*}
\]

Testing using QuickCheck yields:

```
Main>quickCheck prop\_remove\_add
Falsifiable, after 1 tests:
0
([1],[0])
```

Problem:

- Left hand side yields: ([0,0],[])
- Right hand side yields: ([0],[0])
- Equivalent but not equal!

Solution:

- Consider instead of “equal” now “equivalent”

\[
q \ 'equiv' \ q' = \text{invariant } q \&\& \text{invariant } q' \&\& \\
\quad \text{retrieve } q == \text{retrieve } q'
\]

Then replacing of

\[
\begin{align*}
\text{prop_remove_add } x q & = \text{invariant } q \&\& \text{not (isEmptyI } q) \Rightarrow \\
& \quad \text{removeI } (\text{addI } x q) == \text{addI } x (\text{removeI } q)
\end{align*}
\]

by

\[
\begin{align*}
\text{prop_remove_add } x q & = \text{invariant } q \&\& \text{not (isEmptyI } q) \Rightarrow \\
& \quad \text{removeI } (\text{addI } x q) 'equiv' \text{addI } x (\text{removeI } q)
\end{align*}
\]

yields the desired result: the test passes successfully.

Algebraic Specifications

Similar to the previous setting, we have to check:

- All operations producing queues yield results, which are equivalent, if the arguments are.

Considering the operation addI, for instance, this can be done by:

\[
\begin{align*}
\text{prop_add_equiv } q q' x & = q \ 'equiv' \ q' \Rightarrow \text{addI } x q \ 'equiv' \text{addI } x q'
\end{align*}
\]
Algebraic Specifications

Though mathematically sound, the definition of prop_add_equiv is inappropriate for fully automatic testing. We might observe:

Main>quickCheck prop_add_equiv Arguments exhausted after 58 tests.

Problem and background:

• QuickCheck generates lists q und q’ randomly.
• Most of the pairs of lists will not be equivalent, and hence be discarded for the actual test.
• QuickCheck generates a maximum number of candidate arguments only (default: 1.000), and then stops, possibly before the number of 100 test cases is met.

Enhancing Usability

...of QuickCheck by providing support for

• Quantification over subsets
 – by means of filters
 – by means of generators (type-based, weighted, size controlled,...)

• ...

• test case monitoring

In the following:

~ ...illustrating this support in terms of examples!

Quantifications over Subsets

For QuickCheck holds:

• By default, parameters are quantified over values of the appropriate type

Often, however, it is desired:

• A quantification over subsets of these values

QuickCheck offers several options for this purpose:

• Representation of subsets in terms of Boolean functions, which act as a filter for test cases
 – Adequate, if many elements of the underlying set are members of the relevant subset, too.
 – Inadequate, if only a few elements of the underlying set are members of the relevant subset.

• Representation of subsets in terms of generators
 – A generator of type Gen a yields a random sequence of values of type a.
 – The property forall set p successively checks p on randomly generated elements of set.
Support by QuickCheck

For the effective usage of generators QuickCheck supports:

- different variants for the specification of relations such as `equiv`
 - As a Boolean function
 * simple to check equivalency of two values (but difficult to generate values which are equivalent).
 - As a function from a set of values to another set of equivalent values (generator!)
 * simple to generate equivalent values (but difficult to check equivalency of two values).

Generators

The generator variant for `equiv`:

```haskell
equivQ :: QueueI a -> Gen(QueueI a)
equivQ q = do k <- choose (0,0 'max' (n-1))
  return (take (n-k) els, reverse (drop (n-k) els))
  where
    els = retrieve q
    n = length els
```

Note:
- Definition of `choose` will be given later

Generators

This allows us to check that
- generated elements are related, i.e., equivalent

To this end check:

```haskell
prop_EquivQ q = invariant q ==> forall (equivQ q) $ \q' -> q 'equiv' q'
```

Note:
- `\` means function application. Using `\` allows the omission of parentheses, see the \ expression in the example.
- The property which is dual to `prop_EquivQ`, i.e., that all related elements can be generated, cannot be checked by testing.

Generators

This allows:
- Reformulating the property that `addI` maps equivalent queues to equivalent queues

```haskell
prop_add_equiv q x = invariant q ==> forall (equivQ q) $ \q' -> addI x q 'equiv' addI x q'
```

Remark:
- Other properties analogously

Next: How to define generators...
Defining Generators

...is simplified because of the monadic type of Gen.

It holds:

- \texttt{return a} always yields (generates) \texttt{a} and represents the singleton set \{\texttt{a}\}
- \texttt{do \{x <- s; e\}} can be considered the (generated) set \{e \mid x \in s\}

Applying choose

Using \texttt{choose} we can define \texttt{equivQ} (as seen above):

```haskell
equivQ :: QueueI a -> Gen(QueueI a)
equivQ q = do k <- choose (0,0 `max` (n-1))
  return (take (n-k) els, reverse (drop (n-k) els))
where
  els = retrieve q
  n = length els
```

- Generates a random queue containing the same elements as \texttt{q}
- The number of elements in the remainder of the list will be chosen such that it is properly smaller than the total number of elements of the list (supposed the total number is different from 0)

Type-based Generators

...by means of the overloaded generator \texttt{arbitrary}, e.g. for the generation of arguments of properties:

Example:

```haskell
prop_max_le x y = x <= x `max` y
```
is equivalent to

```haskell
prop_max_le = forAll arbitrary $ \x -> forAll arbitrary $ \y ->
  x <= x `max` y
```
Type-based Generators

Another example:

The set \(\{ y \mid y \geq x \} \) can be generated by

\[
\text{atLeast } x = \text{do} \ \text{diff} \leftarrow \text{arbitrary} \\
\quad \text{return} (x + \text{abs} \ \text{diff})
\]

because of the equality

\[
\{ y \mid y \geq x \} = \{ x + \text{abs} \ d \mid d \in \mathbb{Z} \}
\]

that holds for numerical types.

Note: Similar definitions for other types are possible.

Selection

...between several generators can be achieved by means of a generator \textit{oneof}, which can be thought of as set union.

Example: Constructing a sorted list

\[
\text{orderedLists} = \text{do} \ x \leftarrow \text{arbitrary} \\
\quad \text{listsFrom } x \\
\quad \text{where} \\
\quad \text{listsFrom } x = \text{oneof} \ \left[\text{return } [], \ \text{do} \ y \leftarrow \text{atLeast } x \\
\quad \quad \quad \text{liftM} (x:) (\text{listsFrom } y) \right]
\]

Underlying intuition:

\begin{itemize}
 \item A sorted list is either empty or the addition of a new head element to a sorted list of larger elements
\end{itemize}

The Class Arbitrary

If non-standard generators such as \textit{orderedLists} are used frequently, it is advisable to make this type an instance of \textit{Arbitrary}:

\[
\text{newtype } \text{OrderedList } a = \text{OL } [a] \\
\text{instance } (\text{Num } a, \text{Arbitrary } a) \Rightarrow \text{Arbitrary}(\text{OrderedList } a) \quad \text{where} \\
\quad \text{arbitrary} = \text{liftM} \ \text{OL } \text{orderedLists}
\]

Together with the re-definition of \textit{insert} as

\[
\text{insert} :: \text{Ord } a \Rightarrow a \rightarrow \text{OrderedList } a \rightarrow \text{OrderedList } a
\]

arguments generated for it will automatically be ordered.

Weighted Selection

\begin{itemize}
 \item The \textit{oneof} combinator picks with equal probability one of the alternatives
 \item This often has an unduly impact on the test case generation (in the previous example the empty set will be selected too often)
 \item \textit{Remedy}: A weight function \textit{frequency}, which assigns different weights to the alternatives
\end{itemize}

\[
frequency :: [(\text{Int}, \text{Gen } a)] \rightarrow \text{Gen } a
\]

Application:

\[
\text{listsFrom } x = frequency \ \left[\text{(1, return } []), \ \\
\quad \text{(4, do } y \leftarrow \text{atLeast } x \\
\quad \quad \quad \text{liftM} (x:) (\text{listsFrom } y)) \right]
\]

\begin{itemize}
 \item A QuickCheck generator corresponds to a probability distribution over a set, not the set itself
 \item The impact of the above assignment of weights is that on average the length of generated lists is 4
\end{itemize}
Controlling the Size of Generated Test Data

- Often wise for type-based test data generation
- Explicitly supported by QuickCheck

Generators that depend on the size can be defined by:

```haskell
sized :: (Int -> Gen a) -> Gen a -- For defining size aware gen.
sized $ \n -> do len <- choose (0,n) -- Application of sized
    vector len -- in the Def. of the default
    -- list generator
vector n = sequence [arbitrary | i <- [1..n]] -- generates random list
    -- of length n
resize :: Int -> Gen a -> Gen a -- for controlling the size of
    -- generated values
sized $ \n -> resize (round (sqrt (fromInt n))) arbitrary
    -- Application of resize
```

Generators for User-defined Types

Test data generators for...

- *predefined* ("built-in") types of Haskell
 - are provided by QuickCheck
 - for *user-defined types*, this is not possible
- *user-defined types*
 - have to be provided by the user in terms of defining a suitable instance of class `Arbitrary`
 - require usually, especially in case of recursive types, to control the size of generated test cases

Example: Binary Trees

Consider type `Tree`:

```haskell
data Tree a = Leaf | Branch (Tree a) a (Tree a)
```

The following definition of the test-case generator is apparent:

```haskell
instance Arbitrary a => Arbitrary (Tree a) where
    arbitrary =
        frequency [(1,return Leaf),
                   (3,liftM3 Branch arbitrary arbitrary arbitrary)]
```

Example: Binary Trees

Note:

- The assignment of weights (1 vs. 3) has been done in order to avoid the generation of all too many trivial trees of size 1
- *Problem*: The likelihood that a generator comes up with a finite tree, is only one third
 - this is because termination is possible only, if all sub-trees generated are finite. With increasing breadth of the trees, the requirement of always selecting the "terminating" branch has to satisfied at ever more places simultaneously
Example: Binary Trees

Remedy:

- Usage of the parameter `size` in order to ensure
 - termination and
 - “reasonable” size of the trees generated

Implementation:

```haskell
instance Arbitrary a => Arbitrary (Tree a) where
  arbitrary = sized arbTree

arbTree 0 = return Leaf
arbTree n | n > 0 =
  frequency [(1,return Leaf),
              (3,liftM3 Branch shrub arbitrary shrub)]
            where
              shrub =arbTree (n 'div' 2)

Note: shrub is a generator for small(er) trees.
```

Remark:

- `shrub` is a generator for “small” trees
- `shrub` is not bounded to a special tree; the two occurrences
 of `shrub` will usually generate different trees
- Since the size limit for subtrees is halved, the total size is bounded by the parameter `size`
- Defining generators for recursive types must usually be handled specifically as in this example

Test-Data Monitoring / Test Coverage

In practice, it is meaningful...

- to monitor the test cases generated
- in order to obtain a hint on the quality and the coverage of test cases of a QuickCheck run

For this purpose QuickCheck provides...

- an array of monitoring possibilities
Test-Data Monitoring / Test Coverage

Why is test-data monitoring meaningful?

Reconsider the example of inserting into a sorted list:

```haskell
prop_InsertOrdered :: Integer -> [Integer] -> Property
prop_InsertOrdered x xs = ordered xs ==> ordered (insert x xs)
```

QuickCheck performs the check of `prop_InsertOrdered` such that...

- lists are generated randomly
- each generated list will be checked, if it is sorted (used test case) or not (discarded test case)

Obviously, it holds...

- the likelihood that a randomly generated list is sorted is the higher the shorter the list is

This introduces the danger that...

- the property `prop_InsertOrdered` is mostly tested with lists of length one or two
- even a successful test is not meaningful

For monitoring QuickCheck provides a...

- combinator `trivial`, where the meaning of “trivial” is user-definable

Example:

```haskell
prop_InsertOrdered :: Integer -> [Integer] -> Property
prop_InsertOrdered x xs = ordered xs ==> trivial (length xs <= 2) $ ordered (insert x xs)
```

with

```bash
Main> quickCheck prop_InsertOrdered
OK, passed 100 tests (91% trivial)
```

Test-Data Monitoring / Test Coverage

Observation:

- 91% are too many trivial test cases in order to ensure that the total test is meaningful
- The operator `==>` should be used with care in test-case generators

Remedy:

- User-defined generators
 - as in the example of `prop_InsertOrdered` on slide 14
The combinator trivial is...

- instance of a more general combinator classify

\[
\text{trivial } p = \text{classify } p "\text{trivial}"
\]

Multiple application of classify allows an even more refined test-case monitoring:

\[
\begin{align*}
\text{prop_InsertOrdered } x \ x s = \text{ordered } x s & \Rightarrow \\
& \text{classify (null } x s) "\text{empty lists}" $ \\
& \text{classify (length } x s == 1) "\text{unit lists}" $ \\
& \text{ordered (insert } x x s)
\end{align*}
\]

This yields:

Main>quickCheck prop_InsertOrderedOK, passed 100 tests.
42% unit lists.
40% empty lists.

Going beyond, the combinator collect allows to keep track on all test cases:

\[
\begin{align*}
\text{prop_InsertOrdered } x \ x s = \text{ordered } x s & \Rightarrow \\
& \text{collect (length } x s) $ \text{ordered (insert } x x s)
\end{align*}
\]

This yields a histogram of values:

Main>quickCheck prop_InsertOrderedOK
OK, passed 100 tests.
46% 0.
34% 1.
15% 2.
5% 3.

Notes on the Implementation of Quick-Check 1(2)

\[
\begin{align*}
\text{class Testable } a \text{ where} \\
& \text{property :: } a \rightarrow \text{Property}
\end{align*}
\]

\[
\begin{align*}
\text{newtype Property = Prop (Gen Result)}
\end{align*}
\]

\[
\begin{align*}
\text{instance Testable Bool where} \\
& \text{property } b = \text{Prop (return (resultBool } b))
\end{align*}
\]

\[
\begin{align*}
\text{instance (Arbitrary } a, \text{ Show } a, \text{ Testable } b) & \Rightarrow \\
& \text{Testable } (a \rightarrow b) \text{ where} \\
& \text{property } f = \text{forall arbitrary } f
\end{align*}
\]

\[
\begin{align*}
\text{instance Testable Property where} \\
& \text{property } p = p
\end{align*}
\]

\[
\begin{align*}
\text{quickCheck :: Testable } a & \Rightarrow a \rightarrow \text{IO ()}
\end{align*}
\]
Notes on the Implementation of Quick-Check 2(2)

QuickCheck: In total about 300 lines of code.

For further details check out:

Conclusions 1(3)

Generally, it holds:

- Formalizing specifications is meaningful (even without a subsequent formal proof of soundness)

Experience shows:

- Specifications provided are often (initially) faulty themselves

Conclusions 2(3)

QuickCheck is an effective tool...

- to disclose bugs in
 - programs and
 - specifications
 with little effort.

- to reduce
 - test costs
 - while simultaneously testing more thoroughly

Conclusions 3(3)

Investigations of Richard Hamlet in...

suggest that

- a high number of test cases yields meaningful results even in the case of *random testing*

In principle, it holds:

- The generation of random test cases is "cheap"

Hence, there are many reasons advising...

- the routine usage of a tool like QuickCheck!
Further Reading

Next course meeting...

- Thursday, April 14, 2011, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr. 8