
Programming with Streams

Streams = Infinite Lists

Programming with streams

• Applications

– Streams plus lazy evaluation supports new modulariza-
tion principles

∗ Generator/selector

∗ Generator/filter

∗ Generator/transformer

– Pitfalls and Remedies

• Foundations

– Well-definedness

– Proving properties of programs with streams

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 1

Programming with Streams

The following presentation is based on...

• Chapter 14

Paul Hudak. The Haskell School of Expression – Learning

Functional Programming through Multimedia, Cambridge

University Press, 2000.

• Chapter 17

Simon Thompson. Haskell – The Craft of Functional Pro-

gramming, Addison-Wesley, 2nd edition, 1999.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 2

Streams

Jargon

Stream ...synonymous to infinite list

synonymous to lazy list

Streams...

• (in combination with lazy evaluation) allow to solve many

problems elegantly, concisely, and efficiently

• are a source of hassle if applied inappropriately

More on this on the following slides...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 3

Streams

Convention

Instead of introducing a polymorphic data type Stream...

data Stream a = a :* Stream a

...we will model streams by ordinary lists waiving the usage of

the empty list [].

This is motivated by:

• Convenience/Adequacy ...many pre-defined (polymorphic)

functions on lists can be reused this way, which otherwise

would have to be defined on the new data type Stream

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 4

Some Examples of Streams

• Built-in Streams in Haskell

[3 ..] = [3,4,5,6,7,...

[3,5 ..] = [3,5,7,9,11,...

• User-defined recursive lists (Streams)

The infinite lists of “twos”

2,2,2,...

In Haskell this can be realized...

– using list comprehension: [2..]

– as a recursive stream: twos = 2 : twos

Illustration

twos => 2 : twos
=> 2 : 2 : twos
=> 2 : 2 : 2 : twos
=> ...

...twos represents an infinite list; or more concisely, a stream

Functions on Streams

head :: [a] -> a

head (x:_) = x

Application

head twos

=> head (2 : twos)

=> 2

Note: Normal-order reduction (resp. its efficient implementati-
on variant lazy evaluation) ensures termination (in this exam-
ple). I.e., the infinite sequence of reductions...

head twos

=> head (2 : twos)

=> head (2 : 2 : twos)

=> head (2 : 2 : 2 : twos)

=> ...

...is thus excluded.

Reminder

...whenever there is a terminating reduction sequence
of an expression, then normal-order reduction terminates
(Church/Rosser-Theorem)

• Normal-order reduction corresponds to leftmost-outermost
evaluation

Note: Considering the function...

ignore :: a -> b -> b
ignore a b = b

in both expressions

– ignore twos 42

– twos ’ignore’ 42

the leftmost-outermost operator is given by the call ignore.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 7

Functions on Streams: More Examples

addFirstTwo :: [Integer] -> Integer

addFirstTwo (x:y:zs) = x+y

Application

addFirstTwo twos => addFirstTwo (2:twos)

=> addFirstTwo (2:2:twos)

=> 2+2

=> 4

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 8

Further Examples on Streams

• User-defined recursive lists/streams

from :: Int -> [Int]

from n = n : from (n+1)

fromStep :: Int -> Int -> [Int]

fromStep n m = n : fromStep (n+m) m

Application

from 42 => [42, 43, 44,...

fromStep 3 2 => 3 : fromStep 5 2

=> 3 : 5 : fromStep 7 2

=> 3 : 5 : 7 : fromStep 9 2

=> ...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 9

Further Examples

• The powers of an integer...

powers :: Int -> [Int]

powers n = [n^x | x <- [0 ..]]

• More general: The prelude function iterate...

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

The function iterate yields the stream

[x, f x, (f . f) x, (f . f . f) x, ..

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 10

Prime Numbers: The Sieve of Era-
tosthenes 1(4)

Intuition

1. Write down the natural numbers starting at 2.

2. The smallest number not yet cancelled is a prime number.
Cancel all multiples of this number

3. Repeat Step 2 with the smallest number not yet cancelled.

Illustration

Step 1: 2 3 4 5 6 7 8 9 10 11 12 13...

Step 2: 2 3 5 7 9 11 13...

("with 2")

Step 2: 2 3 5 7 11 13...

("with 3")

...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 11

Prime Numbers: The Sieve of Era-
tosthenes 2(4)

The sequence of prime numbers...

primes :: [Int]

primes = sieve [2 ..]

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [y | y <- xs, mod y x > 0]

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 12

Prime Numbers: The Sieve of Era-
tosthenes 3(4)

Illustration ...by manual evaluation

primes

=> sieve [2 ..]

=> 2 : sieve [y | y <- [3 ..], mod y 2 > 0]

=> 2 : sieve (3 : [y | y <- [4 ..], mod y 2 > 0]

=> 2 : 3 : sieve [z | z <- [y | y <- [4 ..], mod y 2 > 0],

mod z 3 > 0]

=> ...

=> 2 : 3 : sieve [z | z <- [5, 7, 9 ..], mod z 3 > 0]

=> ...

=> 2 : 3 : sieve [5, 7, 11,...]

=> ...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 13

Prime Numbers: The Sieve of Era-
tosthenes 4(4)

• Application

member primes 7 ...yields "True"

but

member primes 6 ...does not terminate!

where

member :: [a] -> a -> Bool

member [] y = False

member (x:xs) y = (x==y) || member xs y

• Question(s): Why? How can primes be embedded into a
context allowing us to detect if a specific argument is prime
or not? (Homework)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 14

Random Numbers 1(2)

Generating a sequence of (pseudo-) random numbers...

nextRandNum :: Int -> Int

nextRandNum n = (multiplier*n + increment) ’mod’ modulus

randomSequence :: Int -> [Int]

randomSequence = iterate nextRandNum

Choosing

seed = 17489 increment = 13849

multiplier = 25173 modulus = 65536

we obtain the following sequence of (pseudo-) random num-
bers

[17489, 59134, 9327, 52468, 43805, 8378,...

ranging from 0 to 65536, where all numbers of this interval
occur with the same frequency.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 15

Random Numbers 2(2)

Often one needs to have random numbers within a range p to

q inclusive, p<q.

This can be achieved by scaling the sequence.

scale :: Float -> Float -> [Int] -> [Float]

scale p q randSeq = map (f p q) randSeq

where f :: Float -> Float -> Int -> Float

f p q n = p + ((n * (q-p)) / (modulus-1))

Application

scale 42.0 51.0 randomSequence

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 16

Principles of Modularization

...related to streams

• The Generator/Selector Principle

...e.g. Computing the square root, the Fibonacci numbers

• The Generator/Transformer Principle

...e.g. “scaling” random numbers

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 17

More on Recursive Streams

Reminder ...the sequence of Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...

is defined by

fib : IN → IN

fib(n)=df

{

1 if n = 0 ∨ n = 1
fib(n − 1) + fib(n − 2) otherwise

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 18

The Fibonacci Numbers 1(4)

We learned already...

fib :: Integer -> Integer

fib 0 = 1

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

...that a naive implementation as above is inacceptably ineffi-

cient.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 19

The Fibonacci Numbers 2(4)

Illustration ...by manual evaluation

fib 0 => 1 -- 1 call of fib

fib 1 => 1 -- 1 call of fib

fib 2 => fib 1 + fib 0

=> 1 + 1

=> 2 -- 3 calls of fib

fib 3 => fib 2 + fib 1

=> (fib 1 + fib 0) + 1

=> (1 + 1) + 1

=> 3 -- 5 calls of fib

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 20

The Fibonacci Numbers 3(4)

fib 4 => fib 3 + fib 2

=> (fib 2 + fib 1) + (fib 1 + fib 0)

=> ((fib 1 + fib 0) + 1) + (1 + 1)

=> ((1 + 1) + 1) + (1 + 1)

=> 5 -- 9 calls of fib

fib 5 => fib 4 + fib 3

=> (fib 3 + fib 2) + (fib 2 + fib 1)

=> ((fib 2 + fib 1) + (fib 1 + fib 0))

+ ((fib 1 + fib 0) + 1)

=> (((fib 1 + fib 0) + 1) + (1 + 1)) + ((1 + 1) + 1)

=> (((1 + 1) + 1) + (1 + 1)) + ((1 + 1) + 1)

=> 8 -- 15 calls of fib

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 21

The Fibonacci Numbers 4(4)

fib 8 => fib 7 + fib 6

=> (fib 6 + fib 5) + (fib 5 + fib 4)

=> ((fib 5 + fib 4) + (fib 4 + fib 3))

+ ((fib 4 + fib 3) + (fib 3 + fib 2))

=> (((fib 4 + fib 3) + (fib 3 + fib 2))

+ (fib 3 + fib 2) + (fib 2 + fib 1)))

+ (((fib 3 + fib 2) + (fib 2 + fib 1))

+ ((fib 2 + fib 1) + (fib 1 + fib 0)))

=> ... -- 60 calls of fib

...tree-like recursion (exponential growth!)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 22

Reminder: Complexity 1(3)

See P. Pepper. Funktionale Programmierung in OPAL, ML,

Haskell und Gofer, 2nd Edition (In German), 2003, Chapter

11.

Reminder ...O Notation

• Let f be a function f : α → IR+ with some data type α

as domain and the set of positive real numbers as range.

Then the class O(f) denotes the set of all functions which

“grow slower” than f :

O(f)=df{h |h(n) ≤ c ∗ f(n) for some positive

constant c and all n ≥ N0}

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 23

Reminder: Complexity 2(3)

Examples of common cost functions...

Code Costs Intuition: input a thousandfold as large
means...

O(c) constant ... equal effort
O(log n) logarithmic ...only tenfold effort
O(n) linear ...also a thousandfold effort
O(n log n) “n log n” ...tenthousandfold effort

O(n2) quadratic ...millionfold effort

O(n3) cubic ...billiardfold effort
O(nc) polynomial ... gigantic much effort (for big c)
O(2n) exponential ...hopeless

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 24

Reminder: Complexity 3(3)

...and the impact of growing inputs in practice in hard numbers:

n linear quadratic cubic exponential

1 1 µs 1 µs 1 µs 2 µs
10 10 µs 100 µs 1 ms 1 ms
20 20 µs 400 µs 8 ms 1 s
30 30 µs 900 µs 27 ms 18 min

40 40 µs 2 ms 64 ms 13 days
50 50 µs 3 ms 125 ms 36 years
60 60 µs 4 ms 216 ms 36 560 years

100 100 µs 10 ms 1 sec 4 ∗ 1016 years
1000 1 ms 1 sec 17 min very, very long...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 25

Remedy: Recursive Streams 1(4)

Idea

1 1 2 3 5 8 13 21... Sequence of Fibonacci Numbers

1 2 3 5 8 13 21 34... Remainder of the sequ. of F. Numbers

2 3 5 8 13 21 34 55... Remain. of the rem. of the seq. of F.

Efficient implementation as a recursive stream

fibs :: [Integer]

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

where

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

zipWith f _ _ = []

...reminds to Münchhausen’s famous trick of “sich am eigenen
Schopfe aus dem Sumpfe ziehen”

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 26

Remedy: Recursive Streams 2(4)

fibs => 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : 34 : 55 : 89 : ...

take 10 fibs => [1,1,2,3,5,8,13,21,34,55]

where

take :: Integer -> [a] -> [a]

take 0 _ = []

take _ [] = []

take n (x:xs) | n>0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 27

Remedy: Recursive Streams 3(4)

Summing up

fib :: Integer -> Integer

fib n = last take n fibs

or even yet shorter

fib n = fibs!!n

Note:

• Also in this example...

Application of the Generator/Selector Principle

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 28

Remedy: Recursive Streams 4(4)

Illustration ...by manual evaluation (with add instead of zipWith

(+))

fibs => Replace the call of fibs by the body of fibs

1 : 1 : add fibs (tail fibs)

=> // Replace both calls of fibs by the body of fibs

1 : 1 : add (1 : 1 : add fibs (tail fibs))

(tail (1 : 1 : add fibs (tail fibs)))

=> // Application of tail

1 : 1 : add (1 : 1 : add fibs (tail fibs))

(1 : add fibs (tail fibs))

=> ...

• Observation
...the computational effort remains exponential this (naive)
way!

• Clou
...lazy evaluation: ...common subexpressions will not be
computed multiple times!

Illustration 1(3)

fibs => 1 : 1 : add fibs (tail fibs)

=> // Introducing abbreviations allows sharing of results

1 : tf // (tf reminds to "tail of fibs")

where tf = 1 : add fibs (tail fibs)

=> 1 : tf

where tf = 1 : add fibs tf

=> // Introducing abbreviations allows sharing

1 : tf

where tf = 1 : tf2 // (tf2 reminds to "tail of tail

// of fibs")

where tf2 = add fibs tf

=> // Unfolding of add

1 : tf

where tf = 1 : tf2

where tf2 = 2 : add tf tf2

Illustration 2(3)

=> // Repeating the above steps

1 : tf

where tf = 1 : tf2

where tf2 = 2 : tf3 // (tf3 reminds to "tail of

// tail of tail of fibs")

where tf3 = add tf tf2

=> 1 : tf

where tf = 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : add tf2 tf3

=> // tf is only used at one place and can thus be

// eliminated

1 : 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : add tf2 tf3

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 31

Illustration 3(3)

=> // Finally, we obtain successsively longer prefixes

// the sequence of Fibonacci numbers

1 : 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : tf4

where tf4 = add tf2 tf3

=> 1 : 1 : tf2

where tf2 = 2 : tf3

where tf3 = 3 : tf4

where tf4 = 5 : add tf3 tf4

// Note: eliminating where-clauses corresponds to

// garbage collection of unused memory by an implementation

=> 1 : 1 : 2 : tf3

where tf3 = 3 : tf4

where tf4 = 5 : add tf3 tf4

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 32

Alternatively: Stream Diagrams

Problems on streams can often be considered and visualized
as processes.

Considering the sequence of Fibonacci Numbers as an exam-
ple...

(:)

(:)

add

2,3,5,8,...

fibs = 1,1,2,3,5,8,...

1,2,3,5,8,...

1

1

Another Example: A Client/Server Ap-
plication

Interaction of a server and a client (e.g. Web server/Web brow-
ser)

client :: [Response] -> [Request]

server :: [Request] -> [Response]

reqs = client resps

resps = server reqs

Implementation

type Request = Integer

type Response = Integer

client ys = 1 : ys // ...issues 1 as first request and then

// each integer it receives from the server

server xs = map (+1) xs // ...adds 1 to each request it receives

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 34

Client/Server Application
(Cont’d. 1(2))

Example

reqs => client resps

=> 1 : resps

=> 1 : server reqs

=> // Introducing abbreviations

1 : tr

where tr = server reqs

=> 1 : tr

where tr = 2 : server tr

=> 1 : tr

where tr = 2 : tr2

where tr2 = server tr

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 35

Client/Server Application
(Cont’d. 2(2))

=> 1 : tr

where tr = 2 : tr2

where tr2 = 3 : server tr2

=> 1 : 2 : tr2

where tr2 = 3 : server tr2

=> ...

In particular

take 10 reqs => [1,2,3,4,5,6,7,8,9,10]

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 36

The Client/Server Example as a
Stream Diagram

(+1)

(:)

1

resps = 2,3,4,5,...

reqs = 1,2,3,4,5,...

server

client

Overcoming Hassle... Lazy Patterns

Suppose, the client wants to check the first response...

client (y:ys) = if ok y then 1 : (y:ys)

else error "Faulty Server"

where

ok y = True // Obviously a trivial predicate

The evaluation of...

reqs => client resps

=> client (server reqs)

=> client (server (client resps))

=> client (server (client (server reqs)))

=> ...

...does not terminate!

The problem:

Deadlock! Neither client nor server can be unfolded! Pattern
matching is too “eager.”

Lazy Patterns 1(3)

Ad-hoc Remedy

client ys = 1 : if ok (head ys) then ys

else error "Faulty Server"

• Replacing of pattern matching by an explicit usage of the

selector function head

• Moving the conditional inside of the list

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 39

Lazy Patterns 2(3)

Systematic remedy ...lazy patterns

• Syntax: ...preceding tilde (∼)

• Effect: ...like using an explicit selector function;

pattern-matching is defered

client ~(y:ys) = 1 : if ok y then y:ys

else error "Faulty Server"

Note ...even when using a lazy pattern the conditional must

still be moved. But: selector functions are avoided!

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 40

Lazy Patterns 3(3)

Illustration ...by manual evaluation

reqs => client resps

=> 1 : if ok y then y : ys

else error "Faulty Server"

where y:ys = resps

=> 1 : (y:ys)

where y:ys = resps

=> 1 : resps

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 41

Overcoming Hassle... Memo Tables

Note ...Dividing/Recognizing of common structures is limited

The below variant of the Fibonacci function...

fibsFn :: () -> [Integer]

fibsFn x = 1 : 1 : zipWith (+) (fibsFn ()) (tail (fibsFn ()))

...exposes again exponential run-time and storage behaviour!

Key word:

• Space (Memory) Leak ...the memory space is consumed so

fast that the performance of the program is significantly

impacted

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 42

Illustration

fibsFn ()

=> 1 : 1 : add (fibsFn ()) (tail (fibsFn ()))

=> 1 : tf

where tf = 1 : add (fibsFn ()) (tail (fibsFn ()))

The equality of tf and tail(fibsFn()) remains undetected.

Hence, the following simplification is not done

=> 1 : tf

where tf = 1 : add (fibsFn ()) tf

In a special case like here, this is possible, but not in general!

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 43

Memo Functions 1(4)

Memo functions (engl. Memoization)....

• The concept goes back to Donald Michie. ““Memo” Func-

tions and Machine Learning”, Nature, 218, 19-22, 1968.

• Idea: Replace, where possible, the computation of a functi-

on according to its body by looking up its value in a table.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 44

Memo Functions 2(4)

• Hence: A memo function is an ordinary function, but sto-

res for some or all arguments it has been applied to the

corresponding results ; Memo Tables.

• Utility : Memo Tables – allow to replace recomputation by

table look-up

Correctness: Referential transparency of functional pro-

gramming languages

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 45

Memo Functions 3(4)

Computing the Fibonacci Numbers using a memo function:

Preparation:

flist = [f x | x <- [0 ..]]

...where f is a function on integers. Application: Each call of
f is replaced by a look-up in flist.

Considering the Fibonacci numbers as example:

flist = [fib x | x <- [0 ..]]

fib 0 = 1

fib 1 = 1

fib n = flist !! (n-1) + flist !! (n-2)

instead of...

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 46

Memo Functions 4(4)

Conclusion...

• Memo Functions: Are meant to replace costly to compute

functions by a table look-up

• Example (20, 21, 22, 23, . . .):

power 0 = 1

power i = power (i-1) + power (i-1)

Looking-up the result of the second call instead of recom-

puting it requires only 1+n calls of power instead of 1+2n

; significant performance gain

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 47

Memo Tables 1(2)

Memo functions/tables

memo :: (a -> b) -> (a -> b)

are used such that the following equality holds:

memo f x = f x

Key word: Referential transparency (in particular, absence of

side effects!)

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 48

Memo Tables 2(2)

The function memo...

• essentially the identity on functions but...

• memo keeps track on the arguments, it has been applied to
and the corresponding results
...motto: look-up a result which has been computed pre-
viously instead of recomputing it!

• Memo functions are not part of the Haskell standard, but
there are nonstandard libraries

• Important design decision when implementing Memo func-
tions: ...how many argument/result pairs shall be traced?
(e.g. memo1 for one argument/result pair)

In the example

mfibsFn :: () -> [Integer]
mfibsFn x = let mfibs = memo1 mfibsFn

in 1 : 1 : zipWith (+) (mfibs ()) (tail (mfibs ()))

More on Memo Functions...

...and their implementation

For example in...

• Chapter 19

Anthony J. Field, Peter G. Harrison. Functional Program-

ming, Addison-Wesley, 1988.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 50

Summary

What are the reasons advocating the usage of streams (and

lazy evaluation)?

• Higher abstraction ...limitations to finite lists are often mo-

re complex, while simultaneously unnatural

• Modularization ...together with lazy evaluation as evaluati-

on strategy elegant possibilities for modularization become

possible. Keywords are the Generator/Selector and the Ge-

nerator/Transformer principle.

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 51

Generator/Transformer Principle

Illustration...

iterate f x

x, f x, f(f x), ...

x, y, z, ... g x, g y, g z, ...

map g

Generator

Transformer

map g

x, f x, f(f x), ...

Combining Generator and Transformer

iterate f x

g x, g(f x), g(f(f x)), ...

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 52

Generator/Selector Principle

Illustration...

Generator

Selector/Filter

x, y, z, ... [q | q <− [x, y, z, ..],

iterate f x

x, f x, f(f x), ...

select p q == True]

select p
[q | q <− [x, f x, f(f x), ..],

select p q == True]

iterate f x

Combining Generator and Selector/Filter

x, f x, f(f x), ...

select p

Advanced functional Programming (SS 2011) / Part 2 (Thu, 03/17/11) 53

