
Today’s Topics

• Part I: Type Checking/Type Inference

A necessity of compilers and interpreters

• Part II: Parallelism in Functional Programming Languages

A hot research topic

• Part III: The Story of Haskell

Behind the scenes of Haskell (and Functional Program-

ming)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 1

Part I: Type Checking/Type Inference

...of central importance for implementing functional program-

ming languages like Haskell (as well as languages of other pa-

radigms)

We distinguish...

• monomorphic and

• polymorphic

type checking/type inference.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 2

Type Checking/Type Inference

Important, too, in this context...

• Overloading (as a special case of polymorphism (aka ad

hoc polymorphism))

• Type classes (such as Num, Eq, etc.)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 3

Reference

The following presentation is based on...

• Chapter 13

Simon Thompson. Haskell – The Craft of Functional Pro-

gramming, Addison-Wesley, 2nd edition, 1999.

• Chapter 5

Martin Erwig. Grundlagen funktionaler Programmierung.

Oldenbourg Verlag, 1999 (In German).

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 4

Type-Based Programming Languages

We distinguish...

• Programming languages with...

– weak (checked at run-time)

– strong (checked at compile-time)

typing

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 5

Benefits

...of using typed programming languages

• More reliable code:
...many programming flaws can be detected at compile-time; type cor-

rectness is a proof of correctness on the abstraction level of types

• More efficient code: ...no type-checks required at run-time

• More effective program development:
...Type information is additional program documentation

...the understanding, advancing and maintaining of programs gets

simpler, e.g. the search for pre-defined library functions (“is there a

library function, which removes duplicates from a list, i.e., applied to

the list [2,3,2,1,3,4] yields the result [2,3,1,4]? Search for a function

with type (Eq a) => [a] -> [a]”.)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 6

What’s it all about? 1(4)

Haskell expressions all have a defined type.

This type can be...

• monomorphic

• polymorphic

– restricted by type class constraints

...and explicitly be given as in the below examples:

’w’ :: Char -- monomorphic

flip :: (a -> b -> c) -> (b -> a -> c) -- polymorphic

elem :: Eq a => a -> [a] -> Bool -- polymorphic with

type class constraint

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 7

What’s it all about? 2(4)

Types (of expressions) can automatically be inferred by Haskell

compilers and interpreters as in the below example:

magicType = let

pair x y z = z x y

f y = pair y y

g y = f (f y)

h y = g (g y)

in h (\x->x)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 8

What’s it all about? 3(4)

The call of :t magicType in Hugs yields:

Main> :t magicType

magicType ::

((((((((a -> a) -> (a -> a) -> b) -> b) ->

(((a -> a) -> (a -> a) -> b) -> b) -> c) -> c) ->

(((((a -> a) -> (a -> a) -> b) -> b) ->

(((a -> a) -> (a -> a) -> b) -> b) -> c) -> c) -> d) -> d) ->

(((((((a -> a) -> (a -> a) -> b) -> b) -> (((a -> a) ->

(a -> a) -> b) -> b) -> c) -> c) -> (((((a -> a) ->

(a -> a) -> b) -> b) -> (((a -> a) ->

(a -> a) -> b) -> b) -> c) -> c) -> d) -> d) -> e) -> e

Quite a complex type, isn’t it?

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 9

What’s it all about? 4(4)

Central question...

• How does Hugs succeed to automatically infer this type?

The systematic investigation leads us to notions such as...

• Type analysis/-checking

• Type systems and

• Type inference

First, an informal approach, driven by examples...

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 10

Monomorphic Type Checking

We first consider a simplified situation without...

• polymorphism

Characteristic for this situation is...

• An expression has

– either a unique single type

– or no type at all (not well-typed)

Convention:
The polymorphism of polymorphic or overloaded functions is
explicitly resolved (by indexing) as in...

+_{Int} :: Int -> Int -> Int

length_{Char} :: [Char] -> Int

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 11

Type Analysis

Central idea...

• Evaluate the application context an expression is embedded

in

In the following a couple of examples for illustration...

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 12

Type Checking Expressions 1(3)

(A) Function Applications...

The context of function applications allows conclusions about
the types involved...

f must be of (function) type... e must be of type s...

s -> t s

\ /

___________ ____________/

\ /

\ /

\/ \/

f e

/\

/

/

f e must be of (result) type t...

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 13

Type Checking Expressions 2(3)

(B) Other expressions...

First, a correctly typed expression (ord ’c’ + Int 3 Int)...

Char -> Int Char
\ \
\ \
\/ \/
ord ’c’ +_{Int} 3_{Int}
/\ /\ /\
| | |
| | |
Int (Int -> Int -> Int) Int

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 14

Type Checking Expressions 3(3)

(B) Other expressions...

Second, an incorrectly typed expression (ord ’c’ + Int

3 False)...

Char -> Int Char
\ \
\ \
\/ \/
ord ’c’ +_{Int} False
/\ /\ /\
| | |
| | |
Int (Int -> Int -> Int) Bool

/\ /\ /\ /\
|_____| |____________|

| |
| |

Expected and Expected ...Int
given argument Given ...Bool
type coincide => TYPE ERROR
=> TYPE CORRECT

Type Checking Function Definitions

f :: t1 -> t2 -> ... -> tk -> t

f a1 a2 ... ak

| b1 = e1

| b2 = e2

...

| bk = ek

In type checking monomorphic function definitions, three
things have to be checked...

• Each guard bi must be of type Bool

• The result value of each expression ei must be of type t

• The pattern of each argument pi must be consistent with
the type of that formal parameter, i.e., with type ti.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 16

Consistency of Patterns 1(2)

Informally :

A pattern is consistent with a type, if it matches (some of)

the values of this type.

In detail:

• A variable is consistent with any type

• A literal is consistent with its type

• A pattern p:q is consistent with type [t], if p is consistent

with type t and q is consistent with type [t]

• ...

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 17

Consistency of Patterns 2(2)

Example:

• (42:xs) ...is consistent with [Int]

• (x:xs) ...is consistent with any type of lists

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 18

Polymorphic Type Checking 1(2)

Characteristic for the situation of polymorphic type checking...

• An expression can

– have several types (while being well-typed)

Central for algorithmically solving the polymorphic type

checking problem is...

• Constraint satisfaction

which itself is based on

• Unification

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 19

Polymorphic Type Checking 2(2)

Consider...

length :: [a] -> Int

Informal interpretation of the type

length :: [a] -> Int

An abbreviation of (the set of types)

length :: [t] -> Int

where t is some arbitrary monomorphic type; in total, it is thus
an abbreviation of the set of types

[Int] -> Int

[(Bool,Char)] -> Int

etc.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 20

Polymorphic Type Checking – Conti-
nuing the Example

In the example of...

length [’c’,’a’]

we can infer from the calling context the type...

length :: [Char] -> Int

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 21

Observation

The preceding examples allows us to conclude:

The application contexts of expressions impose...

• different constraints on the type of the expression.

This way type checking boils down to the problem, if...

• types can be determined for the various expressions such

that all constraints are met.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 22

Further Examples / Example 1

Consider:

f (x,y) = (x , [’a’ .. y])

Observation:

• f ...expects pairs as arguments, where

– 1st component: no imposed constraints

– 2nd component: y must be of type Char because of being

used in the range of an enumerated type [’a’ .. y]

Hence, we can infer the type of f:

f :: (a , Char) -> (a , [Char])

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 23

Example 2

Consider:

g (m,zs) = m + length zs

Observation:

• g ...expects pairs as arguments, where

– 1st component: m must be of a numerical type because
of being used as an operand of +

– 2nd component: zs must be of type [b] because of being
used as an argument of the function length with length

:: [b] -> Int

Hence, we can infer the type of g:

g :: (Int, [b]) -> Int

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 24

Example 3 1(2)

Consider the composition of the two preceding examples:

g . f

Observation:

• g . f ...in a composition g . f, the return value of f is

passed as to g

In this example, this means...

– Result type of f: (a , [Char])

– Argument type of g: (Int , [b])

– Required: types for a and b which satisfy the above two

constraints

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 25

Example 3 2(2)

Illustration:

g . f
/\ /\
/ \
/ \

(Int, [b]) -> Int (a , Char) -> (a , [Char])
/\ /\
\ /
\ /
\ /

The input of g /
is the output of f

Hence, we can infer the type of g . f:

g . f :: (Int, [Char]) -> Int

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 26

Unification in the case of the Example

Crucial for drawing the conclusion in the previous example is...

• Unification

Illustration:

___________________|_______________ |

		(Int,[Int])
(Bool,Char)		
		(Int,[[c]])
(c->c,Char)	(Int,[Char])	
		...
| ... | | |
| ---------------------------------------
| |
|___________________________________|

(a,[Char]) (Int,[b])

output of f input of g

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 27

Unification

Introducing terminology. We say...

• Instance of a type ...given by replacing a type variable by
a (concrete) type expression

• Common instance of two type expressions ...if the instance
is an instance of both type expressions

Unification problem...

• Search for the most general common (type) instance

In the previous example:

• The most general common type instance of (a,Char) and
(Int,[b]) is the single type (Int, [Char]).

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 28

More on Unification 1(3)

In general, unification does not lead to unique types...

Example:

(a,[a]) ([b],c)

\ /

\/ \/

([b],[[b]])

the most general common instance

Observation:

• Constraint (a,[a]) requires: the second component is a
list of elements of the type of the elements of the first
component

• Constraint ([b],c) requires: the first component is of some
list type

• Together, this implies: the most general common type in-
stance of (a,[a]) and ([b],c) is ([b],[[b]])

More on Unification 2(3)

Note:

• Instance 6= Unifier

([Bool],[[Bool]]), ([[c]],[[[c]]]) are...

– instances of ([b],[[b]])

– but no unifier: ([b],[[b]]) is not an instance of either

of them

• Unification can fail: [Int] -> [Int] and a -> [a] aren’t uni-

fiable

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 30

More on Unification 3(3)

Illustrating failure of unification in more detail...

[Int] -> [Int] a -> [a]

\ /

\ /

\/ \/

(?,?)

Unification of the...

• Argument type requires ...a must be of type [Int]

• Result type requires ...a must be of type Int

• Together ...unification fails (inconsistent constraints)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 31

Type Checking Expressions

Here... polymorphic function application

f e
/\ /\
/ \
/ \

s -> t u
| /\ /\ \
| \ / \
| \ / |
| Unification |
| of s and u |
\/ \/
s’ -> t’ s’

/\
\
\

Result type t’

Observation:

• s and u need not be equal; they only need to be unifiable

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 32

Example – map and ord

Consider...

map :: (a -> b) -> [a] -> [b]

ord :: Char -> Int

Unification of a -> b and Char -> Int yields...

map :: (Char -> Int) -> [Char] -> [Int]

Hence, we receive

map ord :: [Char] -> [Int]

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 33

Example – foldr

Reminder...

foldr f s [] = s

foldr f s (x:xs) = f x (foldr f s xs)

Application example...

foldr (+) 0 [3,5,34] = 42

...this suggests that the most general type is

foldr :: (a -> a -> a) -> a -> [a] -> a

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 34

Example – foldr 2(2)

More careful reasoning shows...

foldr :: (a -> b -> b) -> b -> [a] -> b

Illustration:

b

/

/ a

\/ /

foldr f s [] = s / b

\/ ------------

foldr f s (x:xs) = f x (foldr f s xs)

b

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 35

Type Checking Polymorphic Function
Definitions

f :: t1 -> t2 -> ... -> tk -> t

f a1 a2 ... ak

| b1 = e1

| b2 = e2

...

| bk = ek

Three things have to be checked...

• Each guard bi must be of type Bool

• The return value of each expression ei must be of a type
si, which is as least as general as type t, i.e. t must be an
instance of si

• The pattern of each argument pi must be consistent with
the type of the formal parameter, i.e., with the type ti.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 36

Typ Checking and Type Classes

Consider...

member [] y = False

member (x:xs) y = (x==y) || member xs y

In the above example, the usage of (==) forces...

member :: Eq a => [a] -> a -> Bool

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 37

Type Checking and Overloading

Consider the application of function members to e:

member e

with

e :: Ord b => [[b]]

Without further context information unification yields...

member :: [[b]] -> [b] -> Bool

Thus, we receive...

member e :: [b] -> Bool

More carefully, we have to take the contexts into account, too!

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 38

Context Analysis

(Eq [b] , Ord b)

Analysing and simplifying the contexts yields...

• Context constraints refer to type variables
instance Eq a => Eq [a] where...

...this yields (Eq b, Ord b)

• Repeat until no more instances apply

• Simplification of the context by means of the information
given by class yields...
class Eq a => Ord a where...

• Hence ...Ord b

• Summing up ...member e :: Ord b => [b] -> Bool

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 39

Summary – A Three-Stage Process

The three-stage process consists of

• Unification

• Analysis (with instances)

• Simplification

...is a typical pattern of the context-aware type analysis in

Haskell.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 40

Type Systems and Type Inference

Informally...

• Type systems are...

– logical systems, which allow us to formalize statements

of the form “exp is of type t” and to prove them by

means of the axioms and rules of the type system

• Type inference denotes...

– the process to automatically derive the type of an ex-

pression by means of the axioms and rules of a type

system

Key words: Type inference algorithm, Unification

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 41

A Typical Part of a Type Grammar

...generates the language of types

τ ::= Int|Float|Char|Bool (simple type)

| α (type variable)

| τ → τ (function type)

σ ::= τ (type)

| ∀α. σ (type binding)

We say :

• τ ...a type

• σ ...a type schema

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 42

A Typical Part of a Type System 1(2)

...associates with each (typable) expression of the language a
type of the type language

VAR
Γ ⊢ var : Γ(var)

CON
Γ ⊢ con : Γ(con)

COND
Γ ⊢ exp : Bool Γ ⊢ exp1 : τ Γ ⊢ exp2 : τ

Γ ⊢ if exp then exp1 else exp2 : τ

APP
Γ ⊢ exp : τ ′ → τ Γ ⊢ exp′ : τ ′

Γ ⊢ exp exp′ : τ

ABS
Γ[var 7→ τ ′] ⊢ exp : τ

Γ ⊢ /x->exp : τ ′ → τ

...

where Γ is a so-called type assumption.

Typical Part of a Type System 2(2)

Type assumptions are...

• partial functions, which map variables to type schemas

Here, Γ[var1 7→ τ1, . . . , varn 7→ τn] is the function, which yields

the type τi for each vari and is as Γ otherwise.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 44

The Schematic Unification Algorithm

U(α, α) = []

U(α, τ) =

{

[τ/α] if α 6∈ τ
error otherwise

U(τ, α) = U(α, τ)

U(τ1 → τ2, τ3 → τ4) = U(Uτ2, Uτ4)U

where U = U(τ1, τ3)

U(τ, τ ′) =

{

[] if τ = τ ′

error otherwise

Remarks:

• U ...(most general) unifier (essentially a substituion)

• Application of equations sequentially from top to bottom

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 45

Example on Unification/Most General
Unification

Consider... a -> (Bool,c) and Int -> b

• Unifier ...Substitution [Int/a,Float/c,(Bool,Float)/b]

• Most general unifier ...Substitution [Int/a,(Bool,c)/b]

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 46

Example on the Unification Algorithm

Task

...Unifying the type expressions a -> c and b -> Int -> a

Solution

U(a -> c,b -> Int -> a)

(mit U = U(a,b) = [b/a]) = U(Uc, U(Int -> a))U

= U(c, Int -> b)[b/a]

= [Int -> b/c][b/a]

= [Int -> b/c,b/a]

In total ...b -> Int -> b

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 47

Essence of Automatic Type Inference
Algorithms

...syntax-directed application of the rules of the type inference

systems

The key...

• Modifying the type inference system such that there is

always only a single rule applicable

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 48

Further Reading 1(3)

Types and type systems, type inference...

• For functional languages in general

– Anthony J. Field, Peter G. Robinson. Functional Pro-

gramming. Addison-Wesley, 1988 (Chapter 7)

• Haskell-specific

– Simon Peyton Jones, John Hughes. Report on the Pro-

gramming Language Haskell 98.

http://www.haskell.org/report/

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 49

Further Reading 2(3)

• Overview

– J. C. Mitchell. Type Systems for Programming Langua-
ges. In J. van Leeuwen (Hrsg.). Handbook of Theore-
tical Computer Science, Vol. B: Formal Methods and
Semantics. Elsevier Science Publishers, 367-458, 1990.

• Foundations of polymorphic type systems

– Robin Milner. A Theory of Type Polymorphism in Pro-
gramming. Journal of Computer and System Sciences
17, 248-375, 1978.

– L. Damas, Robin Milner. Principal Type Schemes for
Functional Programming Languages. In Conference Re-
cord of the 9th Annual ACM Symposium on Principles
of Programming Languages (POPL’82), 207-218, 1982

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 50

Further Reading 3(3)

• Unification algorithm

– J. A. Robinson. A Machine-Oriented Logic Based on the

Resolution Principle. Journal of the ACM 12(1), 23-42,

1965.

• Type systems and type inference

– Luca Cardelli. Basic Polymorphic Type Checking.

Science of Computer Programming 8, 147-172, 1987.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 51

Part II: Parallelism in Functional Pro-
gramming Languages

Parallelism

• Implicit

• Explicit

• Skeletons

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 52

Reference

The following presentation is based on...

• Chapter 21
Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung, Springer, 2006. (In German).

Related and relevant in this context...

• Murray Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation, The MIT Press, 1989.

• Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl,
Simon L. Peyton Jones. Algorithms + Strategy = Par-
allelism. Journal of Functional Programming, 8(1):23-60,
1998.

• Philip W. Trinder, Hans-Wolfgang Loidl, Robert F. Poin-
ton. Parallel and Distributed Haskells. Journal of Functio-
nal Programming, 12(4&5):469-510, 2002.

Parallelism in Imperative Languages

In particular...

• Data-parallel Languages (e.g. High Performance Fortran)

• Libraries (PVM, MPI) ; Message Passing Model (C,

C++, Fortran)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 54

Parallelism in Functional Languages

In particular...

• Implicit (expression) parallelism

• Explicit parallelism

• Algorithmic skeletons

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 55

Implicit Parallelism

...aka expression parallelism

Consider the functional expression of the form f(e1,...,en):

Note:

• Arguments (and functions) can be evaluated in parallel.

• Advantages: Parallelism for free! No effort for the program-
mer.

• Disadvantages: Results often unsatisfying. E.g. granularity,
load distribution, etc. not taken into account.

Thus:

• Easy to detect parallelism (i.e., for the compiler), but hard
to fully exploit.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 56

Explicit Parallelism

By...

• Introducing meta-statements (e.g. to control the data and

load distribution, communication)

• Advantages: Often superior results by explicit hands-on

control of the programmer

• Disadvantages: High programming effort, loss of functional

elegance

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 57

Algorithmic Skeletons

A compromise between...

• explicit imperative parallel programming

• implicit functional expression parallelism

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 58

In the following

• Massively parallel systems

• Algorithmic skeletons

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 59

Massively Parallel Systems

...characterized by

• large number of processors with

– local memory

– communication by message exchange

• MIMD-Parallel Processor Architecture (Multiple Instructi-

on/Multiple Data)

• Here we restrict ourselves to: SPMD-Programming Style

(Single Program/Multiple Data)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 60

Algorithmic Skeletons

Algorithmic Skeletons...

• represent typical patterns for parallelization (Farm, Map,

Reduce, Branch&Bound, Divide&Conquer,...)

• are easy to instantiate for the programmer

• allow parallel programming at a high level of abstraction

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 61

Realization of Algorithmic Skeletons

...in functional languages

• by special higher-order functions

• with parallel implementation

• embedded in sequential languages

Thus

• Hiding of parallel implementation details in the skeleton

• Elegance and (parallel) efficiency for special application

patterns

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 62

Example: Parallel Map on Distributed
List

Consider the higher-order function map on lists...

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = (f x) : (map f xs)

Observation

• Applying f to a list element does not depend on other list
elements

Obvious

• Dividing the list into sublists followed by parallel application
of map to the sublists (parallelization pattern Farm)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 63

Parallel Map on Distributed Lists

For illustration...

f [a1,...,ak] f [ak+1,...,am] f [am+1,...am]

f [a1,...,ak, ak+1,...,am, am+1,...am]

 [b1,...,bk] [bk+1,...,bm] [bm+1,...bm]

 [b1,...,bk, bk+1,...,bm, bm+1,...bm]

Decomposition

Parallel

Computation

Composition

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 445.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 64

On the Implementation

Implementing the parallel map function requires...

• special data structures, which take into account the aspect
of distribution (ordinary lists are inefficient for this purpose)

Skeletons on distributed data structures

• so-called data-parallel skeletons

Note the difference:

• Data-parallelism: Supposes an a priori distribution of data
on different processors

• Task-parallelism: Processes and data to be distributed are
not known a priori, hence dynamically generated

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 65

Programming of a Parallel Application

...using algorithmic skeletons

• Recognizing problem-inherent parallelism

• Selecting an adequate data distribution (granularity)

• Selecting a suitable skeleton from a library

• Problem-specific instantiation of the skeleton(s)

Remark:

• Some languages (e.g. Eden) support the implementation
of skeletons (in addition to those which might be provided
by a library)

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 66

Data Distribution on Processors

...is

• crucial for

– structure of the complete algorithm

– efficiency

The hardness of the distribution problems depends on...

• Independence of all data elements (like in the map-
example): Distribution is easy

• Independence of subsets of data elements

• Complex dependences of data elements: Adequate distri-
bution is challenging

An auxiliary means

• So-called covers (investigated by various authors)

Covers

...describe the

• decomposition and communication pattern of a data struc-

ture

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 68

Example: Simple List Cover

Distributing a list on 3 processors p0, p1, and p2:

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 446.

p
0

ak ak+1 am amam+1a1

p
1

p
2

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 69

Example: List Cover with Overlapping
Elements

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 446.

p
i−1

p
i

p
i+1

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 70

General Cover Structure

Cover = {

Type S a -- Whole object

C b -- Cover

U c -- Local sub-objects

split :: S a -> C (U a) -- Decomposing the original object

glue :: C (U a) -> S a -- Composing the original object

}

It is required:

glue . split = id

Note: No (valid) Haskell

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 71

Realization in a Programming Langua-
ge

...implementing covers requires support for

• the specification of covers

• the programming of algorithmic skeletons on covers

• the provision of often used skeletons in libraries

...is

• currently a hot research topic in functional programming

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 72

Last but not least

Implementing skeletons...

• by message passing via skeleton hierarchies

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 73

Further Reading

• Hans-Werner Loidl et al. Comparing Parallel Functional

Languages: Programming and Performance. Higher-Order

and Symbolic Computation, 16(3):203-251, 2003.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 74

Part III: The Story of Haskell

16 Years of Haskell: A Retrospective on the occasion of its

15th Anniversary

by

Simon Peyton Jones

Wearing the Hair Shirt: A Retrospective on Haskell

http://research.microsoft.com/users/simonpj/papers/haskell-retrospective/

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 75

Haskell at HOPL III

More recently...

• Paul Hudak, John Hughes, Simon Peyton Jones, Philip

Wadler. A History of Haskell: Being Lazy with Class. In

Proceedings of the Third ACM SIGPLAN 2007 Conference

on History of Programming Languages (HOPL III), (San

Diego, California, June 09 - 10, 2007), 12-1 - 12-55.

Check out the ACM Digital Library (www.acm.org/dl) for this

article!

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 76

Last but not least

Final (oral) examination...

• In principle, any time. Just make an appointment by email

(knoop@complang.tuwien.ac.at) or phone (58801-18510).

• Topics: Assignments and lecture materials.

Advanced functional Programming (SS 2009) / Part 8 (Thu, 06/18/09) 77

