
Assignment 6

Advanced functional Programming

Topic: Parsing – Lexical and Syntactical Analysis

Issued on: 05/18/2010, due date: 06/01/2010

For this assignment a Haskell script named AssFFP6.hs shall be writ-
ten offering functions which solve the problems described below. This file
AssFFP6.hs shall be stored in the home directory of your individual ac-
count (not of your group account), as usual on the top most level. Com-
ment your programs meaningfully. Use constants and auxiliary functions,
where appropriate.

Consider again the programming language While, which has been in-
troduced previously:

Prog ::= begin Stmt end

Stmt ::= AssStmt | IfStmt | RepeatStmt | CompStmt | Skip

AssStmt ::= Idf := AExpr

IfStmt ::= if Bexpr then Stmt else Stmt fi

WhileStmt ::= while Bexpr do Stmt od

Skip ::= skip

CompStmt ::= (Stmt ; Stmt)

For convenience, we also recall the grammar generating the set of arith-
metic and Boolean expressions.

Expr ::= AExpr | Bexpr

AExpr ::= Term | AExpr Aop Term

Term ::= Factor | Term Mop Factor

Factor ::= Opd | (AExpr)

Opd ::= Numeral | Idf

Aop ::= + | -

Mop ::= * | /

Bexpr ::= (Aexpr Relop Aexpr)

Relop ::= = | /= | > | <

We recall that Idf denotes an arbitrary identifier and that each iden-
tifier is a non-empty sequence of lower case and upper case letters and
digits starting with a letter. Moreover, we recall that Numeral denotes an
unsigned decimal number (i.e., a natural number).

• Extend your

1. combinator parser pc and

2. monadic parser pm

to parsers

1. combinator parser xpc and

2. monadic parser xpm

which behave as their counterparts pc and pm, but which return for
identifiers and numerals in addition the identifier and the numeral
read. To this end we modify the data type Token to a new data type
XToken as follows:

data XToken = Prog |

Id String | AssOp | Num Integer |

LeftParenth | RightParenth |

Plus | Minus | Mult | Div |

Equal | Unequal | Greater | Less |

BeginSymb | EndSymb |

IfSymb | ThenSymb | ElseSymb | FiSymb |

WhileSymb | DoSymb | OdSymb |

SkipSymb |

SemicolonSymb |

Err

deriving Show

Take care to implement in addition to required auxiliary functions
two functions main xpc :: String -> [Token] and main xpm ::

String -> [Token] allowing to test the functioning of your parsers.
The token Err shall be used by both parsers, if the input string
contains a substring, which does not correspond to one of the tokens
above. The remainder of the input string shall then be discarded; err
is then the last token in the result list of the functions main xpc and
main xpm.

