Programming with Streams
Streams = Infinite Lists

Programming with streams

e Applications

— Streams plus lazy evaluation supports new modulariza-
tion principles

x Generator/selector
= Generator /filter
x Generator/transformer

— Pitfalls and Remedies

e Foundations

— Well-definedness

Programming with Streams

The following presentation is based on...

e Chapter 14
Paul Hudak. The Haskell School of Expression — Learning
Functional Programming through Multimedia, Cambridge
University Press, 2000.

e Chapter 17
Simon Thompson. Haskell — The Craft of Functional Pro-
gramming, Addison-Wesley, 2nd edition, 1999.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 2
— Proving properties of programs with streams
Streams Streams
Jargon Convention

Stream ...synonymous to infinite list
synonymous to lazy list

Streams...

e (in combination with lazy evaluation) allow to solve many
problems elegantly, concisely, and efficiently

e are a source of hassle if applied inappropriately

More on this on the following slides...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 3

Instead of introducing a polymorphic data type Stream...
data Stream a = a :* Stream a
...we will model streams by ordinary lists waiving the usage of

the empty list [1.

This is motivated by:

e Convenience/Adequacy ...many pre-defined (polymorphic)
functions on lists can be reused this way, which otherwise
would have to be defined on the new data type Stream

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 4

Some Examples of Streams

e Built-in Streams in Haskell

3 ..] = [3,4,5,6,7,...
3,5 ..] [3,5,7,9,11,...

e User-defined recursive lists (Streams)
The infinite lists of “twos”

2,2,2,...

In Haskell this can be realized...
— using list comprehension: [2.

-]
— as a recursive stream: twos = 2 : twos
Illustration

twos => 2 : twos
=> 2 : 2 : twos
=>2:2: 2 : twos
=> ...

...twos represents an infinite list; or more concisely, a stream

Functions on Streams

head :: [a] -> a
head (x:_) = x

Application

head twos
=> head (2 : twos)
= 2

Note: Normal-order reduction (resp. its efficient implementati-
on variant lazy evaluation) ensures termination (in this exam-
ple). L.e., the infinite sequence of reductions...

head twos
=> head (2 : twos)
=> head (2 : 2 : twos)
=> head (2 : 2 : 2 : twos)

...is thus excluded.

Reminder

...whenever there is a terminating reduction sequence
of an expression, then normal-order reduction terminates
(Church/Rosser-Theorem)

e Normal-order reduction corresponds to leftmost-outermost
evaluation

Note: Considering the function...

ignore :: a -> b -> Db
ignore a b = b

in both expressions
— ignore twos 42

— twos ’ignore’ 42

the leftmost-outermost operator is given by the call ignore.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 7

Functions on Streams: More Examples

addFirstTwo :: [Integer] -> Integer
addFirstTwo (x:y:zs) = xt+y

Application

addFirstTwo twos => addFirstTwo (2:twos)
=> addFirstTwo (2:2:twos)
=> 242
=>4

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 8

Further Examples on Streams

e User-defined recursive lists/streams
from :: Int -> [Int]

fromn =n : from (n+1)

fromStep :: Int -> Int -> [Int]
fromStep n m = n : fromStep (n+m) m

Application
from 42 => [42, 43, 44,...
fromStep 3 2 => 3 : fromStep 5 2

=>3 : 5 : fromStep 7 2
=>3:5 :7 : fromStep 9 2

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 9

Further Examples

e The powers of an integer...

powers :: Int -> [Int]

powers n = [n"x | x <- [0 ..]]

e More general: The prelude function iterate...

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)
The function iterate yields the stream

[x, £x, (£ . £f) x, (f . £ . f) x,

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 10

Prime Numbers: The Sieve of Era-
tosthenes 1(4)

Intuition
1. Write down the natural numbers starting at 2.

2. The smallest number not yet cancelled is a prime number.
Cancel all multiples of this number

3. Repeat Step 2 with the smallest number not yet cancelled.

Illustration
Step 1: 2 3 4 5 6 7 8 9 10 11 12 13...
Step 2: 2 3 5 7 9 11 13...
("with 2")
Step 2: 2 3 5 7 11 13...
("with 3")

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 11

Prime Numbers: The Sieve of Era-
tosthenes 2(4)

The sequence of prime numbers...
primes :: [Int]

primes = sieve [2 ..]

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [y | y <- xs, mod y x > 0]

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 12

Prime Numbers: The Sieve of Era-
tosthenes 3(4)

Illustration ...by manual evaluation

primes
=> sieve [2 ..]
=>2 : sieve [y | y<-[3 ..], mody2>0]1
=>2 :sieve B3 : [y | y<-[4 ..], mody 2>0]
=>2:3:sieve [z | z<-[y|ly<-[4..], mody2>01,

mod z 3 > 0]
=> ...
=>2 :3 :sijeve [z | z<-[5,7, 9 ..], mod z 3 >0]
=> ...
=> 2 : 3 : sieve [5, 7, 11,...]
=>
Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 13

Prime Numbers: The Sieve of Era-
tosthenes 4(4)

e Application

member primes 7 ...yields "True"
but
member primes 6 ...does not terminate!
where
member :: [a] -> a -> Bool
member [] y = False
member (x:xs) y = (x==y) || member xs y

e Question(s): Why? How can primes be embedded into a
context allowing us to detect if a specific argument is prime
or not? (Homework)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 14

Random Numbers 1(2)

Generating a sequence of (pseudo-) random numbers...

nextRandNum :: Int -> Int
nextRandNum n = (multiplier*n + increment) ’mod’ modulus

randomSequence :: Int -> [Int]
randomSequence = iterate nextRandNum

Choosing
seed = 17489 increment = 13849
multiplier = 25173 modulus = 65536

we obtain the following sequence of (pseudo-) random num-
bers

[17489, 59134, 9327, 52468, 43805, 8378,...

ranging from 0 to 65536, where all numbers of this interval
occur with the same frequency.

Advanced fiinctional Proarammina (SS 2011) Part 2 (Thu 0R/17/11) 15

Random Numbers 2(2)

Often one needs to have random numbers within a range p to
q inclusive, p<q.
This can be achieved by scaling the sequence.

scale :: Float -> Float -> [Int] -> [Float]
scale p q randSeq = map (f p q) randSeq
where f :: Float -> Float -> Int -> Float
fpgqn=p+ ((n* (q-p)) / (modulus-1))

Application

scale 42.0 51.0 randomSequence

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 16

Principles of Modularization

...related to streams

e The Generator/Selector Principle
...e.g. Computing the square root, the Fibonacci numbers

e The Generator/Transformer Principle
...e.g. “scaling” random numbers

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 17

More on Recursive Streams

Reminder ...the sequence of Fibonacci Numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, b5, 89,...

is defined by
fib:IN — IN

Fib(my=y | 1 ifn=0V n=1
4\ fib(n — 1) 4 fib(n — 2) otherwise

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 18

The Fibonacci Numbers 1(4)

We learned already...

fib :: Integer -> Integer

fib 0 = 1
fib 1 =1
fib n = fib (n-1) + fib (n-2)

...that a naive implementation as above is inacceptably ineffi-
cient.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 19

The Fibonacci Numbers 2(4)

Illustration ...by manual evaluation

fib 0 => 1 -- 1 call of fib
fib 1 => 1 -- 1 call of fib

fib 2 => fib 1 + fib O
= 1+ 1
=> 2 -- 3 calls of fib

fib 3 => fib 2 + fib 1
=> (fib 1 + fib 0) + 1
= (1+1) +1
=> 3 -- b5 calls of fib

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 20

The Fibonacci Numbers 3(4)

fib 4 => fib 3 + fib 2
=> (fib 2 + fib 1) + (fib 1 + fib 0)
=> ((fib 1 + fib 0) + 1) + (1 + 1)
= ((1+1)+1)+ 1 +1)
=> 5 -- 9 calls of fib

fib 5 => fib 4 + fib 3
=> (fib 3 + fib 2) + (fib 2 + fib 1)
=> ((fib 2 + fib 1) + (£fib 1 + fib 0))
+ ((fib 1 + fib 0) + 1)
=> (((fib 1 + fib 0) + 1) + (1 + 1)) + (1 + 1) + 1)
= ((1+1)+1)+@A+1)+(1+1)+1)
=> 8 -- 15 calls of fib

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 21

The Fibonacci Numbers 4(4)

fib 8 =>

=>

fib 7 + fib 6
(fib 6 + fib 5) + (fib 5 + fib 4)
((fib 5 + fib 4) + (fib 4 + fib 3))
+ ((fib 4 + fib 3) + (fib 3 + fib 2))
(((fib 4 + fib 3) + (fib 3 + fib 2))
+ (fib 3 + fib 2) + (fib 2 + fib 1)))
+ (((fib 3 + fib 2) + (fib 2 + fib 1))
+ ((fib 2 + fib 1) + (fib 1 + fib 0)))
. —— 60 calls of fib

...tree-like recursion (exponential growth!)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 22

Reminder: Complexity 1(3)

See P. Pepper. Funktionale Programmierung in OPAL, ML,
Haskell und Gofer, 2nd Edition (In German), 2003, Chapter
11.

Reminder ...O Notation

e Let f be a function f : o — IRT with some data type «
as domain and the set of positive real numbers as range.
Then the class O(f) denotes the set of all functions which
“grow slower” than f:

O(f)=gr{h|h(n) < c* f(n) for some positive
constant ¢ and all n > Ng}

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 23

Reminder: Complexity 2(3)

Examples of

common cost functions...

Code Costs Intuition: input a thousandfold as large
means...

O(e) constant . equal effort

O(log n) logarithmic | ...only tenfold effort

O(n) linear ...also a thousandfold effort

O(n logn) | “n logn" ...tenthousandfold effort

O(n?) quadratic | ...millionfold effort

O(n3) cubic ...billiardfold effort

O(n¢) polynomial | ... gigantic much effort (for big c)

oen) exponential | ...hopeless

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 24

Reminder: Complexity 3(3)

...and the impact of growing inputs in practice in hard numbers:

n linear quadratic | cubic exponential

1 1 ps 1 us 1 ps 2 us
10 10 us | 100 us 1 ms 1 ms
20 20 pus | 400 ps 8 ms 1ls

30 30 us | 900 us 27 ms | 18 min

40 40 us |2 ms 64 ms 13 days

50 50 us 3 ms 125 ms | 36 years

60 60 us | 4 ms 216 ms | 36 560 years
100 100 us | 10 ms 1 sec 4 % 101 years
1000 || 1 ms 1 sec 17 min | very, very long...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11)

25

Remedy: Recursive Streams 1(4)

Idea
11 2 3 65 8 13 21... Sequence of Fibonacci Numbers
1 2 3 5 8 13 21 34... Remainder of the sequ. of F. Numbers
2 3 5 8 13 21 34 55... Remain. of the rem. of the seq. of k

Efficient implementation as a recursive stream

fibs :: [Integer]
fibs =1 : 1 : zipWith (+) fibs (tail fibs)

where

zipWith :: (a => b -> ¢) -> [a]l -> [b] -> [c]
zipWith £ (x:xs) (y:ys) = £ x y : zipWith f xs ys
zipWith f _ =[]

...reminds to Minchhausen’s famous trick of "sich am eigenen
Schopfe aus dem Sumpfe ziehen”

Advanced functianal Praarammina (SS 2011) Part 2 (Thu 03/17/11) 2A

Remedy: Recursive Streams 2(4)

fibs =>1 :1:2 :3:5:8: 13 : 21 : 34 : 55 :

take 10 fibs => [1,1,2,3,5,8,13,21,34,55]
where

take :: Integer -> [a] -> [a]

take 0 _ =[]

take _ [] =[]

take n (x:xs) | n>0 = x : take (n-1) xs
take =

error "Preludelist.take: negative argument"

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11)

27

Remedy: Recursive Streams 3(4)

Summing up

fib :: Integer -> Integer
fib n = last take n fibs

or even yet shorter

fib n = fibs!!n
Note:

e Also in this example...
Application of the Generator/Selector Principle

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 28

Remedy: Recursive Streams 4(4)

Illustration ...by manual evaluation (with add instead of zipWith
+)

fibs => Replace the call of fibs by the body of fibs
1 : 1 : add fibs (tail fibs)
=> // Replace both calls of fibs by the body of fibs
1 :1:add (1 : 1 : add fibs (tail fibs))
(tail (1 : 1 : add fibs (tail fibs)))
=> // Application of tail
1 :1:add (1 : 1 : add fibs (tail fibs))
(1 : add fibs (tail fibs))
=> ...

e Observation
...the computational effort remains exponential this (naive)
way!

e Clou
...lazy evaluation: ...common subexpressions will not be
computed multiple times!

Illustration 1(3)

fibs => 1 : 1 : add fibs (tail fibs)

=> // Introducing abbreviations allows sharing of results
1 : tf // (tf reminds to "tail of fibs")
where tf = 1 : add fibs (tail fibs)

=>1 : tf
where tf

1 : add fibs tf

=> // Introducing abbreviations allows sharing
1 : tf
where tf = 1 : tf2 // (tf2 reminds to "tail of tail
// of fibs")
where tf2 = add fibs tf

=> // Unfolding of add
1 : tf
where tf = 1 : tf2
where tf2 = 2 : add tf tf2

Illustration 2(3)

=> // Repeating the above steps

1 : tf
where tf = 1 : tf2
where tf2 = 2 : tf3 // (tf3 reminds to "tail of
// tail of tail of fibs")
where tf3 = add tf tf2
=>1 : tf
where tf = 1 : tf2

where tf2 = 2 : tf3
where tf3 = 3 : add tf2 tf3

=> // tf is only used at one place and can thus be
// eliminated
1 :1 : tf2
where tf2 = 2 : tf3
where tf3 = 3 : add tf2 tf3

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 31

Illustration 3(3)

=> // Finally, we obtain successsively longer prefixes
// the sequence of Fibonacci numbers
1 : 1 : tf2
where tf2 = 2 : tf3
where tf3 = 3 : tf4

where tf4 add tf2 tf3

=>1:1: tf2
where tf2 = 2 : tf3
where tf3

3 : tf4
where tf4 = 5 : add tf3 tf4
// Note: eliminating where-clauses corresponds to
// garbage collection of unused memory by an implementation
=>1:1:2: tf3
where tf3 = 3 : tf4
where tf4 = 5 : add tf3 tf4

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 32

Alternatively: Stream Diagrams

Problems on streams can often be considered and visualized
as processes.

Considering the sequence of Fibonacci Numbers as an exam-
ple...

fibs =1,1,2,3,58,...

add

\

Another Example: A Client/Server Ap-
plication

Interaction of a server and a client (e.g. Web server/Web brow-
ser)

client :: [Response] -> [Request]
server :: [Request] -> [Response]
reqs = client resps
resps = server regs

Implementation

type Request = Integer
type Response Integer

client ys

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 34

Client/Server Application
(Cont’'d. 1(2))
Example

reqs => client resps
=> 1 : resps
=> 1 : server regs

=> // Introducing abbreviations

1 : tr

where tr = server regs
=>1: tr

where tr = 2 : server tr
=>1: tr

where tr = 2 : tr2

where tr2 = server tr

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 35

Client/Server Application
(Cont’'d. 2(2))

=>1: tr
where tr = 2 : tr2
where tr2 = 3 : server tr2
=>1: 2 : tr2
where tr2 = 3 : server tr2
=> ...

In particular

take 10 regs => [1,2,3,4,5,6,7,8,9,10]

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 36

1 :ys // ...issues 1 as first request and then
// each integer it receives from the server
server xs = map (+1) xs // ...adds 1 to each request it receives

The Client/Server Example as a
Stream Diagram

regs = 1,2,3,4,5,...

client

server

(*+1)

\

Overcoming Hassle... Lazy Patterns

Suppose, the client wants to check the first response...
client (y:ys) = if ok y then 1 : (y:ys)

else error "Faulty Server"

where
ok y = True // Obviously a trivial predicate

The evaluation of...

reqs => client resps
=> client (server regs)
=> client (server (client resps))
=> client (server (client (server reqs)))

...does not terminate!
The problem:

Deadlock! Neither client nor server can be unfolded! Pattern
matching is too ‘“eaqger.”

Lazy Patterns 1(3)

Ad-hoc Remedy

client ys = 1 : if ok (head ys) then ys

else error "Faulty Server"

e Replacing of pattern matching by an explicit usage of the
selector function head

e Moving the conditional inside of the list

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 39

Lazy Patterns 2(3)

Systematic remedy ...lazy patterns
e Syntax: ...preceding tilde (~)

e Effect: ...like using an explicit selector function;
pattern-matching is defered
client “(y:ys) =1 : if ok y then y:ys
else error "Faulty Server"

Note ...even when using a lazy pattern the conditional must
still be moved. But: selector functions are avoided!

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 40

Lazy Patterns 3(3)

Illustration ...by manual evaluation

reqs => client resps
=>1: if ok y then y : ys
else error "Faulty Server"
where y:ys = resps
=>1: (y:ys)
where y:ys = resps
=> 1 : resps

Overcoming Hassle... Memo Tables

Note ...Dividing/Recognizing of common structures is limited
The below variant of the Fibonacci function...

fibsFn :: () -> [Integer]
fibsFn x = 1 : 1 : zipWith (+) (fibsFn ()) (tail (fibsFn ()))

...exposes again exponential run-time and storage behaviour!

Key word:

e Space (Memory) Leak ...the memory space is consumed so
fast that the performance of the program is significantly

impacted
Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 41 Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 42
Illustration
£ibsFn () Memo Functions 1(4)
=> 1 : 1 : add (fibsFn ()) (tail (fibsFn ()))
= 1 : tf Memo functions (engl. Memoization)....

where tf = 1 : add (fibsFn ()) (tail (fibsFn ()))

The equality of tf and tail(fibsFn()) remains undetected.
Hence, the following simplification is not done

= 1 : tf
where tf = 1 : add (fibsFn ()) tf

In a special case like here, this is possible, but not in general!

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 43

e T he concept goes back to Donald Michie. “ “Memo” Func-
tions and Machine Learning”, Nature, 218, 19-22, 1968.

e Idea: Replace, where possible, the computation of a functi-
on according to its body by looking up its value in a table.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 44

Memo Functions 2(4)

e Hence: A memo function is an ordinary function, but sto-
res for some or all arguments it has been applied to the
corresponding results ~» Memo Tables.

e Utility: Memo Tables — allow to replace recomputation by
table look-up
Correctness: Referential transparency of functional pro-
gramming languages

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 45

Memo Functions 3(4)

Computing the Fibonacci Numbers using a memo function:
Preparation:
flist = [f x | x <- [0 ..] 1]

...where f is a function on integers. Application: Each call of
f is replaced by a look-up in flist.

Considering the Fibonacci numbers as example:

flist = [fibx | x <- [0 ..]]

fib 0 = 1

fib 1 =1

fib n = flist !! (n-1) + flist !! (n-2)
instead of...

fib 0 = 1

fib 1 =1

fib n = fib (n-1) + fib (n-2)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 46

Memo Functions 4(4)

Conclusion...

e Memo Functions: Are meant to replace costly to compute
functions by a table look-up

e Example (20, 21 22 23):

1
power (i-1) + power (i-1)

power O
power i

Looking-up the result of the second call instead of recom-
puting it requires only 14n calls of power instead of 142"
~» significant performance gain

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) a7

Memo Tables 1(2)

Memo functions/tables
memo :: (a -> b) -> (a -> b)

are used such that the following equality holds:
memo f x = f x

Key word: Referential transparency (in particular, absence of
side effects!)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 48

Memo Tables 2(2)

The function memo...
e essentially the identity on functions but...

e memo Keeps track on the arguments, it has been applied to
and the corresponding results
...motto: look-up a result which has been computed pre-
viously instead of recomputing it!

e Memo functions are not part of the Haskell standard, but
there are nonstandard libraries

e Important design decision when implementing Memo func-
tions: ...how many argument/result pairs shall be traced?
(e.g. memol for one argument/result pair)

In the example

mfibsFn :: () -> [Integer]
mfibsFn x = let mfibs = memol mfibsFn
in 1 : 1 : zipWith (+) (mfibs ()) (tail (mfibs ()))

More on Memo Functions...

...and their implementation

For example in...

e Chapter 19
Anthony J. Field, Peter G. Harrison. Functional Program-
ming, Addison-Wesley, 1988.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 50

Summary

What are the reasons advocating the usage of streams (and
lazy evaluation)?

e Higher abstraction ...limitations to finite lists are often mo-
re complex, while simultaneously unnatural

e Modularization ...together with lazy evaluation as evaluati-
on strategy elegant possibilities for modularization become
possible. Keywords are the Generator/Selector and the Ge-
nerator/Transformer principle.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 51

Generator/Transformer Principle

Illustration...

Generator

TR

Combining Generator and Transformer

X,fX,f(fX),‘ [iterate f %»‘-[map g]»ﬁ

Transformer ,
X, Fx (), Lg%, 9(f x), g(f(f x)). i...
Tl — |
%x,y,z, %gx,gy,gz,.ﬁ..

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 52

Generator/Selector Principle

Illustration...

Generator

-
Combining Generator and Selector/Filter
f xf(fx). [iterate f 4»% select p k—»

Selector/Filter

R0

lalg<=[xy z_.]i .
i selectpq==True]

lalg<-[x fx, f(fx), h]

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 53

