
Today’s Topic

• Pretty Printing

Like parsing a typical demo-application

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 1

Pretty Printing

Pretty Printing

...like lexical and syntactical analysis another typical app-

lication for demonstrating the elegance of functional pro-

gramming.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 2

What’s it all about?

A pretty printer is...

• a tool (often a library of routines) designed for converting

a tree into plain text

Essential goal...

• a minimum number of lines while preserving and reflecting

the structure of the tree by indentation

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 3

“Good” Pretty-Printer

...distinguished by properly balancing

• Simplicity of usage

• Flexibility of the format

• “Prettiness” of output

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 4

Reference

The following presentation is based on...

• Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oe-

ge de Moor (Eds.), The Fun of Programming. Palgrave

MacMillan, 2003.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 5

Distinguishing Feature

...of the “Prettier Printer” proposed by Philip Wadler:

• There is only a single way to concatenate documents,

which is

– associative

– with left-unit and right-unit

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 6

Why “prettier” than “pretty”?

Wadler considers his “Prettier Printer” an improvement of the
pretty printer library proposed by John Hughes, which is widely
recognized as a standard.

• The design of a pretty-printer library. In Johan Jeuring,
Erik Meijers (Hrsg.), Advanced Functional Programming,
LNCS 925, Springer, 1995.

Hughes’ library enjoys the following characteristics:

• Two ways to concatenate documents (horizontal and ver-
tical), one of which

– vertical: without unit

– horizontal: with right-unit (but no left-unit)

• ca. 40% more code, ca. 40% slower as Wadler’s proposal

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 7

A Simple Pretty Printer: Basic App.

Characteristic: For each document there shall be only one pos-
sible layout (e.g., no attempt is made to compress structure
onto a single line).

The basic operators needed are:

(<>) :: Doc -> Doc -> Doc -- ass. concatenation of docs.

nil :: Doc -- The empty document:

Right and left unit for (<>)

text :: String -> Doc -- Conversion function: Converts

a string to a document

line :: Doc -- Line break

nest :: Int -> Doc -> Doc -- Adding indentation

layout :: Doc -> String -- Output: Converts a document

to a string

Convention:

• Arguments of text are free of newline characters

A Simple Implementation

Implement...

• doc as strings (i.e. as data type String)

with...

• (<>) ...concatenation of strings

• nil ...empty string

• text ...identity on strings

• line ...new line

• nest i ...indentation: adding i spaces (after each line break by means
of line) ; essential difference to Hughes’ pretty printer
allowing to drop one concatenation operator

• layout ...identity on strings

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 9

Example

...converting trees into documents (here: Strings) which are
output as text (here: Strings).

Consider the following type of trees:

data Tree = Node String [Tree]

A concrete value B of type Tree...

Node "aaa" [Node "bbbbb" [Node "cc" [], Node "dd" []],

Node "eee" [],

Node "ffff" [Node "gg" [],

Node "hhh" [],

Node "ii" []

]

]

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 10

...and its desired output

A text, where indentation reflects the tree structure...

aaa[bbbbb[ccc,

dd],

eee,

ffff[gg,

hhh,

ii]]

...sibling trees start on a new line, properly indented.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 11

Implementation

The below implementation achieves this...

data Tree = Node String [Tree]

showTree :: Tree -> Doc

showTree (Node s ts) = text s <> nest (length s) (showBracket ts)

showBracket :: [Tree] -> Doc

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts)

<> text "]"

showTrees :: [Tree] -> Doc

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 12

Another possibly wanted output of B

aaa[

bbbbb[

ccc,

dd

],

eee,

ffff[

gg,

hhh,

ii

]

]

...each subtree starts on a new line, properly indented.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 13

An implementation producing the latter
output

data Tree = Node String [Tree]

showTree’ :: Tree -> Doc

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ :: [Tree] -> Doc

showBracket’ [] = nil

showBracket’ ts = text "[" <> nest 2 (line <> showTrees’ ts)

<> line <> text "]"

showTrees’ :: [Tree] -> Doc

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 14

A Normal Form of Documents

Documents can always be reduced to normal form

Normal form...

• text alternating with line breaks nested to a given inden-

tation

text s0 <> nest i1 line <> text s1 <> ...

<> nest ik line <> text sk

where

• each sj is a (possibly empty) string

• each ij is a (possibly zero) natural number

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 15

Normal Forms: An Example 1(3)

The document...

text "bbbbb" <> text "[" <>

nest 2 (

line <> text "ccc" <> text "," <>

line <> text "dd"

) <>

line <> text "]"

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 16

Normal Forms: An Example 2(3)

...prints as follows:

bbbbb[

ccc,

dd

]

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 17

Normal Forms: An Example 3(3)

Here it is its normal form:

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 18

Why does it work?

...because of the properties (laws) the functions enjoy.

In more detail...

...because of the fact that

• <> is associative with unit nil and

• the following laws (see next slide):

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 19

Properties of the Functions – Laws 1(2)

We have the following (pairs of) laws (except for the last one):

text (s ++ t) = text s <> text t (text is a homomorphism from

text "" = nil string concatenation to

document concatenation)

nest (i+j) x = nest i (nest j x) (nest is a homomorphism from

nest 0 x = x addition to composition)

nest i (x <> y) = nest i x <> nest i y (nest distributes through

nest i nil = nil document concatenation)

nest i (text s) = text s (Nesting is absorbed by text;

Different to Hughes’ pretty printer)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 20

Properties of the Functions – Laws 2(2)

Impact

• The above laws are sufficient to ensure that documents

can always be transformed into normal form

– first four laws: applied left to right

– last three laws: applied right to left

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 21

Further Properties – Laws

...relating documents to their layouts:

layout (x <> y) = layout x ++ layout y (layout is a homomorphism

layout nil = "" from document

concatenation to

string concatenation)

layout (text s) = s (layout is the inverse

of text)

layout (nest i line) = ’\n’ : copy i ’ ’ (layout of a nested

line is a newline

followed by one space

for each level of

indentation)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 22

The Implementation of Doc

Intuition

...represent documents as a concatenation of items, where

each item is a text or a line break indented to a given amount.

...realized as a sum type (the algebra of documents):

data Doc = Nil

| String ’Text’ Doc

| Int ’Line’ Doc

The constructors relate to the document operators as follows:

Nil = nil

s ’Text’ x = text s <> x

i ’Line’ x = nest i line <> x

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 23

Example

Using the algebraic type Doc, the normal form (considered pre-

viously)...

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

...is represented by the following value of this algebraic type

Doc:

"bbbbb[" ’Text’ (

2 ’Line’ ("ccc," ’Text’ (

2 ’Line’ ("dd," ’Text’ (

0 ’Line’ ("]," ’Text’ Nil)))))

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 24

Derived Implementations 1(2)

Implementations of the document operators can easily be de-

rived from the above equations:

nil = Nil

text s = s ’Text’ Nil

line = 0 ’Line’ Nil

(s ’Text’ x) <> y = s ’Text’ (x <> y)

(i ’Line’ x) <> y = i ’Line’ (x <> y)

Nil <> y = y

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 25

Derived Implementations 2(2)

nest i (s ’Text’ x) = s ’Text’ nest i x

nest i (j ’Line’ x) = (i+j) ’Line’ nest i x

nest i Nil = Nil

layout (s ’Text’ x) = s ++ layout x

layout (i ’Line’ x) = ’\n’ : copy i ’ ’ ++ layout x

layout Nil = ""

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 26

Correctness of the derived Implementa-
tions

...can be shown for each of them, e.g.:

• Derivation of (s ’Text’ x) <> y = s ’Text’ (x <> y)

(s ’Text’ x) <> y

= { Definition of Text }

(text s <> x) <> y

= { Associativity of <> }

text s <> (x <> y)

= { Definition of Text }

s ’Text’ (x <> y)

The remaining equations can be shown by similar reasoning

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 27

Documents with Multiple Layouts: Ad-
ding Flexibility

• Up to now... documents were equivalent to a string (i.e.,
they have a fixed single layout)

• Next... documents shall be equivalent to a set of strings
(i.e., they may have multiple layouts)

where each string corresponds to a layout.

This can be rendered possible by just adding a new function

group :: Doc -> Doc

Informally :
Given a document, representing a set of layouts, group returns
the set with one new element added, which represents the
layout in which everything is compressed on one line: Replace
each newline (plus indentation) by a single space.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 28

Preferred Layouts

Beauty needs to be specified...

• pretty replaces layout

pretty :: Int -> Doc -> String

which picks the prettiest layout depending on the preferred

maximum line width argument

Remark: pretty’s integer-argument specifies the preferred

maximum line length of the output (and hence the prettiest

layout out of the set of alternatives at hand).

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 29

Example

Using the modified showTree function based on group...

showTree (Node s ts) = group (text s

<> nest (length s) (showBracket ts))

...the call of pretty 30 (once completely specified) will yield
the output:

aaa[bbbbb[ccc, dd],

eee,

ffff[gg, hhh, ii]]

This ensures:

• Trees are fit onto one line where possible (i.e., length ≤ 30)

• Insertion of sufficiently many line breaks in order to avoid exceeding
the given maximum line length

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 30

Implementation of the new Functions

The following supporting functions are required:

-- Forming the union of two sets of layouts

(<|>) :: Doc -> Doc -> Doc

-- Replacement of each line break (and its associated

-- indentation) by a single space

flatten :: Doc -> Doc

• Observation ...a document always represents a non-empty set of lay-
outs

• Requirements

– ...in (x <|> y) all layouts of x and y enjoy the same flat layout
(mandatory invariant of <|>)

– ...each first line in x is at least as long as each first line in y (second
invariant)

• Note ...<|> and flatten are not directly exposed to the user (only via
group and other supporting functions)

Properties (Laws) of (<|>)

...operators on simple documents are extended pointwise

through union:

(x <|> y) <> z = (x <> z) <|> (y <> z)

x <> (y <|> z) = (x <> y) <|> (x <> z)

nest i (x <|> y) = nest i x <|> nest i y

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 32

Properties (Laws) of flatten

...the interaction of flatten with other document operators:

flatten (x <|> y) = flatten x -- distribution law

flatten (x <> y) = flatten x <> flatten y

flatten nil = nil

flatten (text s) = text s

flatten line = text " " -- the most interesting case:

-- linebreaks are replaced by

-- a single space

flatten (nest i x) = flatten x

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 33

Implementation of group

...by means of flatten and (<>), the implementation of group

can be given:

group x = flatten x <|> x

Intuitively : group adds the flattened layout to to a set of lay-

outs.

Note: A document always represents a non-empty set of lay-

outs where all layouts in the set flatten to the same layout.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 34

Normal Form

Based on the previous laws each document can be reduced to

a normal form of the form

x1 <|> ... <|> xn

where each xi is in the normal form of simple documents

(which was introduced previously).

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 35

Selecting a “best” Layout out of a Set
of Layouts

...by defining an ordering relation on lines in dependence of the
given maximum line length

Out of two lines...

• which do not exceed the maximum length, select the longer
one

• of which at least one exceeds the maximum length, select
the shorter one

Note: Sometimes we have to pick a layout where some line
exceeds the limit (a key difference to the approach of Hughes).
However, this is done only, if this is unavoidable.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 36

The Adapted Implementation of Doc

The new implementation of Doc as algebraic type. It is similar

to the previous one except for the new construct representing

the union of two documents:

data Doc = -- As before: The first 3 alternatives

Nil

| String ’Text’ Doc

| Int ’Line’ Doc

-- New: We add a construct representing the

union of two documents

| Doc ’Union’ Doc

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 37

Relationship of Constructors and Docu-
ment Operators

The following relationships hold between the constructors and

the document operators...

Nil = nil

s ’Text’ x = text s <> x

i ’Line’ x = nest i line <> x

x ’Union’ y = x <|> y

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 38

Example 1(8)

The document...

group(

group(

group(

group(text "hello" <> line <> text "a")

<> line <> text "b")

<> line <> text "c")

<> line <> text "d")

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 39

Example 2(8)

...has the following possible layouts:

hello a b c d hello a b c hello a b hello a hello

d c b a

d c b

d c

d

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 40

Example 3(8)

Task: ...print the above document under the constraint that

the maximum line width is 5

; the right-most layout of the previous slide is requested

Initial (performance) considerations:

• Factoring out "hello" of all the layouts in x and y

"hello" ’Text’ ((" " ’Text’ x) ’Union’ (0 ’Line’ y))

• Defining additionally the interplay of (<>) and nest with

Union

(x ’Union’ y) <> z = (x <> z) ’Union’ (y <> z)

nest k (x ’Union’ y) = nest k x ’Union’ nest k y

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 41

Example 4(8)

Implementations of group and flatten can easily be derived:

group Nil = Nil

group (i ’Line’ x) = (" " ’Text’ flatten x) ’Union’

(i ’Line’ x)

group (s ’Text’ x) = s ’Text’ group x

group (x ’Union’ y) = group x ’Union’ y

flatten Nil = Nil

flatten (i ’Line’ x) = " " ’Text’ flatten x

flatten (s ’Text’ x) = s ’Text’ flatten x

flatten (x ’Union’ y) = flatten x

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 42

Example 5(8)

Considerations on correctness (similar reasoning as earlier):

Derivation of group (i ’Line’ x) (see line two) (preserving the

invariant required by union)

group (i ’Line’ x)

= { Definition of Line }

group (nest i line <> x)

= { Definition of group}

flatten (nest i line <> x) <|> (nest i line s <> x)

= { Definition of flatten }

(text " " <> flatten x) <|> (nest i line <> x)

= { Definition of Text, Union, Line }

(" " ’Text’ flatten x) ’Union’ (i ’Line’ x)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 43

Example 6(8)

Correctness considerations (cont’d):

Derivation of group (s ’Text’ x) (see line three)

group (s ’Text’ x)

= { Definition Text }

group (text s <> x)

= { Definition group}

flatten (text s <> x) <|> (text s <> x)

= { Definition flatten }

(text s <> flatten x) <|> (text s <> x)

= { <> distributes through <|> }

text s <> (flatten x <|> x)

= { Definition group }

text s <> group x

= { Definition Text }

s ’Text’ group x

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 44

Example 7(8)

Selecting the “best” layout:

best w k Nil = Nil

best w k (i ’Line’ x) = i ’Line’ best w i x

best w k (s ’Text’ x) = s ’Text’ best w (k + length s) x

best w k (x ’Union’ y) = better w k (best w k x) (best w k y)

better w k x y = if fits (w-k) x then x else y

Remark:

• best ...converts a “union”-afflicted document into a “union”-free do-
cument

• Argument w ...maximum line width

• Argument k ...already consumed letters (including indentation) on cur-
rent line

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 45

Example 8(8)

Check, if the first document line stays within the maximum

line length w...

fits w x | w<0 = False -- cannot fit

fits w Nil = True -- fits trivially

fits w (s ’Text’ x) = fits (w - length s) x -- fits if x fits into

-- the remaining space

-- after placing s

fits w (i ’Line’ x) = True -- yes, it fits

Last but not least, the output routine (layout remains unchan-

ged): Select the best layout and convert it to a string...

pretty w x = layout (best w 0 x)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 46

Enhancing Performance: A More Effi-
cient Variant

Sources of inefficiency:

1. Concatenation of documents might pile up to the left

2. Nesting of documents adds a layer of processing to incre-
ment the indentation of the inner document

Problem fix:

• For 1.): Add an explicit representation for concatenation,
and generalize each operation to act on a list of concate-
nated documents

• For 2.:) Add an explicit representation for nesting, and
maintain a current indentation that is incremented as ne-
sting operators are processed

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 47

Enhancing Performance: A More Effi-
cient Variant (cont’d)

Implementing this fix by means of a new implementation of

documents:

data DOC = NIL -- Here is one constructor

| DOC :<> DOC -- corresponding to each

| NEST Int DOC -- operator that builds a

| TEXT String -- document

| LINE

| DOC :<|> DOC

Remark:

• In distinction to the previous document type we here use capital letters
in order to avoid name clashes with the previous definitions

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 48

Implementing the Document Operators

Defining the operators to build a document are straightfor-

ward:

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 49

Implementing group and flatten

As before, we require the following invariants:

• ...in (x :<|> y) all layouts in x and y flatten to the same
layout

• ...no first line in x is shorter than any first line in y

Definitions of group and flatten are then straightforward:

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 50

Representation Function

...generating the document from an indentation-afflicted do-

cument (“indentation-document pair”)

rep z = fold (<>) nil [nest i x | (i,x) <- z]

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 51

Selecting the “best” Layout

Generalizing the function “best”by composing the old function
with the representation function to work on lists of indentation-
document pairs...

be w k z = best w k (rep z) (Hypothesis)

best w k x = be w k [(0,x)]

where the definition is derived from the old one...

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y) : z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ’Text’ be w (k+length s) z

be w k ((i,LINE) : z) = i ’Line’ be w i z

be w k ((i.x :<|> y) : z) = better w k (be w k ((i.x) : z))

(be w k (i,y) : z))

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 52

Preparing the XML-Application 1(3)

First some useful convenience functions:

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

spread = folddoc (<+>)

stack = folddoc (</>)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 53

Preparing the XML-Application 2(3)

Further supportive functions:

-- An often recurring output pattern

bracket l x r = group (text 1 <>

nest 2 (line <> x) <>

line <> text r)

-- Abbreviation of the alternative tree layout function

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

-- Filling up lines (using words out of the Haskell Standard Lib.)

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 54

Preparing the XML-Application 3(3)

fill, a variant of fillwords

; ...collapses a list of documents to a single document

fill [] = nil

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs)) :<|>

(x </> fill (y : zs)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 55

Application 1(2)

Printing XML-documents (simplified syntax)...

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 56

Application 2(2)

Continuation...

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 57

XML Example 1

...for a given maximum line length of 30 letters:

<p

color="red" font="Times"

size="10"

>

Here is some

 emphasized text.

Here is a

<a

href="http://www.eg.com/"

> link

elsewhere.

</p>

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 58

XML Example 2

...for a given maximum line length of 60 letters:

<p color="red" font="Times" size="10" >

Here is some emphasized text. Here is a

 link elsewhere.

</p>

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 59

XML Example 3:

...after dropping of flatten in fill:

<p color="red" font="Times" size="10" >

Here is some

emphasized

 text. Here is a <a

href="http://www.eg.com/"

> link elsewhere.

</p>

...start and close tags are crammed together with other text

; less beautifully than before.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 60

Overview of the Code 1(11)

Source: Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oege de

Moor (Eds.), The Fun of Programming. Palgrave MacMillan, 2003.

-- The pretty printer

infixr 5:<|>

infixr 6:<>

infixr 6 <>

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

data Doc = Nil

| String ’Text’ Doc

| Int ’Line’ Doc

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 61

Overview of the Code 2(11)

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 62

Overview of the Code 3(11)

layout Nil = ""

layout (s ’Text’ x) = s ++ layout x

layout (i ’Line’ x) = ’\n’: copy i ’ ’ ++ layout x

copy i x = [x | _ <- [1..i]]

best w k x = be w k [(0,x)]

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y) : z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ’Text’ be w (k+length s) z

be w k ((i,LINE) : z) = i ’Line’ be w i z

be w k ((i.x :<|> y) : z) = better w k (be w k ((i.x) : z))

(be w k (i,y) : z))

better w k x y = if fits (w-k) x then x else y

Overview of the Code 4(11)

fits w x | w<0 = False

fits w Nil = True

fits w (s ’Text’ x) = fits (w - length s) x

fits w (i ’Line’ x) = True

pretty w x = layout (best w 0 x)

-- Utility functions

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 64

Overview of the Code 5(11)

spread = folddoc (<+>)

stack = folddoc (</>)

bracket l x r = group (text 1 <>

nest 2 (line <> x) <>

line <> text r)

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

fill [] = nil

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs))

:<|> (x </> fill (y : zs)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 65

Overview of the Code 6(11)

-- Tree example

data Tree = Node String [Tree]

showTree (Node s ts) = group (text s <>

nest (length s) (showBracket ts))

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts)

<> text "]"

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 66

Overview of the Code 7(11)

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ [] = nil

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 67

Overview of the Code 8(11)

tree = Node "aaa"[Node "bbbb"[Node "ccc"[],

Node "dd"[]

],

Node "eee"[],

Node "ffff"[Node "gg"[],

Node "hhh"[],

Node "ii"[]

]

]

testtree w = putStr(pretty w (showTree tree))

testtree’ w = putStr(pretty w (showTree’ tree))

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 68

Overview of the Code 9(11)

-- XML Example

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 69

Overview of the Code 10(11)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 70

Overview of the Code 11(11)

xml = Elt "p"[Att "color" "red",

Att "font" "Times",

Att "size" "10"

] [Txt "Here is some",

Elt "em" [] [Txt "emphasized"],

Txt "text.",

Txt "Here is a",

Elt "a" [Att "href" "http://www.eg.com/"]

[Txt "link"],

Txt "elsewhere."

]

testXML w = putStr (pretty w (showXML xml))

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 71

Further Readings 1(2)

On an imperative Pretty Printer

• Derek Oppen. Pretty-printing. ACM Transactions on Pro-

gramming Languages and Systems, 2(4):465-483, 1980.

...and a functional realization of it:

• Olaf Chitil. Pretty printing with lazy dequeues. In ACM

SIGPLAN Haskell Workshop, 183-201, Florence, Italy,

2001. Universiteit Utrecht UU-CS-2001-23.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 72

Further Readings 2(2)

Overview on the evolution of a Pretty Printer Library and origin

of the development of the Prettier Printers proposed by Phil

Wadler.

• John Hughes. The design of a pretty-printer library. In

Johan Jeuring, Erik Meijers (Eds.), Advanced Functional

Programming, LNCS 925, Springer, 1995.

...a variant implemented in the Glasgow Haskell Compiler

• Simon Peyton Jones. Haskell pretty-printer library.

http://www.haskell.org/libraries/#prettyprinting, 1997.

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 73

Einladung zum epilog

epilog SS 2010

“Die Fakultät für Informatik präsentiert zwei mal pro Jahr die

Diplomarbeiten des letzten halben Jahres in einer Posteraus-

stellung und ausgewählten Vorträgen und gibt einen Einblick

in das breite Spektrum der Themen und Aufgabenstellungen

der Abschlussarbeiten”.

ZEIT: Donnerstag, 10. Juni 2010, ab 15:00 Uhr

ORT: TU Wien, Freihaus, Wiedner Hauptsraße 8, 2.OG, FH Hörsaal 6

MEHR INFO: http://www.informatik.tuwien.ac.at/epilog

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 74

Einladung zum Kolloquiumsvortrag

Die Complang-Gruppe lädt ein zu folgendem Vortrag...

Automatic Verification of Concurrent Programs in

Chalice

Prof. Dr. Peter Müller

ETH Zürich, Schweiz

ZEIT: Dienstag, 18. Mai 2010, 15:30 Uhr

ORT: TU Wien, Seminarraum Argentinierstr. 8, Erdgeschoss

MEHR INFO: http://www.complang.tuwien.ac.at/talks/mueller2010-05-18

(in Kürze)

Alle Interessenten sind herzlich willkommen!

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 75

Opportunity!

HaL5 : Haskell in Leipzig, zum Fünften

Leipzig, Mediencampus (mediencampus-villa-ida.de/), Germa-

ny, Fri, 4 June 2010.

(Registration fee: 20 EUR (including Tutorials, Workshop, and

Barbecue-Party)).

More Infos: http://iba-cg.de/hal5.html

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 76

Next Course Meeting

• Thu, May 13, 2010: No lecture (public holiday)

• Thu, May 20, 2010: 4.15 p.m. to 5.45 p.m., lecture room

on the ground floor of the building Argentinierstr. 8

Advanced functional Programming (SS 2010) / Part 7 (Thu, 05/06/10) 77

