
Assignment 1

Advanced Functional Programming

Topics: Higher-order functions

Issued on: 03/12/2009, due date: 03/26/2009

For this assignment a Haskell script named AssFFP1.hs shall be writ-

ten offering functions which solve the problems described below. This file

AssFFP1.hs shall be stored in your home directory, as usual on the top

most level. Comment your programs meaningfully. Use constants and au-

xiliary functions, where appropriate.

• Higher-order functions such as map, filter, and foldl demonstrate

the usefulness of allowing functions as arguments of other functions.

As an exercise we here want to extend our portfolio of higher-order

functions by a few additional instances allowing us in the future to

conveniently deal with various variants of iteration.

To this end, develop higher-order Haskell functions for, while, repeat,

and loop with the signatures

– for :: (a -> a) -> Int -> a -> a

– while :: (a -> Bool) -> (a -> a) -> a -> a

– repeat :: (a -> a) -> (a -> Bool) -> a -> a

– loop :: (a -> a) -> (a -> Bool) -> (a -> a) -> a -> a

which shall be defined as follows:

– Applied to arguments f, n, and z, the expression for f n z shall

evaluate to fn(z), if n is positive; otherwise to z.

– Applied to arguments b, f, and z, the expression while b f z

evaluates to z, if b z evaluates to False; otherwise to while b

f (f z).

– Applied to arguments f, b, and z, the expression repeat f b z

evaluates to f z, if (b . f) z evaluates to True; otherwise to

repeat f b (f z).

– Applied to arguments f, b, g and z, the expression loop f b g

z evaluates to f z, if (b . f) z evaluates to True; otherwise to

loop f b g ((g . f) z).

Think about if you can reuse a function to implement some of the other

ones!


