Today’s Topic
Declarative programming...
e Functional style

e Logical style

If each of these two styles is appealing

e a combination of (features of) functional and logical pro-
gramming

might be even more appealing.

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 1

Recent Article

e Sergio Antoy, Michael Hanus. Functional Logic Program-
ming. Communications of the ACM, vol. 53, no. 4, pp. 74
- 85, 2010.

...highlights the benefits of combining the paradigm features
of both logical and functional programming.

The next couple of slides shows quotes of this article...

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 2

Evolution of Programming Languages

...the stepwise introduction of abstractions hiding the underly-
ing computer hardware and the details of program execution.

e Assembly languages ...introduce mnemonic instructions
and symbolic labels for hiding machine codes and addresses

e FORTRAN ...introduces arrays and expressions in standard
mathematical notation for hiding registers

o ALGOL-like languages ...introduce structured statements
for hiding gotos and jump labels

e Object-oriented languages ...introduce visibility levels and
encapsulation for hiding the representation of data and the
management of memory

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 3

Evolution of Prog. Lang. (Cont’d)

e Declarative languages, most prominently functional and lo-
gic languages ...hide the order of evaluation by removing
assignment and other control statements

— A declarative program is a set of logical statements de-
scribing properties of the application domain

— The execution of a declarative program is the computa-
tion of the value(s) of an expression wrt these properties

This way...

e The programming effort in a declarative language shifts
from encoding the steps for computing a result to struc-
turing the application data and the relationships between
the application components

e Declarative languages are similar to formal specification
languages but executable

Functional vs. Logic Languages

Functional languages
e are based on the notion of mathematical function

e programs are sets of functions that operate on data struc-
tures and are defined by equations using case distinction
and recursion

e provide efficient, demand-driven evaluation strategies that
support infinite structures

Logic languages
e are based on predicate logic

e programs are sets of predicates defined by restricted forms
of logic foumulas, such as Horn clauses (implications)

e provide non-determinism and predicates with multiple in-
put/output modes that offer code reuse

Functional Logic Languages: Examples

e Curry

Michael Hanus (Ed.). Curry: An Integrated
Functional Logic Language (vers. 0.8.2, 2006),
http://www.curry-language.org/

e TOY
F. Lopez-Fraguas, J. Sanchez-Hernandez. TOY: A Multi-

paradigm Declarative System. In Proceedings of RTA'99,
Springer LNCS 1631, 1999, 244 - 247.

e Mercury

Zoltan Somogyi, Fergus Henderson, Thomas Conway. The
Eexecution Algorithm of Mercury: An Efficient Purely De-
clarative Logic Programming Language. Journal of Logic
Programming 29 (1-3), 1996, 17 - 64.

See also: The Mercury Project.
http://www.mercury.scce.unimelb.edu.au

Functional Logic Languages: Examples
And there are many more...

e Escher

o Oz

e HAL

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 7

A Curry Appetizer

Regular Expressions

data RE a = Lit a
| A1t (RE a) (RE a)
| Conc (RE a) (RE a)
| Star (RE a)

The Semantics of Regular Expressions

sem :: RE a -> [a]

sem (Lit c) = [c]

sem (Alt r s) =semr ? sem s // 7 nondeterministic choice
sem (Conc r 8) = sem r ++ sem S

sem (Star r) [] ? sem (Conc r (Star r))

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 8

A Curry Appetizer (Cont’d)
abstar = Conc (Lit ’a’) (Star (Lit ’b’))
sem abstar => ["a","ab","abb"]

sem re =:= w // =:= indicates that an equation is to be solved
// rather than an operation to be defined
// checks whether a given word w is in
// the language of a given regular expression re

Xs ++ sem re ++ ys =:= s // checks whether a string s contains
where xs, ys free // a word generated by a regular
// expression re (similar to Unix’s
// grep utility)

In this Lecture
...we will follow a different approach.

We will show how to...

e Integrate features of logical programming into functional
programming

e Central means: Monads and monadic programming

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 9 Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 10
Declarative Programming
e Distinguishing ...emphasizes the “what” rather than the
Reference “how”

This presentation is based on...

e Michael Spivey, Silvija Seres. Combinators for Logic Pro-
gramming. In Jeremy Gibbons, Oege de Moor (Eds.), The
Fun of Programming. Palgrave MacMillan, 2003.

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 11

— Essence ...programs are declarative assertions about a
problem, rather than imperative solution procedures

e Variants ...functional and logical programming

e Question ...can functional and logical programming be uni-
formly combined?

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 12

Combining Features of Functional and
Logical Programming

Basic approaches...

e Classical ...designing new programming languages, which
enjoy features of both programming styles (e.g. Curry)

e Simpler ...implementing an interpreter for one style using
the other style

e Still simpler ...write “logical”’ programs in Haskell using a
library of combinators

~» this is the approach used in the following!

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 13

Further Reading

...on functional/logical programming languages:

e Michael Hanus, Herbert Kuchen, Juan Jose Moreno-
Navarro. Curry: A Truly Functional Logic Language. In
Proceedings of ILPS'95 Workshop on Visions for the Fu-
ture of Logic Programming, 1995, 95-107.

e Zoltan Somogyi, Fergus Herderson, Thomas Conway. Mer-
cury: An Efficient Purely Declarative Logic Programming
Language. In Proceedings of the Australian Computer
Science Conference, 1995, 499-512.

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 14

Remarks on the Combinator Approach
used here

e Advantages and disadvantages in comparison to dedicated
functional/logical programming languages

— less costly

— but less expressive

Central problems

e Modelling logical programs yielding
— multiple answers
— logical variables (no distinction between input and out-
put variables)

e Modelling of the evaluation strategy inherent to logical
programs

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 15

Running Example: Factoring of Natural
Numbers

...decomposing a positive integer into the set of pairs of its
factors

Integer | Factor-Pairs

Example: 0 T(1.24), (2.12), (3.8), (4.6), ..., (24,1)

Obvious Solution:

factor :: Int -> [(Int,Int)]
factor n = [(r,s) | r <- [1..n], s <- [1..n], r*s == n]

In fact, we get:

?factor 24
[(1,24),(2,12),(3,8),(4,6),(6,4),(8,3),(12,2),(24,1)]

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 16

Observation

The previous solution exploits...

e Explicit domain knowledge
—Eg. rxs=n = r<nAs<n

— This renders possible: Restriction to a finite search
space [1..24] x [1..24]

Often such knowledge is not available. In general...
e T he search space cannot be restricted a priori

e In the following thus: Considering the factoring problem as
a search problem over an infinite search space [1..] x [1..]

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 17

Tackling the 1st Problem: Several Re-
sults

Solution ...lists of successes
~lazy lists (Phil Wadler)

Idea

e A function of type a -> b can be replaced by a function of
type a -> [b]

e [azy evaluation ensures that the elements of the result list
(list of successes) are provided as they are found, rather
than as a complete list after termination of the computa-
tion

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 18

Back to the Example

Realizing this idea in the factoring example (assuming that the
search space cannot be bounded a priori):

factor :: Int -> [(Int,Int)]

factor n = [(r,s) | r <- [1..], s <- [1..], r*s == n]
?factor 24

[(1,24)

...followed by an infinite wait.

This is of questionable practical value.

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 19

Remedy: Fair Order via Diagonalization

Run through the search space of pairs in a fair order:
factor n = [(r,s) | (r,s) <- diagprod [1..][1..], r*s == n]
where
diagprod :: [al -> [b] -> [(a,b)]
diagprod xs ys = [(xs!!i, y!!(n-1)) | n <= [0..], i <= [0..n]]
...each pair (x,y) is reached after a finite number of steps

[(1,1,(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),...]

Hence, in our example:

?factor 24
[(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),(1,24),(24,1)

...and consequently all results; followed, however, by
an infinite wait again.

Of course, this was expected, since the search space is infinite.

Systematic Remedy: Using Monads

Reminder:

class Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) >mb

Convention for the following development:
e Stream a ...for potentially infinite lists
e [a] ...for finite lists

e Note: The distinction between Stream a for infinite lists
and [a] for finite lists is only conceptually. The following
definition makes this explicit:

type Stream a = [a]

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 21

List Monad

The monad of (potentially infinite) lists

-- return yields the singleton list
return :: a -> Stream a

return x = [x]
-— binding operator defined as follows
(>>=) :: Stream a -> (a -> Stream b) -> Stream b

xs >>= f = concat (map f xs)

-— other monad operations are irrelevant in our context

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 22

Benefit 1(2)

...return and (>>=) allow to model/to replace list comprehen-
sion:

For example, the meaning of the list comprehension

[(x,y) | x <- [1..1, y <= [10..1]
...is equivalent to

concat (map (\x -> [(x,y) | y <- [10..1D)[1..DD
...is equivalent to

concat (map (\x -> concat (map (\y -> [(x,y)I1)[10..1))[1..1)

Using return and (>>=) this can concisely be expressed by:

[1..1 >>= (\x -> [10..] >>= (\y -> return (x,y)))

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 23

Benefit 2(2)

...and Haskell's do-notation allows an even more compact equi-
valent representation:

do x <= [1..]; y <= [10..]; return (x,y)

Recall:
General Rule:

do x1 <- el; x2 <- e2; ... ; xn <- en; e
...is shorthand for
el >>= (\x1 > e2 >>= (\x2 > ... >>= (\xn -> e)...))

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 24

Fairness: Adapting the binding operator
(>>=) 1(5)

Are we done? Not yet because...

Exploring the pairs of the search space is still not fair.

The expression
do x <- [1..]; y <- [10..]; return (x,y)
yields the stream

[(1,10),(1,11),(1,12),(1,13),(1,14),...

This problem is going to be tackled next...

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 25

Fairness: Adapting the binding operator
(>>=) 2(5)

Idea ...embedding diagonalization in (>>=)
Implementation

Introducing a new type Diag a:

newtype Diag a = MkDiag (Stream a) deriving Show

...and an auxiliary function for stripping off the type construc-
tor MkDiag

unDiag (MkDiag xs) = xs

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 26

Fairness: Adapting the binding operator
(>>=) 3(5)

Diag is made an instance of the constructor class Monad:

instance Monad Diag where
return x = MkDiag [x]
MkDiag xs >>= f = MkDiag (concat (diag (map (unDiag . f) xs)))

where

-- diag rearranges the values into a fair order

diag :: Stream (Stream a) -> Stream [a]

diag [] = [

diag (xs:xss) = lzw (++) [[x] | x <- xs] ([] : diag xss)

-- lzw equals zipWith, however, the non-empty remainder
-- of the list is attached, if an argument list gets empty

lzw :: (a -> a -> a) -> Stream a -> Stream a -> Stream a
lzw £ [] ys = ys
lzw f xs [] = Xs

lzw £ (x:xs) (y:ys) (f xy) : (Qzw £ xs ys)

Fairness 4(5)

Intuition:
e return Vields the singleton list

e undiag strips off the constructor added by the function £
:: a ->Diag b

e diag arranges the elements of the list into a fair order (and
works equally well for finite and infinite lists)

e 1zw reminds to “like zipWith"

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 28

Fairness 5(5)
The idea underlying diag:

...transforms an infinite list of infinite lists
[[x11,x12,x13,...],[x21,x22,...],[x31,x32,...],...]
...into an infinite list of finite diagonals
[[x11], [x12,x21], [x13,x22,x31],...]

Thereby:

?do x <- MkDiag [1..]; y <- MkDiag [10..]; return (x,y)

MkDiag[(1,10),(1,11),(2,10),(1,12),(2,11),(3,10),(1,13),...

Thus now achieved: The pairs are delivered in a fair order!

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 29

Back to the Factoring Problem 1(3)

Current state of our solution:
e Generating (pairs in a fair order): done

e Selecting (those pairs being part of the solution): still open
Approach for solving the selection problem, i.e., filtering out
the pairs (r,s) that satisfy r x s = n: ...filtering with conditions
For that purpose...

class Monad m => Bunch m where

Zero :: m a -- empty result, no answer
alt :: ma->ma->ma -- all answers either in xm or ym
wrap :: ma->ma -— answers yielded by auxiliary

-- calculations; right now, wrap is
-- defined as the identity function

The value zero allows to express an empty answer set.

Back to the Factoring Problem 2(3)

In detail: The instance declaration for ordinary lazy lists

instance Bunch [] where

zero = [
alt xs ys = xs ++ ys
wrap xs = XS

and for the monad Diag:

instance Bunch Diag where

Zero = MkDiag[]
alt (MkDiag xs) (MkDiag ys) = MkDiag (shuffle xs ys)
wrap xm = xm

shuffle [] ys = ys

shuffle (x:xs) ys = x : shuffle ys xs

(Remark: alt and wrap will be used only later.)

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 31

Back to the Factoring Problem 3(3)

By means of zero, the function test yields the key for filtering...
test :: Bunch m => Bool -> m()
test b = if b then return() else zero

This doesn’t look useful, but it provides the key to filtering:
?do x <- [1..]; () <- test (x ’mod’ 3 == 0); return x

[3,6,9,12,15,18,21,24,27,30,33, ...

?do x <- MkDiag [1..]; test (x ’mod’ 3 == 0); return x
MkDiag[3,6,9,12,15,18,21,24,27,30,33, ...

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 32

Are we done? 1(2)

Not yet!
Consider...

?do r <- MkDiag[1..]; s <- MkDiag[l..]; test(r*s==24); return (r,s)
MkDiag[(1,24)

...followed by an infinite wait.

What are the reasons for that?

do r <- MkDiag[l..]; s <- MkDiag[1l..]; test(r*s==24); return (r,s)
is equivalent to

do x <- MkDiagl[1..]
(do y <- MkDiag[1..]; test(x*y==24); return (x,y))

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 33

Are we done? 2(2)

I.e., the generator for y is merged with the subsequent test to
the following (sub-) expression:

do y <- MkDiag[1l..]; test(xxy==24); return (x,y)
Intuition:

e This expression yields for a given value of z all values of y
with z xy = 24

e For x = 1 the answer (1,24) will be found, in order to
search in vain for further values of y

e For x =5 we thus do not observe any output

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 34

Solution Approach
The deeper reason for this undesired behaviour...
Missing associativity of (>>=) for Diag.
(xm >>= f) >>= g = zxm >>= (\x -> f x >>= g)
...does not hold for (>>=) and Diag!
Remedy ...explicit grouping of generators to ensure fairness

?7do (x,y) <- (do u <- MkDiag[1..]; v <- MkDiag[l..]; return (u,v))
test (x*y==24); return (x,y)
MkDiagl[(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),(1,24),(24,1)

...all results, subsequently followed by an infinite wait

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 35

Remarks

e All results, subsequently followed by an infinite wait

...this is the best we can hope for if the search space is
infinite.

e Explicit grouping

...required only because of missing associativity of >>=,
otherwise both expressions would be equivalent.

e In the following

...avoid infinite waiting by indicating that a result has not
(yet) been found.

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 36

Indicating that no solution is found...

To this purpose... a new type and breadth search

Intuition
e Type Matrix ...infinite list of finite lists

e Goal ...a program, which yields a matrix of answers, where
row ¢ contains all answers, which can be computed with
costs c(7).

e Solving the indication problem ...by returning the empty
list in @ row (means “nothing found")

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 37

Implementation... 1(3)

A new type

newtype Matrix a = MkMatrix (Stream [a]) deriving Show

with an auxiliary function for stripping off the constructor

unMatrix (MkMatrix xm) = xm

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 38

Implementation... 2(3)

Preliminary definitions to make Matrix an instance of class
Bunch:

return x = MkMatrix[[x]] -- Matrix with a single row
zero = MkMatrix[] -- Matrix without rows
alt (MkMatrix xm) (MkMatrix ym) = MkMatrix(lzw (++) xm ym)

wrap(MkMatrix xm) = MkMatrix([]:xm) -- the clou is encoded in wrap

(>>=) :: Matrix a -> (a -> Matrix b) -> Matrix b
(MkMatrix xm) >>= f = MkMatrix (bindm xm (unMatrix . f))

bindm :: Stream[a] -> (a -> Stream[b]) -> Stream[b]
bindm xm f = map concat (diag (map (concatAll . map f) xm))

concatAll :: [Stream [b]] -> Stream [b]
concatAll = foldr (lzw (++)) []

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 39

Implementation... 3(3)

In total we are now ready to make Matrix an instance of Monad
and Bunch...

instance Monad Matrix where
return x = MkMatrix[[x]]
(MkMatrix xm) >>= f = MkMatrix(bindm xm (unMatrix . f))

instance Bunch Matrix where
zero
alt (MkMatrix xm) (MkMatrix ym)
wrap (MkMatrix xm)

MkMatrix[]
MkMatrix(lzw (++) xm ym)
MkMatrix ([]:xm)

intMat = MkMatrix[[n] | n <- [1..]]

Example

7do r <- intMat; s <- intMat; test(r*s==24); return (r,s)

MkMatrix[[1,(1,01,00,01,01,00,03,0C4,6),(6,4)]1,((3,8),(8,3)],
,0,02,12),12,21,01,00,0,0,0,0,0,01,10,0,
[(1,24),(24,1)1,01,03,0,...

Iln(cée):pendence of the Search Strategy

Breadth search (MkMatrix[[n]|n<-[1..]11), depth search ([1..]),
diagonalization...

Additional functions in order to be able to fix the strategy at
the time of calling (“just in time")...

Control via a monad type...

choose :: Bunch m => Stream a -> m a
choose (x:xs) = wrap (return x ’alt’ choose xs)
factor :: Bunch m => Int -> m(Int, Int)

factor n = do r <- choose[l..]; s <- choose[l..];

test (r*s==n); return (r,s)

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 41

Izn(%e)pendence of the Search Strategy

This allows...
e Usage of factor with different search strategies

e The specified type of factor determines the search monad
(and hence the search strategy)

?factor 24 :: Stream(Int,Int)
[(1,24)

?factor 24 :: Matrix(Int, Int)

Matrix([[1,01,00,01,01,00,00,00,00,00,0(4,6),(6,4)1,
[(3,8),(,3)],01,01,0(2,12),(12,2)1,01,0,01,01,0, 0,
[1,03,0,0,0¢1,24),(24,1)]1,01,01,0,...

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 42

Summary of Progress

Reminder...
Central problems

e Modelling logical programs with...
— multiple results: done (essentially by means of lazy lists)

— logical variables: still open

x* Common for logical programs: not a pure simplification of an
initially completely given expression, but a simplification of an
expression containing variables, for which appropriate values ha-
ve to be determined. In the course of the computation, varia-
bles can be replaced by other subexpressions containing variables
themselves, for which then appropriate values have to be found.

— Modelling of the evaluation strategy inherent to logical programs:
done

* implicit search of logical programming languages has been made
explicit

* by means of type classes of Haskell even different search strate-
gies were conveniently be realizable

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 43

Tackling the Final Problem: Terms,
Substitutions & Predicates 1(5)

Towards the modelling in Haskell...

Terms will describe values of logical variables
data Term = Int Int | Nil | Cons Term Term | Var Variable
deriving Eq
Named variables will be used for formulating queries, generated

variables evolve in the course of the computation

data Variable = Named String | Generated Int
deriving (Show, Eq)

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 44

Terms, Substitutions & Predicates 2(5)

Some auxiliary functions

e for transforming a string into a named variable

var :: String -> Term
var s = Var (Named s)

e for constructing a term representation of a list of integers

list :: [Int] -> Term
list xs = foldr Cons Nil (map Int xs)

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 45

Terms, Substitutions & Predicates 3(5)

Substitution and unification

-- Substitution: essentially a mapping from variables to terms

-- Details later
newtype Subst

Further support functions

apply :: Subst -> Term -> Term
idsubst :: Subst
unify :: (Term, Term) -> Subst -> Maybe Subst

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 46

Terms, Substitutions & Predicates 4(5)

Logical programs (in our Haskell environment) with m of type
bunch:

-- Logical programs have type Pred m

type Pred m = Answer -> m Answer

-- Answers; the integer-component controls
-- the generation of new variables

newtype Answer = MkAnswer (Subst, Int)

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) a7

Terms, Substitutions & Predicates 5(5)

-— "Initial answer"

initial :: Answer

initial = MkAnswer (idsubst, 0)

run :: Bunch m => Pred m -> m Answer

run p = p initial

-- "Program run of a predicate as query", where
-- p is applied to the initial answer

run p :: Stream Answer

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 48

Writing logical programs

Example...

append(a,b,c) where a,b lists and ¢ concatenation of a and b

Implementation as a function of terms on predicates...
append :: Bunch m => (Term, Term, Term) -> Pred m
-- Implementation of append (later!) and of appropriate
-- Show-Functions is supposed

?run(append (1ist[1,2],1ist[3,4],var "z")) :: Stream Answer
[{z=[1,2,3,41}]

-— note: more accurate and equivalent to the above list would be:

Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 49

Combinators for logical programs 1(4)

Simple predicates are formed by means of the operators (=:=
(equality of terms):

?run(var "x" =:= Int 3) :: Stream Answer

[{x=3}]
Implementation of (=:=) by means of unify:

(=:=) :: Bunch m => Term -> Term -> Pred m
(t=:=u) (MkAnswer(s,n)) =
case unify(tu) s of
Just s’ -> return(MkAnswer(s’,n))

Nothing -> zero

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 50

Combinators for logical programs 2(4)

Conjunction of predicates by means of the operator (&&&) (con-
junction):

?run(var "x" =:= Int 3 &&& var "y" =:= Int 4) :: Stream Answer
[{x=3,y=4}]
?run(var "x" =:= Int 3 &&& var "x" =:= Int 4) :: Stream Answer

(]

Implementation by means of the operator (>>=) of type bunch:
(&&&) :: Bunch m => Pred m -> Pred m -> Pred m
(p && q) s = p s >>=q

-- equivalent and emphasizing the sequentiality would be
dot <-ps; u<-qt; returnu

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 51

Combinators for logical programs 3(4)
Disjunction of predicates by means of the operator (|1|) (Dis-
junction):

?run(var "x" =:= Int 3 ||| var "x" =:= Int 4) :: Stream Answer
[{x=3,x=4}]

Implementation by means of the operator alt of type bunch:

(Ill) :: Bunch m => Pred m -> Pred m -> Pred m
(p Il @ s =alt (p s) (qs)

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 52

Combinators for logical programs 4(4)

Introducing new variables in predicates (exploiting the integer-
component of answers) Example

...on the construction of local variables in recursive predicates
Examples of applications of wrap and step

exists :: Bunch m => (Term -> Pred m) -> Pred m
exists p (MkAnswer (s,n)) = ?run (var "x" =:= Int 0) :: Matrix Answer
p (Var(Generated n)) (MkAnswer(s,n+1)) MkMatrix [[{x=0}]]
Also for handling recursive predicates .
?run(step(var "x" =:= Int 0)) :: Matrix Answer

...ensures that in connection with Matrix the costs per recur- MkMatrix[[], [{x=0}]1]
sion unfolding increase by 1

step :: Bunch m => Pred m -> Pred m

step p s = wrap (p s)
Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 53 Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 54

Recursive Programs 2(2)

Recursive Programs 1(2
g () Also the following application is possible (which is common for

This allows us to provide the implementation of append: logical programs):

The concatenation of which lists equals the list [1,2,3]7

append(p,q,r) =
step(p =:= Nil &&& q =:=r ?run(append(var "x", var "y", 1list[1,2,3])) :: Stream Answer
[l exists (\x -> exists (\a -> exists (\b -> [{x = Nil, y = [1,2,31},
p =:= Cons x a &&& r =:= Cons x b {x = [11, y = [2,3]},
&&& append(a,q,b))))) {x = [1,2], y = [31},

{x [1,2,3], y = Nil}]

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 55 Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 56

A More Complex Example 1(2)

Constructing “good” sequences consisting of zeros and ones.

Convention
1. The sequence [0] is good

2. If the sequences s1 and s2 are good, then also the sequence
[1] ++ s1 ++ s2

3. Except of the sequences according to 1. and 2., there are
no other good sequences

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 57

A More Complex Example 2(2)

Implementation as predicate

good(s) =
step (s =:= Cons(Int 0) Nil
[l exist (\t -> exists (\q -> exists (\r —>
s =:= Cons (Int 1) t &&& append(q,r,t)
&&& good(q) &&& good(r)))))
Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 58

Examples 1(4)

Test of being “good”:
?run (good (1ist[1,0,1,1,0,0,1,0,0])) :: Stream Answer

[{}] -- empty answer set, if list is good

?run (good (1list[1,0,1,1,0,0,1,0,1])) :: Stream Answer

(1 -- no answer, if list is not good

Note: The “empty answer” and “no answer” correspond to
“yes" and “no” of a Prolog system.

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 59

Examples 2(4)

Constructing good lists

-- Unfair bunch-type: some answers are missing
?run(good(var "s")) :: Stream Answer
[{s=[0]1},
{s=[1,0,01},
{s=[1,0,1,0,01},
{s=[1,0,1,0,1,0,01},
{s=I1,0,1,0,1,0,1,0,01%}, ...

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 60

Examples 3(4)

-- For comparison: fair bunch-type
?run(good(var "s")) :: Diag Answer
Diag[{s=[0]},
{s=[1,0,01},
{s=[1,0,1,0,01},
{s=[1,0,1,0,1,0,01},
{s=[1,1,0,0,01},
{s=[1,0,1,0,1,0,1,0,01},
{s=[1,1,0,0,1,0,01},
{s=I1,0,1,1,0,0,013,
{s=[1,1,0,0,1,0,1,0,0]},...

Examples 4(4)

-- For comparison: breadth-first search bunch-type
-— The output of results is more "predictable"
?run(good(var "s")) :: Matrix Answer
MkMatrix[[],

[{s=[013}1,01,01,01,

[{s=[1,0,01}1,01,101,0],

[{s=[1,0,1,0,01}1, (1,

({s=[1,1,0,0,01}]1,11,

[{s=[1,0,1,0,1,0,01}1, 11,

[{s=[1,0,1,1,0,0,0]1}],{s=[1,1,0,0,1,0,0]1}]1,0],

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 61 Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 62
Finally: Definitions still to be delivered Definitions to be delivered 2(4)
1(4)
Application of substitution
New infix operators apply :: Subst -> Term -> Term
infixr 4 =:= apply s t =
infixr 3 &&& case deref s t of
infixr 2 ||| Cons x xs -> Cons (apply s x) (apply s xs)
-t) _> t J
Substition
deref :: Subst -> Term -> Term
newtype Subst = MkSubst [(Var, Term)] deref s (Var v) =
unSubst (MkSubst s) = s case lookup v (unSubst s) of
Just t -> deref s t
idsubst = MkSubst[] Nothing -> Var v
extend x t (MkSubst s) = MkSubst ((x,t):s) deref s t =t
Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 63 Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 64

Definitions to be delivered 3(4)

Unification

unify :: (Term, Term) -> Subst
unify (t,u) s =

-> Maybe Subst

case (deref s t, deref s u) of

(Nil, Nil) -> Just s
(Cons x xs, Cons y ys) ->
(Int n, Int m) | (n==m) —>

unify (x,y) s >>= unify (xs, ys)
Just s

Definitions to be delivered 4(4)

occurs :: Variable -> Term -> Subst -> Bool
occurs x t s =

case deref s t of

Var y > X ==y
(Var x, Var y) | (x==y) -> Just s C
-] ons y ys -> occurs x y s || occurs x ys s
(Var x, t) -> if occurs x t s then Nothing > Fal
- - alse
else Just (extend x t s)
(t, Var x) -> if occurs x t s then Nothing
else Just (extend x t s)
(G -> Nothing
Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 65 Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 66
Conclusion

Current functional logic languages aim at balancing

e generality (in terms of paradigm integration)

e cfficient implementations

Functional logic programming offers

e support of specification, prototyping, and application pro-
gramming within a single language

e terse, yet clear, support for rapid development by avoiding
some tedious tasks, and allowance of incremental refine-

ments to improve efficiency

Overall: Functional logic programming

e an emerging paradigm with appealing features

Advanced functional Programming (SS 2010)

Part 5 (Thu, 04/22/10) 67

Next Course Meeting...

e Thu, April 29, 2010, lecture time: 4.15 p.m. to 5.45 p.m.,
lecture room on the ground floor of the building Argenti-
nierstr. 8

Advanced functional Programming (SS 2010) / Part 5 (Thu, 04/22/10) 68

