
Programming with Streams

Streams = Infinite Lists

Programming with streams

• Applications

– Streams plus lazy evaluation supports new modulariza-
tion principles

∗ Generator/selector

∗ Generator/filter

∗ Generator/transformer

– Pitfalls and Remedies

• Foundations

– Well-definedness

– Proving properties of programs with streams
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Programming with Streams

The following presentation is based on...

• Chapter 14

Paul Hudak. The Haskell School of Expression – Learning

Functional Programming through Multimedia, Cambridge

University Press, 2000.

• Chapter 17

Simon Thompson. Haskell – The Craft of Functional Pro-

gramming, Addison-Wesley, 2nd edition, 1999.
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Streams

Jargon

Stream ...synonymous to infinite list

synonymous to lazy list

Streams...

• (in combination with lazy evaluation) allow to solve many

problems elegantly, concisely, and efficiently

• are a source of hassle if applied inappropriately

More on this on the following slides...
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Streams

Convention

Instead of introducing a polymorphic data type Stream...

data Stream a = a :* Stream a

...we will model streams by ordinary lists waiving the usage of

the empty list [ ].

This is motivated by:

• Convenience/Adequacy ...many pre-defined (polymorphic)

functions on lists can be reused this way, which otherwise

would have to be defined on the new data type Stream

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 4



Some Examples of Streams

• Built-in Streams in Haskell

[3 ..] = [3,4,5,6,7,...

[3,5 ..] = [3,5,7,9,11,...

• User-defined recursive lists (Streams)

The infinite lists of “twos”

2,2,2,...

In Haskell this can be realized...

– using list comprehension: [2..]

– as a recursive stream: twos = 2 : twos

Illustration

twos => 2 : twos
=> 2 : 2 : twos
=> 2 : 2 : 2 : twos
=> ...

...twos represents an infinite list; or more concisely, a stream

Functions on Streams

head :: [a] -> a

head (x:_) = x

Application

head twos

=> head (2 : twos)

=> 2

Note: Normal-order reduction (resp. its efficient implementati-
on variant lazy evaluation) ensures termination (in this exam-
ple). I.e., the infinite sequence of reductions...

head twos

=> head (2 : twos)

=> head (2 : 2 : twos)

=> head (2 : 2 : 2 : twos)

=> ...

...is thus excluded.

Reminder

...whenever there is a terminating reduction sequence
of an expression, then normal-order reduction terminates
(Church/Rosser-Theorem)

• Normal-order reduction corresponds to leftmost-outermost
evaluation

Note: Considering the function...

ignore :: a -> b -> b
ignore a b = b

in both expressions

– ignore twos 42

– twos ’ignore’ 42

the leftmost-outermost operator is given by the call ignore.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 7

Functions on Streams: More Examples

addFirstTwo :: [Integer] -> Integer

addFirstTwo (x:y:zs) = x+y

Application

addFirstTwo twos => addFirstTwo (2:twos)

=> addFirstTwo (2:2:twos)

=> 2+2

=> 4
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Further Examples on Streams

• User-defined recursive lists/streams

from :: Int -> [Int]

from n = n : from (n+1)

fromStep :: Int -> Int -> [Int]

fromStep n m = n : fromStep (n+m) m

Application

from 42 => [42, 43, 44,...

fromStep 3 2 => 3 : fromStep 5 2

=> 3 : 5 : fromStep 7 2

=> 3 : 5 : 7 : fromStep 9 2

=> ...
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Further Examples

• The powers of an integer...

powers :: Int -> [Int]

powers n = [n^x | x <- [0 ..]]

• More general: The prelude function iterate...

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

The function iterate yields the stream

[x, f x, (f . f) x, (f . f . f) x, ..
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Prime Numbers: The Sieve of Era-
tosthenes 1(4)

Intuition

1. Write down the natural numbers starting at 2.

2. The smallest number not yet cancelled is a prime number.
Cancel all multiples of this number

3. Repeat Step 2 with the smallest number not yet cancelled.

Illustration

Step 1: 2 3 4 5 6 7 8 9 10 11 12 13...

Step 2: 2 3 5 7 9 11 13...

("with 2")

Step 2: 2 3 5 7 11 13...

("with 3")

...
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Prime Numbers: The Sieve of Era-
tosthenes 2(4)

The sequence of prime numbers...

primes :: [Int]

primes = sieve [2 ..]

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [ y | y <- xs, mod y x > 0 ]
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Prime Numbers: The Sieve of Era-
tosthenes 3(4)

Illustration ...by manual evaluation

primes

=> sieve [2 ..]

=> 2 : sieve [ y | y <- [3 ..], mod y 2 > 0 ]

=> 2 : sieve (3 : [ y | y <- [4 ..], mod y 2 > 0 ]

=> 2 : 3 : sieve [ z | z <- [ y | y <- [4 ..], mod y 2 > 0 ],

mod z 3 > 0]

=> ...

=> 2 : 3 : sieve [ z | z <- [5, 7, 9 ..], mod z 3 > 0 ]

=> ...

=> 2 : 3 : sieve [5, 7, 11,...]

=> ...
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Prime Numbers: The Sieve of Era-
tosthenes 4(4)

• Application

member primes 7 ...yields "True"

but

member primes 6 ...does not terminate!

where

member :: [a] -> a -> Bool

member [] y = False

member (x:xs) y = (x==y) || member xs y

• Question(s): Why? How can primes be embedded into a
context allowing us to detect if a specific argument is prime
or not? (Homework)
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Random Numbers 1(2)

Generating a sequence of (pseudo-) random numbers...

nextRandNum :: Int -> Int

nextRandNum n = (multiplier*n + increment) ’mod’ modulus

randomSequence :: Int -> [Int]

randomSequence = iterate nextRandNum

Choosing

seed = 17489 increment = 13849

multiplier = 25173 modulus = 65536

we obtain the following sequence of (pseudo-) random num-
bers

[17489, 59134, 9327, 52468, 43805, 8378,...

ranging from 0 to 65536, where all numbers of this interval
occur with the same frequency.
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Random Numbers 2(2)

Often one needs to have random numbers within a range p to

q inclusive, p<q.

This can be achieved by scaling the sequence.

scale :: Float -> Float -> [Int] -> [Float]

scale p q randSeq = map (f p q) randSeq

where f :: Float -> Float -> Int -> Float

f p q n = p + ((n * (q-p)) / (modulus-1))

Application

scale 42.0 51.0 randomSequence
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Principles of Modularization

...related to streams

• The Generator/Selector Principle

...e.g. Computing the square root, the Fibonacci numbers

• The Generator/Transformer Principle

...e.g. “scaling” random numbers
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More on Recursive Streams

Reminder ...the sequence of Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...

is defined by

fib : IN → IN

fib(n)=df

{

1 if n = 0 ∨ n = 1
fib(n − 1) + fib(n − 2) otherwise
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The Fibonacci Numbers 1(4)

We learned already...

fib :: Integer -> Integer

fib 0 = 1

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

...that a naive implementation as above is inacceptably ineffi-

cient.
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The Fibonacci Numbers 2(4)

Illustration ...by manual evaluation

fib 0 => 1 -- 1 call of fib

fib 1 => 1 -- 1 call of fib

fib 2 => fib 1 + fib 0

=> 1 + 1

=> 2 -- 3 calls of fib

fib 3 => fib 2 + fib 1

=> (fib 1 + fib 0) + 1

=> (1 + 1) + 1

=> 3 -- 5 calls of fib
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The Fibonacci Numbers 3(4)

fib 4 => fib 3 + fib 2

=> (fib 2 + fib 1) + (fib 1 + fib 0)

=> ((fib 1 + fib 0) + 1) + (1 + 1)

=> ((1 + 1) + 1) + (1 + 1)

=> 5 -- 9 calls of fib

fib 5 => fib 4 + fib 3

=> (fib 3 + fib 2) + (fib 2 + fib 1)

=> ((fib 2 + fib 1) + (fib 1 + fib 0))

+ ((fib 1 + fib 0) + 1)

=> (((fib 1 + fib 0) + 1) + (1 + 1)) + ((1 + 1) + 1)

=> (((1 + 1) + 1) + (1 + 1)) + ((1 + 1) + 1)

=> 8 -- 15 calls of fib
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The Fibonacci Numbers 4(4)

fib 8 => fib 7 + fib 6

=> (fib 6 + fib 5) + (fib 5 + fib 4)

=> ((fib 5 + fib 4) + (fib 4 + fib 3))

+ ((fib 4 + fib 3) + (fib 3 + fib 2))

=> (((fib 4 + fib 3) + (fib 3 + fib 2))

+ (fib 3 + fib 2) + (fib 2 + fib 1)))

+ (((fib 3 + fib 2) + (fib 2 + fib 1))

+ ((fib 2 + fib 1) + (fib 1 + fib 0)))

=> ... -- 60 calls of fib

...tree-like recursion (exponential growth!)
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Reminder: Complexity 1(3)

See P. Pepper. Funktionale Programmierung in OPAL, ML,

Haskell und Gofer, 2nd Edition (In German), 2003, Chapter

11.

Reminder ...O Notation

• Let f be a function f : α → IR+ with some data type α

as domain and the set of positive real numbers as range.

Then the class O(f) denotes the set of all functions which

“grow slower” than f :

O(f)=df{h |h(n) ≤ c ∗ f(n) for some positive

constant c and all n ≥ N0}
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Reminder: Complexity 2(3)

Examples of common cost functions...

Code Costs Intuition: input a thousandfold as large
means...

O(c) constant ... equal effort
O(log n) logarithmic ...only tenfold effort
O(n) linear ...also a thousandfold effort
O(n log n) “n log n” ...tenthousandfold effort

O(n2) quadratic ...millionfold effort

O(n3) cubic ...billiardfold effort
O(nc) polynomial ... gigantic much effort (for big c)
O(2n) exponential ...hopeless
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Reminder: Complexity 3(3)

...and the impact of growing inputs in practice in hard numbers:

n linear quadratic cubic exponential

1 1 µs 1 µs 1 µs 2 µs
10 10 µs 100 µs 1 ms 1 ms
20 20 µs 400 µs 8 ms 1 s
30 30 µs 900 µs 27 ms 18 min

40 40 µs 2 ms 64 ms 13 days
50 50 µs 3 ms 125 ms 36 years
60 60 µs 4 ms 216 ms 36 560 years

100 100 µs 10 ms 1 sec 4 ∗ 1016 years
1000 1 ms 1 sec 17 min very, very long...
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Remedy: Recursive Streams 1(4)

Idea

1 1 2 3 5 8 13 21... Sequence of Fibonacci Numbers

1 2 3 5 8 13 21 34... Remainder of the sequ. of F. Numbers

-----------------------------------------------------------------

2 3 5 8 13 21 34 55... Remain. of the rem. of the seq. of F.

Efficient implementation as a recursive stream

fibs :: [Integer]

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

where

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

zipWith f _ _ = []

...reminds to Münchhausen’s famous trick of “sich am eigenen
Schopfe aus dem Sumpfe ziehen”
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Remedy: Recursive Streams 2(4)

fibs => 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : 34 : 55 : 89 : ...

take 10 fibs => [1,1,2,3,5,8,13,21,34,55]

where

take :: Integer -> [a] -> [a]

take 0 _ = []

take _ [] = []

take n (x:xs) | n>0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"
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Remedy: Recursive Streams 3(4)

Summing up

fib :: Integer -> Integer

fib n = last take n fibs

or even yet shorter

fib n = fibs!!n

Note:

• Also in this example...

Application of the Generator/Selector Principle
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Remedy: Recursive Streams 4(4)

Illustration ...by manual evaluation (with add instead of zipWith

(+) )

fibs => Replace the call of fibs by the body of fibs

1 : 1 : add fibs (tail fibs)

=> // Replace both calls of fibs by the body of fibs

1 : 1 : add (1 : 1 : add fibs (tail fibs))

(tail (1 : 1 : add fibs (tail fibs)))

=> // Application of tail

1 : 1 : add (1 : 1 : add fibs (tail fibs))

(1 : add fibs (tail fibs))

=> ...

• Observation
...the computational effort remains exponential this (naive)
way!

• Clou
...lazy evaluation: ...common subexpressions will not be
computed multiple times!

Illustration 1(3)

fibs => 1 : 1 : add fibs (tail fibs)

=> // Introducing abbreviations allows sharing of results

1 : tf // (tf reminds to "tail of fibs")

where tf = 1 : add fibs (tail fibs)

=> 1 : tf

where tf = 1 : add fibs tf

=> // Introducing abbreviations allows sharing

1 : tf

where tf = 1 : tf2 // (tf2 reminds to "tail of tail

// of fibs")

where tf2 = add fibs tf

=> // Unfolding of add

1 : tf

where tf = 1 : tf2

where tf2 = 2 : add tf tf2

Illustration 2(3)

=> // Repeating the above steps

1 : tf

where tf = 1 : tf2

where tf2 = 2 : tf3 // (tf3 reminds to "tail of

// tail of tail of fibs")

where tf3 = add tf tf2

=> 1 : tf

where tf = 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : add tf2 tf3

=> // tf is only used at one place and can thus be

// eliminated

1 : 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : add tf2 tf3
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Illustration 3(3)

=> // Finally, we obtain successsively longer prefixes

// the sequence of Fibonacci numbers

1 : 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : tf4

where tf4 = add tf2 tf3

=> 1 : 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : tf4

where tf4 = 5 : add tf3 tf4

// Note: eliminating where-clauses corresponds to

// garbage collection of unused memory by an implementation

=> 1 : 1 : 2 : tf3

where tf3 = 3 : tf4

where tf4 = 5 : add tf3 tf4
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Alternatively: Stream Diagrams

Problems on streams can often be considered and visualized
as processes.

Considering the sequence of Fibonacci Numbers as an exam-
ple...

(:)

(:)

add

2,3,5,8,...

fibs = 1,1,2,3,5,8,...

1,2,3,5,8,...

1

1

Another Example: A Client/Server Ap-
plication

Interaction of a server and a client (e.g. Web server/Web brow-
ser)

client :: [Response] -> [Request]

server :: [Request] -> [Response]

reqs = client resps

resps = server reqs

Implementation

type Request = Integer

type Response = Integer

client ys = 1 : ys // ...issues 1 as first request and then

// each integer it receives from the server

server xs = map (+1) xs // ...adds 1 to each request it receives
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Client/Server Application
(Cont’d. 1(2))

Example

reqs => client resps

=> 1 : resps

=> 1 : server reqs

=> // Introducing abbreviations

1 : tr

where tr = server reqs

=> 1 : tr

where tr = 2 : server tr

=> 1 : tr

where tr = 2 : tr2

where tr2 = server tr
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Client/Server Application
(Cont’d. 2(2))

=> 1 : tr

where tr = 2 : tr2

where tr2 = 3 : server tr2

=> 1 : 2 : tr2

where tr2 = 3 : server tr2

=> ...

In particular

take 10 reqs => [1,2,3,4,5,6,7,8,9,10]
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The Client/Server Example as a
Stream Diagram

(+1)

(:)

1

resps = 2,3,4,5,...

reqs = 1,2,3,4,5,...

server

client

Overcoming Hassle... Lazy Patterns

Suppose, the client wants to check the first response...

client (y:ys) = if ok y then 1 : (y:ys)

else error "Faulty Server"

where

ok y = True // Obviously a trivial predicate

The evaluation of...

reqs => client resps

=> client (server reqs)

=> client (server (client resps))

=> client (server (client (server reqs)))

=> ...

...does not terminate!

The problem:

Deadlock! Neither client nor server can be unfolded! Pattern
matching is too “eager.”

Lazy Patterns 1(3)

Ad-hoc Remedy

client ys = 1 : if ok (head ys) then ys

else error "Faulty Server"

• Replacing of pattern matching by an explicit usage of the

selector function head

• Moving the conditional inside of the list
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Lazy Patterns 2(3)

Systematic remedy ...lazy patterns

• Syntax: ...preceding tilde (∼)

• Effect: ...like using an explicit selector function;

pattern-matching is defered

client ~(y:ys) = 1 : if ok y then y:ys

else error "Faulty Server"

Note ...even when using a lazy pattern the conditional must

still be moved. But: selector functions are avoided!
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Lazy Patterns 3(3)

Illustration ...by manual evaluation

reqs => client resps

=> 1 : if ok y then y : ys

else error "Faulty Server"

where y:ys = resps

=> 1 : (y:ys)

where y:ys = resps

=> 1 : resps
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Overcoming Hassle... Memo Tables

Note ...Dividing/Recognizing of common structures is limited

The below variant of the Fibonacci function...

fibsFn :: () -> [Integer]

fibsFn x = 1 : 1 : zipWith (+) (fibsFn ()) (tail (fibsFn ()))

...exposes again exponential run-time and storage behaviour!

Key word:

• Space (Memory) Leak ...the memory space is consumed so

fast that the performance of the program is significantly

impacted
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Illustration

fibsFn ()

=> 1 : 1 : add (fibsFn ()) (tail (fibsFn ()))

=> 1 : tf

where tf = 1 : add (fibsFn ()) (tail (fibsFn ()))

The equality of tf and tail(fibsFn()) remains undetected.

Hence, the following simplification is not done

=> 1 : tf

where tf = 1 : add (fibsFn ()) tf

In a special case like here, this is possible, but not in general!
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Memo Functions 1(4)

Memo functions (engl. Memoization)....

• The concept goes back to Donald Michie. ““Memo” Func-

tions and Machine Learning”, Nature, 218, 19-22, 1968.

• Idea: Replace, where possible, the computation of a functi-

on according to its body by looking up its value in a table.
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Memo Functions 2(4)

• Hence: A memo function is an ordinary function, but sto-

res for some or all arguments it has been applied to the

corresponding results ; Memo Tables.

• Utility : Memo Tables – allow to replace recomputation by

table look-up

Correctness: Referential transparency of functional pro-

gramming languages
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Memo Functions 3(4)

Computing the Fibonacci Numbers using a memo function:

Preparation:

flist = [ f x | x <- [0 ..] ]

...where f is a function on integers. Application: Each call of
f is replaced by a look-up in flist.

Considering the Fibonacci numbers as example:

flist = [ fib x | x <- [0 ..] ]

fib 0 = 1

fib 1 = 1

fib n = flist !! (n-1) + flist !! (n-2)

instead of...

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
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Memo Functions 4(4)

Conclusion...

• Memo Functions: Are meant to replace costly to compute

functions by a table look-up

• Example (20, 21, 22, 23, . . .):

power 0 = 1

power i = power (i-1) + power (i-1)

Looking-up the result of the second call instead of recom-

puting it requires only 1+n calls of power instead of 1+2n

; significant performance gain
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Memo Tables 1(2)

Memo functions/tables

memo :: (a -> b) -> (a -> b)

are used such that the following equality holds:

memo f x = f x

Key word: Referential transparency (in particular, absence of

side effects!)
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Memo Tables 2(2)

The function memo...

• essentially the identity on functions but...

• memo keeps track on the arguments, it has been applied to
and the corresponding results
...motto: look-up a result which has been computed pre-
viously instead of recomputing it!

• Memo functions are not part of the Haskell standard, but
there are nonstandard libraries

• Important design decision when implementing Memo func-
tions: ...how many argument/result pairs shall be traced?
(e.g. memo1 for one argument/result pair)

In the example

mfibsFn :: () -> [Integer]
mfibsFn x = let mfibs = memo1 mfibsFn

in 1 : 1 : zipWith (+) (mfibs ()) (tail (mfibs ()))

More on Memo Functions...

...and their implementation

For example in...

• Chapter 19

Anthony J. Field, Peter G. Harrison. Functional Program-

ming, Addison-Wesley, 1988.
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Summary

What are the reasons advocating the usage of streams (and

lazy evaluation)?

• Higher abstraction ...limitations to finite lists are often mo-

re complex, while simultaneously unnatural

• Modularization ...together with lazy evaluation as evaluati-

on strategy elegant possibilities for modularization become

possible. Keywords are the Generator/Selector and the Ge-

nerator/Transformer principle.
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Generator/Transformer Principle

Illustration...

iterate f x

x, f x, f(f x), ... 

x, y, z, ... g x, g y, g z, ...

map g

Generator

Transformer

map g

x, f x, f(f x), ... 

Combining Generator and Transformer

iterate f x

g x, g(f x), g(f(f x)), ...
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Generator/Selector Principle

Illustration...

Generator

Selector/Filter

x, y, z, ... [ q | q <− [x, y, z, ..], 

iterate f x

x, f x, f(f x), ... 

select p q == True ]

select p
[ q | q <− [x, f x, f(f x), ..],

select p q == True ]

iterate f x

Combining Generator and Selector/Filter

x, f x, f(f x), ... 

select p
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