
Today’s Topic

Testing of programs

• Specification-based

• Tool-supported

• Automatically

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 1

Questions

How can we gain (sufficient) confidence that...

• our programs are sound,

• other people’s programs are sound?

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 2

Answers

• Verification

– Formal soundness proof (soundness of the specification,
soundness of the implementation)

– High confidence, high effort

• Testing

– Variants: systematically vs. ad hoc

– Controllable effort, undefined quality statement

Remember:
“Testing can only show the presence of errors, not their
absence” (Dijkstra)

On the other hand...

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 3

Observation

Testing is...

• often amazingly successful in disclosing errors

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 4

Requirements

Reporting on...

• What has been tested?

• How thoroughly, how comprehensively has been tested?

• How was success defined?

Additionally desirable...

• Reproducibility of tests

• Repeated testing after program modifications

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 5

Preconditions

Indispensable...

• Specification of the meaning of the program

– Informally (commentary in the program, in a separate

documentation)

; ...often ambiguous, open to interpretation

– Formally

; ...precise semantics, unique

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 6

In the following

Specification-based, tool-supported testing in Haskell

• QuickCheck (a combinator library)

– defines a formal specification language

; ...allows property definition inside the (Haskell) sour-

ce code

– defines a test data generator language

; ...allows a simple and concise description of a large

number of tests

– allows automatic testing of all properties specified in a

module, including failure reports

– allows tests to be repeated at will

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 7

Note

Specification- and test data generator language are...

• Examples of so-called domain-specific embedded langua-

ges

; ...special strength of functional programming

• implemented as a combinator library in Haskell

; ...allows to make use of the full expressiveness of Haskell

when defining properties and test data generators

• Part of the standard Haskell-distribution (both GHC and

Hugs) (see module QuickCheck)

; ...ensures simple and direct usability

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 8

Reference

The following presentation is based on...

• Koen Claessen, John Hughes. Specification-based Testing
with QuickCheck. In Jeremy Gibbons, Oege de Moor
(Eds.), The Fun of Programming. Palgrave MacMillan,
2003.

For implementation details and applications...

• Koen Claessen, John Hughes. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Procee-
dings of the ACM SIGPLAN 2000 International Conference
on Functional Programming (ICFP 2000), 268 - 279, 2000.

• Koen Claessen, John Hughes. Testing Monadic Code with
QuickCheck. In Proceedings ACM SIGPLAN 2002 Haskell
Workshop, 65 - 77, 2002.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 9

Property Definition w/ QuickCheck 1

In the most basic case properties are defined as predicates,
i.e., Boolean valued functions.

Example 1

Inside the program:

prop_PlusAssociative :: Integer -> Integer -> Integer -> Bool

prop_PlusAssociative x y z = (x+y)+z == x+(y+z)

In Hugs:

Main>quickCheck prop_PlusAssociative

OK, passed 100 tests

Note:

• Type specification for prop PlusAssociative is required because of the
overloading of + (otherwise error message)

• Type specification allows a type-specific generation of test data

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 10

Property Definition w/ QuickCheck 2

Example 2

In the program:

prop_PlusAssociative :: Float -> Float -> Float -> Bool

prop_PlusAssociative x y z = (x+y)+z == x+(y+z)

In Hugs (falsifiable for type Float; think e.g. of rounding er-
rors):

Main>quickCheck prop_PlusAssociative

Falsifiable, after 13 tests:

1.0

-5.16667

-3.71429

Note:

The error report contains:

• Number of tests successfully passed

Counter example

More Complex Property Definitions w/
QuickCheck 1(3)

Consider as the property to be checked:

...to insert in a sorted list

(we suppose that a function insert and a predicate

ordered are given)

The straightforward property definition, however,

prop_InsertOrdered x xs = ordered (insert x xs)

...is falsifiable.

It is too strong/naive (note that xs is not supposed to be

sorted).

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 12

More Complex Property Definitions w/
QuickCheck 2(3)

Remedy:

prop_InsertOrdered :: Integer -> [Integer] -> Property

prop_InsertOrdered x xs = ordered xs ==> ordered (insert x xs)

Note:

• ordered xs ==>: Adding a precondition

; Test data, which do not match the precondition, are
dropped

• ==>: ...is not a Boolean operator; it is an operator, which
affects the selection of test data

; Property definitions, which rely on such operators, al-
ways have the type Property

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 13

More Complex Property Definitions w/
QuickCheck 3(3)

Another option supported by QuickCheck:

• Direct quantification over sorted lists

prop_InsertOrdered :: Integer -> Property

prop_InsertOrdered x =

forAll orderedLists $ \xs -> ordered (insert x xs)

Also more sophisticated properties could be specified:

• Refining the specification such that the result list coincides

with the argument list (except of the inserted element)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 14

The Operator $

See Standard Prelude:

($) :: (a -> b) -> a -> b

f $ x = f x

Note

• The operator $ is Haskell’s infix function application

• It is useful to avoid the usage of parentheses:

Example: f (g x) can be written as f $ g x

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 15

An Extended Example

...abstract data type for (first-in-first-out) queues.

Simple (yet inefficient) implementation, which serves as ab-

stract model – as reference model of a queue:

type Queue a = [a]

empty = []

add x q = q ++ [x] -- inefficient!

isEmpty q = null q

front (x:q) = x

remove (x:q) = q

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 16

A More Efficient Implementation

...the implementation of interest. Its basic idea:

• Split the list into two portions (list front and list back)

• Back of the list in reverse order

; This ensures: Efficient access to list front and list back

type QueueI a = ([a],[a])

emptyI = ([],[])

addI x (f,b) = (f,x:b)

isEmptyI (f,b) = null f

frontI (x:f,b) = x

removeI (x:f,b) = flipQ (f,b)

where

flipQ ([],b) = (reverse b, [])

flipQ q = q

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 17

In the following

Think of

• Queue and

• QueueI

in terms of

• specification and

• implementation

We now want to check/test if operations of the implementa-

tion (QueueI) behave properly according to the operations of

the specification (Queue)...

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 18

List Representations and Represented
Abstract Lists: The Relation

...by means of a retrieve function:

retrieve :: QueueI Integer -> [Integer]

retrieve (f,b) = f ++ reverse b

The function retrieve...

• transforms the (usually many) representations of an ab-
stract list as values of QueueI into the underlying abstract
list as values of Queue

The understanding of QueueI and Queue as lists on integers
allows us to drop type specifications in the definitions of pro-
perties defined next...

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 19

Soundness Properties for Functions on
QueueI

...by means of retrieve we can check, if

• the results of applying the efficient functions on QueueI

coincide with those of the abstract functions on Queue

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 20

Soundness Properties: 1st Try 1(3)

Apparently, the following properties are expected to hold:

prop_empty = retrieve emptyI == empty

prop_add x q = retrieve (addI x q) == add x (retrieve q)

prop_isEmpty q = isEmptyI q == isEmpty (retrieve q)

prop_front q = frontI q == front (retrieve q)

prop_remove q = retrieve (removeI q) == remove (retrieve q)

However, this is not true...

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 21

Soundness Properties: 1st Try 2(3)

E.g., testing prop isEmpty using QuickCheck yields:

Main>quickCheck prop_isEmpty

Falsifiable, after 4 tests:

([],[-1])

Problem:

• The specification of isEmpty implicitly assumes that the

following invariant holds:

– The front of the list is only empty, if the back of the

list is empty, too

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 22

Soundness Properties: 1st Try 3(3)

In fact:

• prop isEmpty, prop front, and prop remove are falsifiable be-

cause of this!

• The implementations of isEmptyI, frontI, and removeI im-

plicitly assume that the front of a queue will only be empty

if the back also is.

This silent assumption has to be made explicit as invariant...

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 23

Soundness Properties: 2nd Try 1(2)

We define the following invariant:

invariant :: QueueI Integer -> Bool

invariant (f,b) = not (null f) || null b

...and add them to all property definitions:

prop_empty = retrieve emptyI == empty

prop_add x q = invariant q ==>

retrieve (addI x q) == add x (retrieve q)

prop_isEmpty q = invariant q ==>

isEmptyI q == isEmpty (retrieve q)

prop_front q = invariant q ==>

frontI q == front (retrieve q)

prop_remove q = invariant q ==>

retrieve (removeI q) == remove (retrieve q)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 24

Soundness Properties: 2nd Try 2(2)

Now, testing prop isEmpty using QuickCheck yields:

Main>quickCheck prop_isEmpty

OK, passed 100 tests

However, testing prop front still fails:

Main>quickCheck prop_front

Program error: front ([],[])

Problem:

• frontI (as well as removeI) may only be applied to non-
empty lists. So far, this is not taken into account.

Remedy:

• Add not (isEmptyI q) to the preconditions of the relevant
properties

Soundness Properties: Corrected Versi-
on

We obtain:

prop_empty = retrieve emptyI == empty

prop_add x q = invariant q ==>

retrieve (addI x q) == add x (retrieve q)

prop_isEmpty q = invariant q ==>

isEmptyI q == isEmpty (retrieve q)

prop_front q = invariant q && not (isEmptyI q) ==>

frontI q == front (retrieve q)

prop_remove q = invariant q && not (isEmptyI q) ==>

retrieve (removeI q) == remove (retrieve q)

Now

• All properties pass the test successfully!

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 26

Soundness Properties: Still to be Done

We still need to check:

• Operations producing queues do only produce queues,

which satisfy this invariant.

Since so far we only tested:

• Operations on queues behave correctly on representations

of queues which satisfy the invariant

invariant (f,b) = not (null f) || null b

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 27

Soundness Properties: Towards This

The formulation of appropriate properties for functions produ-

cing queues:

prop_inv_empty = invariant emptyI

prop_inv_add x q = invariant q ==> invariant (addI x q)

prop_inv_remove q = invariant q && not (isEmptyI q) ==>

invariant (removeI q)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 28

Soundness Properties: Still to be Done

Testing by means of QuickCheck yields:

Main>quickCheck prop_inv_add

Falsifiable, after 0 tests:

0

([],[])

Problem:

• The invariant must hold

– not only after applying removeI,

– but also after applying addI to the empty list; adding to

the back of a queue breaks the invariant in this case.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 29

Soundness Properties: Done Now!

To this end:

• Adjust the function addI as follows:

addI x (f,b) = flipQ(f,x:b) -- instead of: addI x (f,b) = (f,x:b)

with flipQ defined previously.

Now

• All properties pass the test successfully!

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 30

Observation

In the course of developing this example it turned out:

• Testing disclosed (only) one bug in the implementation
(this was in function addI)

• But: Several missing preconditions and a missing invari-
ant in the original definitions of properties were found and
added

Both is typical, and valuable:

• The additional conditions and invariants are now explicitly
given in the program text

• They add to understanding the program and are valuable
as documentation, both for the program developer and for
future users (think of program maintaining!)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 31

Algebraic Specifications

...(often a desired) alternative to the abstract model

An algebraic specification...

• provides equational constraints the operations ought to sa-

tisfy

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 32

Algebraic Specifications

For the example of queues, for instance, as follows:

prop_isEmpty q = invariant q ==> isEmptyI q == (q == emptyI)

prop_front_empty x = frontI (addI x emptyI) == x

prop_front_add x q = invariant q && not (isEmptyI q) ==>

frontI (addI x q) == frontI q

prop_remove_empty x = removeI (addI x emptyI) == emptyI

prop_remove_add x q = invariant q && not (isEmptyI q) ==>

removeI (addI x q) == addI x (removeI q)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 33

Algebraic Specifications

Testing using QuickCheck yields:

Main>quickCheck prop_remove_add

Falsifiable, after 1 tests:

0

([1],[0])

Problem:

• Left hand side yields: ([0,0],[])

• Right hand side yields: ([0],[0])

• Equivalent but not equal!

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 34

Algebraic Specifications

Solution:

• Consider instead of “equal” now “equivalent”

q ’equiv’ q’ = invariant q && invariant q’ &&

retrieve q == retrieve q’

Then replacing of

prop_remove_add x q = invariant q && not (isEmptyI q) ==>

removeI (addI x q) == addI x (removeI q)

by

prop_remove_add x q = invariant q && not (isEmptyI q) ==>

removeI (addI x q) ’equiv’ addI x (removeI q)

yields the desired result: the test passes successfully.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 35

Algebraic Specifications

Similar to the previous setting, we have to check:

• All operations producing queues yield results, which are

equivalent, if the arguments are.

Considering the operation addI, for instance, this can be done

by:

prop_add_equiv q q’ x = q ’equiv’ q’ ==> addI x q ’equiv’ addI x q’

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 36

Algebraic Specifications

Though mathematically sound, the definition of prop add equiv

is inappropriate for fully automatic testing.

We might observe:

Main>quickCheck prop_add_equiv Arguments exhausted after 58 tests.

Problem and background:

• QuickCheck generates lists q und q’ randomly.

• Most of the pairs of lists will not be equivalent, and hence
be discarded for the actual test.

• QuickCheck generates a maximum number of candidate ar-
guments only (default: 1.000), and then stops, possibly
before the number of 100 test cases is met.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 37

Enhancing Usability

...of QuickCheck by providing support for

• Quantification over subsets

– by means of filters

– by means of generators (type-based, weighted, size con-
trolled,...)

• ...

• test case monitoring

In the following:

; ...illustrating this support in terms of examples!

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 38

Quantifications over Subsets

For QuickCheck holds:

• By default, parameters are quantified over values of the

appropriate type

Often, however, it is desired:

• A quantification over subsets of these values

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 39

Quantifications over Subsets

QuickCheck offers several options for this purpose:

• Representation of subsets in terms of Boolean functions,
which act as a filter for test cases

– Adequate, if many elements of the underlying set are
members of the relevant subset, too.

– Inadequate, if only a few elements of the underlying set
are members of the relevant subset.

• Representation of subsets in terms of generators

– A generator of type Gen a yields a random sequence of
values of type a.

– The property forall set p successively checks p on ran-
domly generated elements of set.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 40

Support by QuickCheck

For the effective usage of generators QuickCheck supports:

• different variants for the specification of relations such as

equiv

– As a Boolean function

∗ simple to check equivalency of two values (but difficult

to generate values which are equivalent).

– As a function from a set of values to another set of

equivalent values (generator!)

∗ simple to generate equivalent values (but difficult to

check equivalency of two values).

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 41

Generators

The generator variant for equiv:

equivQ :: QueueI a -> Gen(QueueI a)

equivQ q = do k <- choose (0,0 ’max’ (n-1))

return (take (n-k) els, reverse (drop (n-k) els))

where

els = retrieve q

n = length els

Note:

• Definition of choose will be given later

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 42

Generators

This allows us to check that

• generated elements are related, i.e., equivalent

To this end check:

prop_EquivQ q = invariant q ==>

forAll (equivQ q) $ \q’ -> q ’equiv’ q’

Note:

• $ means function application. Using $ allows the omission
of parentheses, see the λ expression in the example.

• The property which is dual to prop EquivQ, i.e., that all
related elements can be generated, cannot be checked by
testing.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 43

Generators

This allows:

• Reformulating the property that addI maps equivalent

queues to equivalent queues

prop_add_equiv q x = invariant q ==>

forAll (equivQ q) $ \q’ -> addI x q ’equiv’ addI x q’

Remark:

• Other properties analogously

Next: How to define generators...

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 44

Defining Generators

...is simplified because of the monadic type of Gen.

It holds:

• return a always yields (generates) a and represents the

singleton set {a}

• do {x <- s; e} can be considered the (generated) set {e |

x ∈ s}

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 45

Defining Generators

The fundamental function to make a choice:

choose :: Random a => (a,a) -> Gen a

Remark:

• The function choose generates “randomly” an element of

the specified domain

• choose (1,n) represents the set {1...n}

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 46

Applying choose

Using choose we can define equivQ (as seen above):

equivQ :: QueueI a -> Gen(QueueI a)

equivQ q = do k <- choose (0,0 ’max’ (n-1))

return (take (n-k) els, reverse (drop (n-k) els))

where

els = retrieve q

n = length els

• Generates a random queue containing the same elements
as q

• The number of elements in the remainder of the list will
be chosen such that it is properly smaller than the total
number of elements of the list (supposed the total number
is different from 0)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 47

Type-based Generators

...by means of the overloaded generator arbitrary, e.g. for the

generation of arguments of properties:

Example:

prop_max_le x y = x <= x ’max’ y

is equivalent to

prop_max_le = forAll arbitrary $ \x -> forAll arbitrary $ \y ->

x <= x ’max’ y

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 48

Type-based Generators

Another example:

The set {y | y ≥ x } can be generated by

atLeast x = do diff <- arbitrary

return (x + abs diff)

because of the equality

{y | y ≥ x} = {x + abs d | d ∈ ZZ}

that holds for numerical types.

Note: Similar definitions for other types are possible.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 49

Selection

...between several generators can be achieved by means of a
generator oneof, which can be thought of as set union.

Example: Constructing a sorted list

orderedLists = do x <- arbitrary

listsFrom x

where

listsFrom x = oneof [return [], do y <- atLeast x

liftM (x:) (listsFrom y)]

Underlying intuition:

• A sorted list is either empty or the addition of a new head
element to a sorted list of larger elements

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 50

Weighted Selection

• The oneof combinator picks with equal probability one of
the alternatives

• This often has an unduly impact on the test case generati-
on (in the previous example the empty set will be selected
too often)

• Remedy : A weight function frequency, which assigns diffe-
rent weights to the alternatives

frequency :: [(Int,Gen a)] -> Gen a

Application:

listsFrom x = frequency [(1,return []),
(4,do y <- atLeast x

liftM (x:) (listsFrom y))]

• A QuickCheck generator corresponds to a probability distribution over
a set, not the set itself

• The impact of the above assignment of weights is that on average the
length of generated lists is 4

The Class Arbitrary

If non-standard generators such as orderedLists are used fre-

quently, it is advisable to make this type an instance of

Arbitrary:

newtype OrderedList a = OL [a]

instance (Num a, Arbitrary a) => Arbitrary(OrderedList a) where

arbitrary = liftM OL orderedLists

Together with the re-definition of insert as

insert :: Ord a => a -> OrderedList a -> OrderedList a

arguments generated for it will automatically be ordered.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 52

Controlling the Size of Generated Test
Data

• Often wise for type-based test data generation

• Explicitly supported by QuickCheck

Generators that depend on the size can be defined by:

sized :: (Int -> Gen a) -> Gen a -- For defining size aware gen.

sized $ \n -> do len <- choose (0,n) -- Application of sized
vector len -- in the Def. of the default

-- list generator

vector n = sequence [arbitrary | i <- [1..n]] -- generates random list
-- of length n

resize :: Int -> Gen a -> Gen a -- for controlling the size of
-- generated values

sized $ \n -> resize (round (sqrt (fromInt n))) arbitrary
-- Application of resize

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 53

Generators for User-defined Types

Test data generators for...

• predefined (“built-in”) types of Haskell

– are provided by QuickCheck

– for user-defined types, this is not possible

• user-defined types

– have to be provided by the user in terms of defining a

suitable instance of class Arbitrary

– require usually, especially in case of recursive types, to

control the size of generated test cases

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 54

Example: Binary Trees

Consider type Tree:

data Tree a = Leaf | Branch (Tree a) a (Tree a)

The following definition of the test-case generator is apparent:

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary =

frequency [(1,return Leaf),

(3,liftM3 Branch arbitrary arbitrary arbitrary)]

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 55

Example: Binary Trees

Note:

• The assignment of weights (1 vs. 3) has been done in order

to avoid the generation of all too many trivial trees of size

1

• Problem: The likelihood that a generator comes up with a

finite tree, is only one third

; this is because termination is possible only, if all sub-

trees generated are finite. With increasing breadth of the

trees, the requirement of always selecting the “termina-

ting” branch has to satisfied at ever more places simulta-

neously

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 56

Example: Binary Trees

Remedy:

• Usage of the parameter size in order to ensure

– termination and

– “reasonable” size

of the trees generated

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 57

Example: Binary Trees

Implementation:

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary = sized arbTree

arbTree 0 = return Leaf

arbTree n | n>0 =

frequency [(1,return Leaf),

(3,liftM3 Branch shrub arbitrary shrub)]

where

shrub = arbTree (n ’div’ 2)

Note: shrub is a generator for small(er) trees.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 58

Example: Binary Trees

Remark:

• shrub is a generator for “small” trees

• shrub is not bounded to a special tree; the two occurrences

of shrub will usually generate different trees

• Since the size limit for subtrees is halved, the total size is

bounded by the parameter size

• Defining generators for recursive types must usually be

handled specifically as in this example

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 59

Test-Data Monitoring / Test Coverage

In practice, it is meaningful...

• to monitor the test cases generated

• in order to obtain a hint on the quality and the coverage

of test cases of a QuickCheck run

For this purpose QuickCheck provides...

• an array of monitoring possibilities

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 60

Test-Data Monitoring / Test Coverage

Why is test-data monitoring meaningful?

Reconsider the example of inserting into a sorted list:

prop_InsertOrdered :: Integer -> [Integer] -> Property

prop_InsertOrdered x xs = ordered xs ==> ordered (insert x xs)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 61

Test-Data Monitoring / Test Coverage

QuickCheck performs the check of prop InsertOrdered such
that...

• lists are generated randomly

• each generated list will be checked, if it is sorted (used test
case) or not (discarded test case)

Obviously, it holds...

• the likelihood that a randomly generated list is sorted is
the higher the shorter the list is

This introduces the danger that...

• the property prop InsertOrdered is mostly tested with lists
of length one or two

• even a successful test is not meaningful

Test-Data Monitoring / Test Coverage

For monitoring QuickCheck provides a...

• combinator trivial, where the meaning of “trivial” is user-

definable

Example:

prop_InsertOrdered :: Integer -> [Integer] -> Property

prop_InsertOrdered x xs = ordered xs ==>

trivial (length xs <= 2) $ ordered (insert x xs)

with

Main>quickCheck prop_InsertOrdered

OK, passed 100 tests (91% trivial)

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 63

Test-Data Monitoring / Test Coverage

Observation:

• 91% are too many trivial test cases in order to ensure that

the total test is meaningful

• The operator ==> should be used with care in test-case

generators

Remedy:

• User-defined generators

; as in the example of prop InsertOrdered on slide 14

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 64

Test-Data Monitoring / Test Coverage

The combinator trivial is...

• instance of a more general combinator classify

trivial p = classify p "trivial"

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 65

Test-Data Monitoring / Test Coverage

Multiple application of classify allows an even more refined

test-case monitoring:

prop_InsertOrdered x xs = ordered xs =>

classify (null xs) "empty lists" $

classify (length xs == 1) "unit lists" $

ordered (insert x xs)

This yields:

Main>quickCheck prop_InsertOrdered

OK, passed 100 tests.

42% unit lists.

40% empty lists.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 66

Test-Data Monitoring / Test Coverage

Going beyond, the combinator collect allows to keep track on

all test cases:

prop_InsertOrdered x xs = ordered xs =>

collect (length xs) $ ordered (insert x xs)

This yields a histogram of values:

Main>quickCheck prop_InsertOrdered

OK, passed 100 tests.

46% 0.

34% 1.

15% 2.

5% 3.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 67

Notes on the Implementation of Quick-
Check 1(2)

class Testable a where

property :: a -> Property

newtype Property = Prop (Gen Result)

instance Testable Bool where

property b = Prop (return (resultBool b))

instance (Arbitrary a, Show a, Testable b) =>

Testable (a->b) where

property f = forAll arbitrary f

instance Testable Property where

property p = p

quickCheck :: Testable a => a -> IO ()

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 68

Notes on the Implementation of Quick-
Check 2(2)

QuickCheck: In total about 300 lines of code.

For further details check out:

• Koen Claessen, John Hughes. QuickCheck: A Lightweight

Tool for Random Testing of Haskell Programs. In Procee-

dings of the ACM SIGPLAN 2000 International Conference

on Functional Programming (ICFP 2000), 268 - 279, 2000.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 69

Conclusions 1(3)

Generally, it holds:

• Formalizing specifications is meaningful (even without a

subsequent formal proof of soundness)

Experience shows:

• Specifications provided are often (initially) faulty themsel-

ves

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 70

Conclusions 2(3)

QuickCheck is an effective tool...

• to disclose bugs in

– programs and

– specifications

with little effort.

• to reduce

– test costs

– while simultaneously testing more thoroughly

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 71

Conclusions 3(3)

Investigations of Richard Hamlet in...

Richard Hamlet. Random Testing. In J. Marciniak (Ed.), En-
cyclopedia of Software Engineering, Wiley, 970-978, 1994

suggest that

• a high number of test cases yields meaningful results even
in the case of random testing

In principle, it holds:

• The generation of random test cases is “cheap”

Hence, there are many reasons advising...

• the routine usage of a tool like QuickCheck!

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 72

Further Reading

• Colin Runciman, Matthew Naylor, and Fredrik Lindblad.
SmallCheck and Lazy SmallCheck. In Proceedings ACM
SIGPLAN 2008 Haskell Workshop, 37 - 48, 2008.

[Freely available from http://hackage.haskell.org]

• Jan Christiansen, Sebastian Fischer. Easycheck – Test Da-
ta for Free. In Proceedings of the 9th International Sympo-
sium on Functional and Logic Programming (FLPS 2008),
LNCS 4989, 322 - 336, 2008.

• Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes,
M. Wallace. Testing and Tracing Lazy Functional Pro-
grams Using QuickCheck and Hat. In Proceedings 4th In-
ternational School on Advanced Functional Programming
(AFP 2002), LNCS 2638, 59 - 99, 2002.

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 73

Next course meetings...

We will continue in April after the Easter holiday on...

• Thursday, April 15, 2010, lecture time: 4.15 p.m. to 5.45

p.m., lecture room on the ground floor of the building

Argentinierstr. 8

• Thursday, April 22, 2010, lecture time: 4.15 p.m. to 5.45

p.m., lecture room on the ground floor of the building

Argentinierstr. 8

• Thursday, April 29, 2010, lecture time: 4.15 p.m. to 5.45

p.m., lecture room on the ground floor of the building

Argentinierstr. 8

Advanced Functional Programming (SS 2010) / Part 4 (Thu, 03/18/10) 74

