Programming with Streams

Streams = Infinite Lists

Programming with streams

- Applications
 - Streams plus lazy evaluation supports new modularization principles
 - * Generator/selector
 - * Generator/filter
 - * Generator/transformer
 - Pitfalls and Remedies
- Foundations
 - Well-definedness
 - Proving properties of programs with streams

Streams

Jargon

Stream ...synonymous to infinite list synonymous to lazy list

Streams...

- (in combination with lazy evaluation) allow to solve many problems elegantly, concisely, and efficiently
- are a source of hassle if applied inappropriately

More on this on the following slides...

Programming with Streams

The following presentation is based on...

- Chapter 14
 - Paul Hudak. The Haskell School of Expression Learning Functional Programming through Multimedia, Cambridge University Press, 2000.
- Chapter 17
 Simon Thompson. Haskell The Craft of Functional Programming, Addison-Wesley, 2nd edition, 1999.

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

_

Streams

Convention

Instead of introducing a polymorphic data type Stream...

```
data Stream a = a :* Stream a
```

...we will model streams by ordinary lists waiving the usage of the empty list [].

This is motivated by:

• Convenience/Adequacy ...many pre-defined (polymorphic) functions on lists can be reused this way, which otherwise would have to be defined on the new data type Stream

Some Examples of Streams

• Built-in Streams in Haskell

```
[3 ..] = [3,4,5,6,7,...
[3,5 ..] = [3,5,7,9,11,...
```

User-defined recursive lists (Streams)

The infinite lists of "twos"

```
2,2,2,...
```

In Haskell this can be realized...

- using list comprehension: [2...]
- as a recursive stream: twos = 2 : twos
 Illustration

```
twos => 2 : twos
=> 2 : 2 : twos
=> 2 : 2 : 2 : twos
=> ...
```

...twos represents an infinite list; or more concisely, a stream

Reminder

...whenever there is a terminating reduction sequence of an expression, then normal-order reduction terminates (Church/Rosser-Theorem)

Normal-order reduction corresponds to leftmost-outermost evaluation

Note: Considering the function...

```
ignore :: a -> b -> b ignore a b = b
```

in both expressions

- ignore twos 42
- twos 'ignore' 42

the leftmost-outermost operator is given by the call ignore.

Functions on Streams

```
head :: [a] -> a
head (x:_) = x

Application

head twos
    => head (2 : twos)
    => 2
```

Note: Normal-order reduction (resp. its efficient implementation variant *lazy evaluation*) ensures termination (in this example). I.e., the infinite sequence of reductions...

```
head twos
=> head (2 : twos)
=> head (2 : 2 : twos)
=> head (2 : 2 : 2 : twos)
=> ...
```

...is thus excluded.

Functions on Streams: More Examples

Further Examples on Streams

• User-defined recursive lists/streams

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

Prime Numbers: The Sieve of Eratosthenes 1(4)

Intuition

- 1. Write down the natural numbers starting at 2.
- 2. The smallest number not yet cancelled is a prime number. Cancel all multiples of this number
- 3. Repeat Step 2 with the smallest number not yet cancelled.

Illustration

```
Step 1: 2 3 4 5 6 7 8 9 10 11 12 13...

Step 2: 2 3 5 7 9 11 13...

("with 2")

Step 2: 2 3 5 7 11 13...

("with 3")
```

Further Examples

• The powers of an integer...

```
powers :: Int -> [Int]
powers n = [n^x | x <- [0 ..]]</pre>
```

• More general: The prelude function iterate...

```
iterate :: (a \rightarrow a) \rightarrow a \rightarrow [a]
iterate f x = x : iterate f (f x)
```

The function iterate yields the stream

```
[x, f x, (f . f) x, (f . f . f) x, ...
```

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

10

Prime Numbers: The Sieve of Eratosthenes 2(4)

The sequence of prime numbers...

```
primes :: [Int]
primes = sieve [2 ..]

sieve :: [Int] -> [Int]
sieve (x:xs) = x : sieve [ y | y <- xs, mod y x > 0 ]
```

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

Prime Numbers: The Sieve of Eratosthenes 3(4)

Illustration ...by manual evaluation

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

13

Random Numbers 1(2)

Generating a sequence of (pseudo-) random numbers...

```
nextRandNum :: Int -> Int
nextRandNum n = (multiplier*n + increment) 'mod' modulus
randomSequence :: Int -> [Int]
randomSequence = iterate nextRandNum
```

Choosing

```
      seed
      = 17489
      increment
      = 13849

      multiplier
      = 25173
      modulus
      = 65536
```

we obtain the following sequence of (pseudo-) random numbers

```
[17489, 59134, 9327, 52468, 43805, 8378,...
```

ranging from 0 to 65536, where all numbers of this interval occur with the same frequency.

Prime Numbers: The Sieve of Eratosthenes 4(4)

Application

```
member primes 7 ...yields "True"
but

member primes 6 ...does not terminate!
where

member :: [a] -> a -> Bool
member []    y = False
member (x:xs) y = (x==y) || member xs y
```

• Question(s): Why? How can primes be embedded into a context allowing us to detect if a specific argument is prime or not? (Homework)

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

14

Random Numbers 2(2)

Often one needs to have random numbers within a range p to q inclusive, p < q.

This can be achieved by scaling the sequence.

```
scale :: Float -> Float -> [Int] -> [Float]
scale p q randSeq = map (f p q) randSeq
    where f :: Float -> Float -> Int -> Float
    f p q n = p + ((n * (q-p)) / (modulus-1))
```

Application

scale 42.0 51.0 randomSequence

Principles of Modularization

...related to streams

• The *Generator/Selector* Principle ...e.g. Computing the square root, the Fibonacci numbers

17

19

• The *Generator/Transformer* Principle ...e.g. "scaling" random numbers

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

The Fibonacci Numbers 1(4)

We learned already...

```
fib :: Integer -> Integer
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
```

...that a naive implementation as above is inacceptably inefficient.

More on Recursive Streams

Reminder ... the sequence of Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... is defined by
$$fib: \mathbb{IN} \to \mathbb{IN}$$

$$fib(n) =_{df} \left\{ \begin{array}{ll} 1 & \text{if } n = 0 \ \lor \ n = 1 \\ fib(n-1) + fib(n-2) & \text{otherwise} \end{array} \right.$$

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

18

The Fibonacci Numbers 2(4)

Illustration ...by manual evaluation

The Fibonacci Numbers 3(4)

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

21

23

Reminder: Complexity 1(3)

See P. Pepper. Funktionale Programmierung in OPAL, ML, Haskell und Gofer, 2nd Edition (In German), 2003, Chapter 11.

Reminder ... O Notation

• Let f be a function $f: \alpha \to IR^+$ with some data type α as domain and the set of positive real numbers as range. Then the class $\mathcal{O}(f)$ denotes the set of all functions which "grow slower" than f:

$$\mathcal{O}(f) =_{df} \{ h \mid h(n) \le c * f(n) \text{ for some positive }$$

constant c and all $n \ge N_0 \}$

The Fibonacci Numbers 4(4)

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

22

Reminder: Complexity 2(3)

Examples of common cost functions...

Code	Costs	Intuition: input a thousandfold as large
		means
$\mathcal{O}(c)$	constant	equal effort
$\mathcal{O}(\log n)$	logarithmic	only tenfold effort
$\mathcal{O}(n)$	linear	also a thousandfold effort
$\mathcal{O}(n \log n)$	" $n \log n$ "	tenthousandfold effort
$\mathcal{O}(n^2)$	quadratic	millionfold effort
$\mathcal{O}(n^3)$	cubic	billiardfold effort
$\mathcal{O}(n^c)$	polynomial	gigantic much effort (for big c)
$\mathcal{O}(2^n)$	exponential	hopeless

Reminder: Complexity 3(3)

...and the impact of growing inputs in practice in hard numbers:

n	linear	quadratic	cubic	exponential
1	$1~\mu$ s	$1~\mu$ S	$1~\mu$ s	2 μs
10	10 μ s	100 μ s	1 ms	1 ms
20	$20~\mu s$	400 μ s	8 ms	1 s
30	30 μ s	900 μ s	27 ms	18 min
40	40 μ s	2 ms	64 ms	13 days
50	$50~\mu s$	3 ms	125 ms	36 years
60	60 μ s	4 ms	216 ms	36 560 years
100	$100~\mu s$	10 ms	1 sec	4 * 10 ¹⁶ years
1000	1 ms	1 sec	17 min	very, very long

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

25

Remedy: Recursive Streams 2(4)

Remedy: Recursive Streams 1(4)

Idea

```
1 1 2 3 5 8 13 21... Sequence of Fibonacci Numbers
1 2 3 5 8 13 21 34... Remainder of the sequ. of F. Numbers
2 3 5 8 13 21 34 55... Remain. of the rem. of the seq. of F
```

Efficient implementation as a recursive stream

```
fibs :: [Integer]
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
where

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _ _ _ = []
```

...reminds to Münchhausen's famous trick of "sich am eigenen Schopfe aus dem Sumpfe ziehen"

Advanced functional Programming (SS 2010) / Part 2 (Thu. 03/11/10)

Remedy: Recursive Streams 3(4)

Summing up

```
fib :: Integer -> Integer
fib n = last take n fibs

or even yet shorter
fib n = fibs!!n
```

Note:

Also in this example...
 Application of the Generator/Selector Principle

Remedy: Recursive Streams 4(4)

Clou

wav!

...lazy evaluation: ...common subexpressions will not be computed multiple times!

Illustration 2(3)

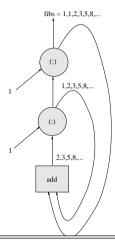
Illustration 1(3)

Illustration 3(3)

Alternatively: Stream Diagrams

Problems on streams can often be considered and visualized as processes.

Considering the sequence of Fibonacci Numbers as an example...



Client/Server Application (Cont'd. 1(2))

Example

```
reqs => client resps
=> 1 : resps
=> 1 : server reqs

=> // Introducing abbreviations
    1 : tr
    where tr = server reqs
=> 1 : tr
    where tr = 2 : server tr
=> 1 : tr
    where tr = 2 : tr2
    where tr2 = server tr
```

Another Example: A Client/Server Application

Interaction of a server and a client (e.g. Web server/Web browser)

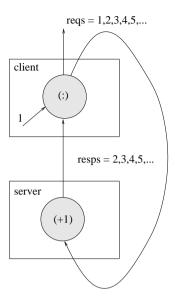
Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

34

Client/Server Application (Cont'd. 2(2))

35

The Client/Server Example as a Stream Diagram



Lazy Patterns 1(3)

Ad-hoc Remedy

- Replacing of pattern matching by an explicit usage of the selector function head
- Moving the conditional inside of the list

Overcoming Hassle... Lazy Patterns

Suppose, the client wants to check the first response...

The problem:

Deadlock! Neither client nor server can be unfolded! Pattern matching is too "eager."

Lazy Patterns 2(3)

Systematic remedy ...lazy patterns

- ullet Syntax: ...preceding tilde (\sim)
- Effect: ...like using an explicit selector function; pattern-matching is defered

Note ...even when using a lazy pattern the conditional must still be moved. But: selector functions are avoided!

Lazy Patterns 3(3)

Illustration ...by manual evaluation

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

41

43

Overcoming Hassle... Memo Tables

Note ...Dividing/Recognizing of common structures is limited

The below variant of the Fibonacci function...

```
fibsFn :: () -> [Integer]
fibsFn x = 1 : 1 : zipWith (+) (fibsFn ()) (tail (fibsFn ()))
...exposes again exponential run-time and storage behaviour!
Key word:
```

• Space (Memory) Leak ...the memory space is consumed so fast that the performance of the program is significantly impacted

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

42

Illustration

The equality of tf and tail(fibsFn()) remains undetected. Hence, the following simplification is not done

```
=> 1 : tf
where tf = 1 : add (fibsFn ()) tf
```

In a special case like here, this is possible, but not in general!

Memo Functions 1(4)

Memo functions (engl. Memoization)....

- The concept goes back to Donald Michie. ""Memo" Functions and Machine Learning", Nature, 218, 19-22, 1968.
- *Idea*: Replace, where possible, the computation of a function according to its body by looking up its value in a table.

Memo Functions 2(4)

- Hence: A memo function is an ordinary function, but stores for some or all arguments it has been applied to the corresponding results → Memo Tables.
- Utility: Memo Tables allow to replace recomputation by table look-up
 Correctness: Referential transparency of functional programming languages

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

45

Memo Functions 4(4)

Conclusion...

- Memo Functions: Are meant to replace costly to compute functions by a table look-up
- Example $(2^0, 2^1, 2^2, 2^3, \ldots)$:

```
power 0 = 1
power i = power (i-1) + power (i-1)
```

Looking-up the result of the second call instead of recomputing it requires only 1+n calls of power instead of $1+2^n$ \rightarrow significant performance gain

Memo Functions 3(4)

Computing the Fibonacci Numbers using a memo function:

Preparation:

```
flist = [f x | x < [0 ...]]
```

...where f is a function on integers. *Application*: Each call of f is replaced by a look-up in flist.

Considering the Fibonacci numbers as example:

```
flist = [ fib x | x <- [0 ..] ]
fib 0 = 1
fib 1 = 1
fib n = flist !! (n-1) + flist !! (n-2)
instead of...
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)</pre>
```

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

46

Memo Tables 1(2)

Memo functions/tables

```
memo :: (a -> b) -> (a -> b)
```

are used such that the following equality holds:

```
memo f x = f x
```

Key word: Referential transparency (in particular, absence of side effects!)

Memo Tables 2(2)

The function memo...

- essentially the identity on functions but...
- memo keeps track on the arguments, it has been applied to and the corresponding results ...motto: look-up a result which has been computed previously instead of recomputing it!
- Memo functions are not part of the Haskell standard, but there are nonstandard libraries
- Important design decision when implementing Memo functions: ...how many argument/result pairs shall be traced? (e.g. memo1 for one argument/result pair)

In the example

Summary

What are the reasons advocating the usage of streams (and lazy evaluation)?

- *Higher abstraction* ...limitations to finite lists are often more complex, while simultaneously unnatural
- Modularization ...together with lazy evaluation as evaluation strategy elegant possibilities for modularization become possible. Keywords are the *Generator/Selector* and the *Generator/Transformer* principle.

More on Memo Functions...

...and their implementation

For example in...

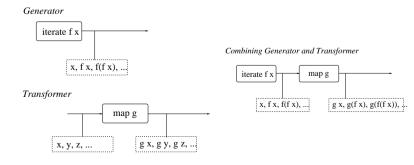
Chapter 19
 Anthony J. Field, Peter G. Harrison. Functional Programming, Addison-Wesley, 1988.

Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)

50

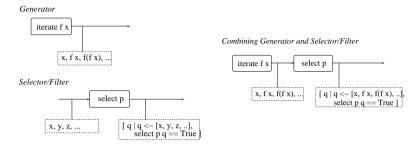
Generator/Transformer Principle

Illustration...



Generator/Selector Principle

Illustration...



Advanced functional Programming (SS 2010) / Part 2 (Thu, 03/11/10)