

Assignment 4


Advanced functional Programming


Topic: Logical Programming functionally, Streams


Issued on: 04/27/2010, due date: 05/04/2010


For this assignment a Haskell script named AssFFP4.hs shall be writ-
ten offering functions which solve the problems described below. This file
AssFFP4.hs shall be stored in the home directory of your individual ac-
count (not of your group account), as usual on the top most level. Com-
ment your programs meaningfully. Use constants and auxiliary functions,
where appropriate.


• Implement a Haskell function streamFold with the signature streamFold
:: (a -> b -> a) -> a -> [b] -> [a]. Applied to a function f of
type a -> b -> a, a value w of type a and a stream s of type [b],
the function streamFold shall yield a stream t of type [a] as result.
The first element of this stream shall be w, the subsequent elements
shall be the result of folding the elements of the corresponding prefix
of s. E.g.:


streamFold (+) 0 [1..] == [0,1,3,6,10,15,...


streamFold (*) 1 [1..] == [1,1,2,6,24,120,...


• Two natural numbers greater or equal 1 are called d-friends, if their
Goedel number differ at most by d, d ∈ IN0.


Implement a Haskell function friends with the signature friends


:: Integer -> [(Integer,Integer)]. For non-negative arguments
d, the function friends shall yield the stream of natural numbers
of d-friends; for negative arguments, it shall yield the (0, 0)-stream,
i.e., the stream of pairs of zeros. Take care that the implementation
of the function is fair. To this end think about a suitable diagonaliza-
tion, which visits the pairs of natural numbers in the following order:
[(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (4, 1), (3, 2), ...].


• Similarly to the function append of Lecture 5, implement a Has-
kell function inject with signature inject :: Bunch m => (Term,


Term, Term) -> Pred m. For lists a, b, c the relation inject (a,b,c)


shall hold, if c is the list, which results from a by inserting b in its
middle. If the length of a is odd, then b shall be inserted right after
the middle element a; if the length of a is even, b shall be inserted







in the middle of a. The following examples illustrate the intended
behaviour:


?run(inject(list [1,2,3], list [4,5], var "z")) :: Stream Answer


[{z=[1,2,4,5,3]}]


?run(inject(list [1,2,3,4], list [5.6], var "z")) :: Stream Answer


[{z=[1,2,5,6,3,4]}]


• Analogously to the function good from Lecture 5 develop a Haskell
function bad for detecting and generating “bad” sequences of zeros
and ones. Bad sequences are defined by the following rules:


1. The sequence [1] is bad.


2. If s1 and s2 are two bad sequences, then the sequence s1++s2 +
+[0] is bad, too.


3. Except of sequences constructed according to rule 1 and 2, there
are no other bad sequences.


Note: Intuitively, bad sequences result from traversals of binary trees
in postfix order, where branches are labeled with zeros, leafs with
ones.


Similarly to good, the function bad shall be callable in the following
fashion:


?run(bad(list [1,1,0])) :: Stream Answer


[{}]


?run(bad(list [0,0,1])) :: Stream Answer


[]


?run(bad(var "s")) :: Stream Answer


[{s=[1]},{s=[1,1,0]},{s=[1,1,0,1,0]},{s=[1,1,0,1,0,1,0]},...


?run(bad(var "s")) :: Diag Answer


[{s=[1]},{s=[1,1,0]},{s=[1,1,0,1,0]},{s=[1,1,1,0,0]},...


Much of the code presented in Lecture 5 can (and shall) be reused
for the latter two tasks. To encourage this major portions of this code are
provided in an accompanying file but some might be missing and should be
added and together with the required provided code portions be included
in AssFPP4.hs.






