
Why Functional Programming Matters

Starting softly with a position statement by John Hughes, ba-

sed on an internal 1984 memo at Chalmers Univ., slightly re-

vised published in:

• Computer Journal 32(2), 98-107, 1989

• Research Topics in Functional Programming. D. Turner (Hrsg.), Ad-
dison Wesley, 1990

• http://www.cs.chalmers.se/∼rjmh/Papers/whyfp.html

“...an attempt to demonstrate to the “real world” that func-

tional programming is vitally important, and also to help func-

tional programmers exploit its advantages to the full by making

it clear what those advantages are.”
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Introductory Statement

As a matter of fact...

• Software is becoming more and more complex

• Hence: Structuring software well becomes paramount

• Well-structured software is more easily to write, to debug,
and to be re-used

Claim

• Conventional languages place conceptual limits on the way
problems can be modularized

• Functional languages push these limits back

• Fundamental: Higher-order functions and lazy evaluation

Next: Providing evidence for this claim...

Typical Reasoning 1(4)

...functional programming owes its name to the facts that

• programs are composed of only functions

– the main program is itself a function

– it accepts the program’s input as its arguments and

delivers the program’s output as its result

– it is defined in terms of other functions, which themsel-

ves are defined in terms of still more functions (even-

tually by primitive functions)
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Typical Reasoning 2(4)

Advantages and characteristics of functional programming. A
common summary:

Functional programs are...

• free of assignments and side-effects

• function calls have no effect except of computing their result

• functional programs are thus free of a major source of bugs

• the evaluation order of expressions is irrelevant, expressions can be
evaluated any time

• programmers are free from specifying the control flow explicitly

• expressions can be replaced by their value and vice versa, programs
are referentially transparent

• functional programs are thus easier to cope with mathematically
(e.g. for proving their correctness)
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Typical Reasoning 3(4)

...the standard list of characteristics and advantages of func-

tional programming yields

• essentially a negative “is-not”-characterization

– “It says a lot about what functional programming is

not (it has no assignments, no side effects, no explict

specification of flow of control) but not much about

what it is.”
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Typical Reasoning 4(4)

Aren’t there any hard facts providing evidence for “real” ad-
vantages?

Yes, there are. Often heard e.g.:

• Functional programs are

– a magnitude of order smaller than conventional pro-
grams

– functional programmers are thus much more productive

But why? Is it justifiable by the advantages of the standard ca-
talogue? By dropping features? Hardly. This is not convincing.

Reminds more to a medieval monk who denies himself the
pleasures of life in the hope of getting virtuous...
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Conclusion

• The standard catalogue is not satisfying

– It does not provide help in exploiting the power of func-
tional languages

∗ Programs cannot be written which are particularly
lacking in assignment statements, or particularly refe-
rentially transparent

– It does not provide a yardstick of program quality, thus
no model to strive for

• We need a positive characterization of the vital nature of

– functional programming, of its strengths

– what makes a “good” functional program, of what a
functional programmer should strive for
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Towards a Positive Characterization...
1(2)

Analogue: Structured vs. non-structured programming

Structured programs are

• free of goto-statements (“goto considered harmful”)

• blocks in structured programs are free of multiple entries

and exits

• easier to mathematically cope with than unstructured pro-

grams

Essentially this is also a negative “is-not”-characterization...
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Towards... 2(2)

Conceptually more important:

Structured programs are...

• designed modularly in contrast to non-structured programs

• Structured programming is more efficient/productive for this reason

– Small modules are easier and faster to write and to maintain

– Re-use becomes easier

– Modules can be tested independently

Note: Dropping goto-statements is not an essential source of productivity
gain.

• Absence of gotos supports “programming in the small”

• Modularity supports “programming in the large”
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Thesis

• The expressiveness of a language that supports modular
design depends much on the power of the concepts and
primitives allowing to combine solutions of subproblems to
the solution of the overall problem (keyword: glue; exam-
ple: making of a chair)

• Functional programming provides two new, especially po-
werful glues:

1. Higher-order functions (functionals)

2. Lazy evaluation

They offer conceptually new opportunities for modulariza-
tion and re-use (beyond the more technical ones of lexical
scoping, separate compilation, etc.), and make them more
easily to achieve.

• Modularization (smaller, simpler, more general) is the gui-
deline, which should be followed by functional programmers
in the course of programming

In the Following

• I Glueing functions together

; The clou: Higher-order functions

• II Glueing programs together

; The clou: Lazy evaluation
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I Glueing Functions Together

Syntax in the flavour of Miranda (TM):

• Lists

listof X ::= nil | cons X (listof X)

• Abbreviations for convenience

[] means nil

[1] means cons 1 nil

[1,2,3] means cons 1 (cons 2 (cons 3 nil)))

Motivating example: Adding the elements of a list

sum nil = 0

sum (cons num list) = num + sum list
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Observation

Only the framed parts are specific to computing a sum...

+---+

sum nil = | 0 |

+---+

+---+

sum (cons num list) = num | + | sum list

+---+

...i.e., computing a sum of values can be modularly decompo-

sed by properly combining a general recursion pattern and a

set of more specific operations (see framed parts above).
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Realization

1. Adding the elements of a list

sum = reduce add 0

where

add x y = x+y

...which reveals the definition of reduce almost immediately:

(reduce f x) nil = x

(reduce f x) (cons a l) = f a ((reduce f x) l)

Recall

+---+
sum nil = | 0 |

+---+
+---+

sum (cons num list) = num | + | sum list
+---+
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Immediate Benefit – Re-use

Without any further programming effort we obtain implemen-

tations for...

2. Computing the product of the elements of a list

product = reduce multiply 1

where multiply x y = x*y

3. Test, if some element of a list equals “true”

anytrue = reduce or false

4. Test, if all elements of a list equal “true”

alltrue = reduce and true
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Intuition

The call (reduce f a) can be understood such that in a list of
elements all occurrences of

• cons are replaced by f

• nil by a

Examples:

reduce add 0:

cons 1 (cons 2 (cons 3 nil))

--> add 1 (add 2 (add 3 0)) = 6

reduce multiply 1:

cons 1 (cons 2 (cons 3 nil))

--> multiply 1 (multiply 2 (multiply 3 1)) = 6

Advanced Functional Programming (SS 2010) / Part 1 (Thu, 03/04/10) 16



More Applications 1(5)

Observation: reduce cons nil copies a list of elements

This allows:

5. Concatenation of lists

append a b = reduce cons b a

Example:

append [1,2] [3,4] = reduce cons [3,4] [1,2]

= (reduce cons [3,4]) (cons 1 (cons 2 nil))

= { replacing cons by cons and nil by [3,4] }

cons 1 (cons 2 [3,4])

= cons 1 (cons 2 (cons 3 (cons 4 nil)))

= [1,2,3,4]
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More Applications 2(5)

6. Doubling each element of a list

doubleall = reduce doubleandcons nil

where doubleandcons num list = cons (2*num) list
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More Applications 3(5)

The function doubleandcons can be modularized further...

• First step

doubleandcons = fandcons double

where double n = 2*n

fandcons f el list = cons (f el) list

• Second step

fandcons f = cons . f

where “.” denotes the composition of functions:
(f . g) h = f (g h)

For checking correctness consider...

fandcons f el = (cons . f) el
= cons (f el)

which yields as desired:

fandcons f el list = cons (f el) list

More Applications 4(5)

Eventually, we thus obtain:

6a. Doubling each element of a list

doubleall = reduce (cons . double) nil

Another step of modularization leads us to map

6b. Doubling each element of a list

doubleall = map double

map f = reduce (cons . f ) nil

where map applies any function f to all the elements of a list.
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More Applications 5(5)

After these preparative steps it is possible just as well:

7. Adding the elements of a matrix

summatrix = sum . map sum

Homework: Think about how summatrix works...
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1st Intermediate Conclusion

By decomposing (modularizing) and representing a simple

function (sum in the example) as a combination of

• a higher-order function and

• some simple specific functions as arguments

we obtained a program frame (reduce), which allows us to

implement many functions on lists without any further pro-

gramming effort!
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Generalizations to more complex data
structures 1(2)

Trees

treeof X ::= node X (listof (treeof X))

Example:

node 1 1

(cons (node 2 nil) / \

(cons (node 3 2 3

(cons (node 4 nil) nil)) |

nil)) 4
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Generalizations... 2(2)

Analogously to reduce on lists we introduce a functional redtree
on trees:

redtree f g a (node label subtrees) =

f label (redtree’ f g a subtrees)

where

redtree’ f g a (cons subtree rest) =

g (redtree f g a subtree) (redtree’ f g a rest)

redtree’ f g a nil = a

Note, redtree takes 3 arguments (f, g, a)

• The first one to replace node with

• The second one to replace cons with

• The third one to replace nil with
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Applications 1(3)

1. Adding the labels of the leaves of a tree

sumtree = redtree add add 0

Using the tree introduced previously, we obtain:

add 1

(add (add 2 0)

(add (add 3

(add (add 4 0) 0))

0))

= 10
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Applications 2(3)

2. Generating a list of all labels occurring in a tree

labels = redtree cons append nil

Illustrated by means of an example:

cons 1

(append (cons 2 nil)

(append (cons 3

(append (cons 4 nil) nil))

nil))

= [1,2,3,4]
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Applications 3(3)

3. A function maptree on trees replicating the function map on

lists

maptree f = redtree (node . f) cons nil
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2nd Intermediate Conclusion 1(2)

• The elegance of the preceding examples is a consequence

of combining

– a higher-order function and

– a specific specializing function

• Once the higher order function is implemented, lots of fur-

ther functions can be implemented almost without any fur-

ther effort!

Advanced Functional Programming (SS 2010) / Part 1 (Thu, 03/04/10) 28



2nd Intermediate Conclusion 2(2)

• Lesson learnt: Whenever a new data type is introduced,

implement first a higher-order function allowing to pro-

cess values of this type (e.g., visiting each component of

a structured data value such as nodes in a graph or tree).

• Benefits: Manipulating elements of this data type beco-

mes easy and knowledge about this data type is locally

concentrated.

• Look&feel: Whenever new data structures demand new

control structures, then these control structures can easily

be added following the methodology used above (to some

extent this resembles the concepts known from conventio-

nal extensible languages).
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Reminder

Thesis

• The expressiveness of a language that supports modular design de-
pends much on the power of the concepts and primitives allowing to
combine solutions of subproblems to the solution of the overall problem
(keyword: glue; example: making of a chair)

• Functional programming provides two new, especially powerful glues:

1. Higher-order functions (functionals)

2. Lazy evaluation

They offer conceptually new opportunities for modularization and re-
use (beyond the more technical ones of lexical scoping, separate com-
pilation, etc.), and make them more easily to achieve.

• Modularization (smaller, simpler, more general) is the guideline, which
should be followed by functional programmers in the course of pro-
gramming
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Reminder (Cont’d)

We did talk about...

• Higher-order functions as glue for glueing functions to-

gether

We still have to talk about...

• Lazy evaluation as glue for glueing programs together
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II Glueing Programs Together

Recall: A complete functional program is a function from its
input to its output.

If f and g are (such) programs, then also

g . f

is a program. Applied to the input input, it yields the output

g (f input)

• Possible implementation using conventional glue:
communication via files

– Possible problems

∗ Temporary files are often too large

∗ f might not terminate
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Functional Glue

Lazy evaluation allows a more elegant approach:

• Decomposing a problem into a

– generator and a

– selector

component, which are then glued together.

Intuition:

• The generator component “runs as little as possible” until

it is terminated by the selector component.
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Example 1: Computing Square Roots

Computing Square Roots (according to Newton-Raphson)

Given: N Sought: squareRoot(N)

Iteration formula:

a(n+1) = (a(n) + N/a(n)) / 2

Justification: If the approximations converge to some limit a,
we have:

a = (a + N/a) / 2

=> 2a = a + N/a

a = N/a

a*a = N

a = squareRoot(N)

I.e., a stores the value of the square root of N.
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Compare this...

...with a typical imperative (Fortran-) implementation:

C N is called ZN here so that it has the right type

X = A0

Y = A0 + 2.*EPS

C The value of Y does not matter so long as ABS(X-Y).GT.EPS

100 IF (ABS(X-Y).LE.EPS) GOTO 200

Y = X

X = (X + ZN/X) / 2.

GOTO 100

200 CONTINUE

C The square root of ZN is now in X

; essentially monolithic, not decomposable.
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The Functional Version 1(4)

Computing the next approximation from the previous one:

next N x = (x + N/x) / 2

Denoting this function f, we are interested in computing the

sequence of approximations:

[a0, f a0, f(f a0), f(f(f a0)),...]
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The Functional Version 2(4)

The function repeat computes this (possibly infinite) sequence

of approximations. It is the generator component in this ex-

ample:

Generator:

repeat f a = cons a (repeat f (f a))

Applying repeat to the arguments next N and a0 yields the

desired sequence of approximations:

repeat (next N) a0
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The Functional Version 3(4)

Note: The evaluation of

repeat (next N) a0

does not terminate!

Remedy: Computing squareroot N up to a given tolerance eps

> 0. Crucial: The selector component implemented by:

Selector:

within eps (cons a (cons b rest))

= b, if abs(a-b) <= eps

= within eps (cons b rest), otherwise

Still to do: Combining the components/modules:

sqrt a0 eps N = within eps (repeat (next N) a0)

; We are done.

The Functional Version 4(4)

Summing up:

• repeat... generator component:

[a0, f a0, f(f a0), f(f(f a0)), ...]

...potentially infinite, no limit on the length

• within... selector component:

fi a0 with abs(fi a0 - fi+1 a0) <= eps

...lazy evaluation ensures that the selector function

is applied eventually ⇒ termination!

Note: Intuitively, lazy evaluation ensures that both programs

(generator and selector) run strictly synchronized.
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Towards the Re-Use of Modules

Next, we want to provide evidence that

• generator

• selector

can indeed be considered modules that can easily be re-used.

We are going to start with the re-use of the module generator...
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Evidence of Modularity: Variants

Consider another criterion for termination:

• ...instead of awaiting the difference of successive appro-
ximations to approach zero (<= eps), await their ratio to
approach one (<= 1+eps)

New Selector:

relative eps (cons a (cons b rest))

= b, if abs(a-b) <= eps * abs b

= relative eps (cons b rest), otherwise

Still to do: (re-)combining of the components/modules:

relativesqrt a0 eps N = relative eps (repeat (next N) a0)

; We are done.
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Note the Re-Use

...of the module generator in the previous example:

• The generator, i.e., the “module” computing the sequence

of approximations has been re-used unchanged.

Next, we want to re-use the module selector...
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Example 2: Numerical Integration

Numerical Integration

Given: A real valued function f of one real argument; two end-

points a und b of an interval

Sought: The area under f between a and b

Naive Implementation:

...supposed that the function f is roughly linear between a und b.

easyintegrate f a b = (f a + f b) * (b-a) / 2

...sufficiently precise at most for very small intervals.
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Illustration

a

b

f(x) dx = A+B = (f(a) + f(b))*(b−a) / 2

a b

A

A

B
B

}

}
f(a)

f(b)

f

x

y }b−a
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Refinements 1(4)

Idea

• Halve the interval, compute the areas for both subintervals
according to the previous formula, and add the two results

• Continue the previous step repeatedly

The function integrate implements this strategy:

Generator:

integrate f a b = cons (easyintegrate f a b)

map addpair (zip (integrate f a mid)

(integrate f mid b)))

where mid = (a+b)/2

Reminder:

zip (cons a s) (cons b t) = cons (pair a b) (zip s t)
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Refinements 2(4)

• integrate is sound but inefficient (redundant computations

of f a, f b, and f mid

The following version of integrate is free of this deficiency

integrate f a b = integ f a b (f a) (f b)

integ f a b fa fb = cons ((fa+fb)*(b-a)/2)

(map addpair (zip (integ f a m fa fm)

(integ f m b fm fb)))

where m = (a+b)/2

fm = f m
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Refinements 3(4)

Apparently, the evaluation of

integrate f a b

does not terminate!

Remedy: ...computing integrate f a b up to some

limit eps > 0.

Two Selectors:

Variant A: within eps (integrate f a b)

Variant B: relative eps (integrate f a b)
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Refinements 4(4)

Summing up...

• Generator component:

integrate

...potentially infinite, no limit on the length

• Selector component:

within, relative

...lazy evaluation ensures that the selector function

is applied eventually ⇒ termination!
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Note the Re-Use

...of the module selector in the previous example:

• The selector, i.e., the “module” picking the solution from

the stream of approximate solutions has been re-used un-

changed.

Again, lazy evaluation is the key to synchronize the generator

and selector module!
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Example 3: Numerical Differentiation

Numerical Differentiation

Given: A real valued function f of one real argument; a point

x

Sought: The slope of f at point x

Naive Implementation:

...supposed that the function f between x and x+h does not “curve much”

easydiff f x h = (f (x+h) - f x) / h

...sufficiently precise at most for very small values of h.
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Refinements

Generate a sequence of approximations getting successively

“better”:

Generator:

differentiate h0 f x = map (easydiff f x) (repeat halve h0)

halve x = x/2

Select a sufficiently precise approximation:

Selector:

within esp (differentiate h0 f x)

Implementing the selector: Homework
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Conclusion 1(4)

The composition pattern, which in fact is common to all three

examples becomes again obvious. It consists of

• generator (usually looping!) and

• selector (ensuring termination thanks to lazy evaluation!)

Advanced Functional Programming (SS 2010) / Part 1 (Thu, 03/04/10) 52



Conclusion 2(4)

Thesis

• ...modularity is the key to programming in the large

Observation

• ...just modules (i.e., the capability of decomposing a pro-

blem) do not suffice

• ...the benefit of modularly decomposing a problem into

subproblems depends much on the capabilities for glueing

the modules together

• ...the availability of proper glue is essential!
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Conclusion 3(4)

Fact

• Functional programming offers two new kinds of glue

– Higher-order functions (glueing functions)

– Lazy evaluation (glueing programs)

• Higher-order functions and lazy evaluation allow substanti-
ally new exciting modular decompositions of problems (by
offering elegant composition means) as here given evidence
by an array of simple, yet impressive examples

• In essence, it is the superior glue, which makes functional
programs to be written so concisely and elegantly (not the
absence of assignments, etc.)
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Conclusion 4(4)

Guideline

• Functional programmers should strive for adequate modu-

larization and generalization

– Especially, if a portion of a program looks ugly or ap-

pears to be too complex

• Functional programmers should expect that

– higher-order functions and

– lazy evaluation

are the tools for achieving this
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Lazy vs. Eager Evaluation

The final conclusion of John Hughes:

• In view of the previous arguments...

– The benefits of lazy evaluation as a glue are so evi-

dent that lazy evaluation is too important to make it a

second-class citizen.

– Lazy evaluation is possibly the most powerful glue func-

tional programming has to offer.

– Access to such a powerful means should not airily be

dropped.
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Worthwhile too...

...studying the following papers:

• Paul Hudak. Conception, Evolution, and Application of
Functional Programming Languages. ACM Computing
Surveys, Vol. 21, No. 3, 359-411, 1989.

• Phil Wadler. The Essence of Functional Programming. In
Conference Record of the 19th Annual Symposium on Prin-
ciples of Programming Languages (POPL’92), 1-14, 1992.

• Simon Peyton Jones. Wearing the Hair Shirt – A Retro-
spective on Haskell. Invited Keynote Presentation at the
30th Annual Symposium on Principles of Programming
Languages (POPL’03), 2003.
Slides: http://research.microsoft.com/Users/simonpj/

papers/haskell-retrospective/index.html
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Next course meeting...

• Thu, 11 March 2010, 4.15 p.m. to 5.45 p.m., lecture room

on the groundfloor of the Institutsgebäude, Argentinier-

str. 8
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