
Assignment 6

Advanced functional Programming

Topic: Parsing – Lexical and Syntactical Analysis

Issued on: 05/07/2009, due date: 05/21/2009

For this assignment a Haskell script named AssFFP6.hs shall be writ-
ten offering functions which solve the problems described below. This file
AssFFP6.hs shall be stored in the home directory of your individual ac-
count (not of your group account), as usual on the top most level. Com-
ment your programs meaningfully. Use constants and auxiliary functions,
where appropriate.

Consider the programming language Repeat, whose programs are cha-
racterized by the following grammar:

Prog ::= begin Stmt end

Stmt ::= AssStmt | IfStmt | RepeatStmt | CompStmt

AssStmt ::= Idf := AExpr

IfStmt ::= if Bexpr then Stmt else Stmt fi

RepeatStmt ::= repeat Stmt until Bexpr taeper

CompStmt ::= (Stmt ; Stmt)

We assume that Idf denotes an arbitrary identifier and that each identifier
is a non-empty sequence of lower case and upper case letters and digits
starting with a letter. The set of arithmetic and Boolean expressions is
given by the following grammar for expressions.

Expr ::= AExpr | Bexpr

AExpr ::= Term | AExpr Aop Term

Term ::= Factor | Term Mop Factor

Factor ::= Opd | (AExpr)

Opd ::= Numeral | Idf

Aop ::= + | -

Mop ::= * | /

Bexpr ::= (Aexpr Relop Aexpr)

Relop ::= = | /= | > | <

We assume that Numeral denotes an unsigned decimal number (i.e., a
natural number).

• Implement

1. a combinator parser pc and

2. a monadic parser pm

If pc and pm are applied to a Repeat-program, they yield the cor-
responding sequence of tokens. Possible tokens are (where AssOp is
used to denote the assignment operator “:=”):

data Token = Id | AssOp | Num |

LeftParenth | RightParenth |

Plus | Minus | Mult | Div |

Equal | Unequal | Greater | Less |

BeginSymb | EndSymb |

IfSymb | ThenSymb | ElseSymb | FiSymb |

RepeatSymb | UntilSymb | TaeperSymb |

SemicolonSymb |

Err

deriving Show

Take care to implement in particular two functions main pc :: String

-> [Token] and main pm :: String -> [Token] allowing to test
the functioning of your parsers. The token Err shall be used by both
parsers, if the input string contains a substring, which does not corre-
spond to one of the tokens above. The remainder of the input string
shall then be discarded; err is then the last token in the result list
of the functions main pc and main pm.

