
Today’s Topic

• Pretty Printing

Like parsing a typical demo-application

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 1

Pretty Printing

Pretty Printing

...like lexical and syntactical analysis another typical app-

lication for demonstrating the elegance of functional pro-

gramming.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 2

What’s it all about?

A pretty printer is...

• a tool (often a library of routines) designed for converting

a tree into plain text

Essential goal...

• a minimum number of lines while preserving and reflecting

the structure of the tree by indentation

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 3

“Good” Pretty-Printer

...distinguished by properly balancing

• Simplicity of usage

• Flexibility of the format

• “Prettiness” of output

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 4

Reference

The following presentation is based on...

• Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oe-

ge de Moor (Eds.), The Fun of Programming. Palgrave

MacMillan, 2003.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 5

Distinguishing Feature

...of the “Prettier Printer” proposed by Philip Wadler:

• There is only a single way to concatenate documents,

which is

– associative

– with left-unit and right-unit

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 6

Why “prettier” than “pretty”?

Wadler considers his “Prettier Printer” an improvement of the
pretty printer library proposed by John Hughes, which is widely
recognized as a standard.

• The design of a pretty-printer library. In Johan Jeuring,
Erik Meijers (Hrsg.), Advanced Functional Programming,
LNCS 925, Springer, 1995.

Hughes’ library enjoys the following characteristics:

• Two ways to concatenate documents (horizontal and ver-
tical), one of which

– vertical: without unit

– horizontal: with right-unit (but no left-unit)

• ca. 40% more code, ca. 40% slower as Wadler’s proposal

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 7

A Simple Pretty Printer: Basic App.

Characteristic: For each document there shall be only one pos-
sible layout (e.g., no attempt is made to compress structure
onto a single line).

The basic operators needed are:

(<>) :: Doc -> Doc -> Doc -- ass. concatenation of docs.

nil :: Doc -- The empty document:

Right and left unit for (<>)

text :: String -> Doc -- Conversion function: Converts

a string to a document

line :: Doc -- Line break

nest :: Int -> Doc -> Doc -- Adding indentation

layout :: Doc -> String -- Output: Converts a document

to a string

Convention:

• Arguments of text are free of newline characters

A Simple Implementation

Implement...

• doc as strings (i.e. as data type String)

with...

• (<>) ...concatenation of strings

• nil ...empty string

• text ...identity on strings

• line ...new line

• nest i ...indentation: adding i spaces (after each line break by means
of line) ; essential difference to Hughes’ pretty printer
allowing to drop one concatenation operator

• layout ...identity on strings

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 9

Example

...converting trees into documents (here: Strings) which are
output as text (here: Strings).

Consider the following type of trees:

data Tree = Node String [Tree]

A concrete value B of type Tree...

Node "aaa" [Node "bbbbb" [Node "cc" [], Node "dd" []],

Node "eee" [],

Node "ffff" [Node "gg" [],

Node "hhh" [],

Node "ii" []

]

]

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 10

...and its desired output

A text, where indentation reflects the tree structure...

aaa[bbbbb[ccc,

dd],

eee,

ffff[gg,

hhh,

ii]]

...sibling trees start on a new line, properly indented.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 11

Implementation

The below implementation achieves this...

data Tree = Node String [Tree]

showTree :: Tree -> Doc

showTree (Node s ts) = text s <> nest (length s) (showBracket ts)

showBracket :: [Tree] -> Doc

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts)

<> text "]"

showTree :: [Tree] -> Doc

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 12

Another possibly wanted output of B

aaa[

bbbbb[

ccc,

dd

],

eee,

ffff[

gg,

hhh,

ii

]

]

...each subtree starts on a new line, properly indented.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 13

An implementation producing the latter
output

data Tree = Node String [Tree]

showTree’ :: Tree -> Doc

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ :: [Tree] -> Doc

showBracket’ [] = nil

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

showTree’ :: [Tree] -> Doc

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 14

A Normal Form of Documents

Documents can always be reduced to normal form

Normal form...

• text alternating with line breaks nested to a given inden-

tation

text s0 <> nest i1 line <> text s1 <> ...

<> nest ik line <> text sk

where

• each sj is a (possibly empty) string

• each ij is a (possibly zero) natural number

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 15

Normal Forms: An Example 1(3)

The document...

text "bbbbb" <> text "[" <>

nest 2 (

line <> text "ccc" <> text "," <>

line <> text "dd"

) <>

line <> text "]"

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 16

Normal Forms: An Example 2(3)

...prints as follows:

bbbbb[

ccc,

dd

]

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 17

Normal Forms: An Example 3(3)

Here it is its normal form:

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 18

Why does it work?

...because of the properties (laws) the functions enjoy.

In more detail...

...because of the fact that

• <> is associative with unit nil and

• the following laws (see next slide):

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 19

Properties of the Functions – Laws 1(2)

We have the following (pairs of) laws (except for the last one):

text (s ++ t) = text s <> text t (text is a homomorphism from

text "" = nil string concatenation to

document concatenation)

nest (i+j) x = nest i (nest j x) (nest is a homomorphism from

nest 0 x = x addition to composition)

nest i (x <> y) = nest i x <> nest i y (nest distributes through

nest i nil = nil document concatenation)

nest i (text s) = text s (Nesting is absorbed by text)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 20

Properties of the Functions – Laws 2(2)

Impact

• The above laws are sufficient to ensure that documents

can always be transformed into normal form

– first four laws: applied left to right

– last three laws: applied right to left

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 21

Further Properties – Laws

...relating documents to their layouts:

layout (x <> y) = layout x ++ layout y (layout is a homomorphism

layout nil = "" from document

concatenation to

string concatenation)

layout (text s) = s (layout is the inverse

of text)

layout (nest i line) = ’\n’ : copy i ’ ’ (layout of a nested

line is a newline

followed by one space

for each level of

indentation)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 22

The Implementation of Doc

Intuition

...represent documents as a concatenation of items, where
each item is a text or a line break indented to a given amount.

...realized as a sum type (the algebra of documents):

data Doc = Nil

| String ’Text’ Doc

| Int ’Line’ Doc

...where these constructors relate to the document operators
as follows:

Nil = nil

s ’Text’ x = text s <> x

i ’Line’ x = nest i line <> x

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 23

Example

Using Doc, the normal form (considered previously)...

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

...has the representation:

"bbbbb[" ’Text’ (

2 ’Line’ ("ccc," ’Text’ (

2 ’Line’ ("dd," ’Text’ (

0 ’Line’ ("]," ’Text’ Nil)))))

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 24

Derived Implementations 1(2)

...of the document operators from the above equations:

nil = Nil

text s = s ’Text’ Nil

line = 0 ’Line’ Nil

(s ’Text’ x) <> y = s ’Text’ (x <> y)

(i ’Line’ x) <> y = i ’Line’ (x <> y)

Nil <> y = y

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 25

Derived Implementations 2(2)

nest i (s ’Text’ x) = s ’Text’ nest i x

nest i (j ’Line’ x) = (i+j) ’Line’ nest i x

nest i Nil = Nil

layout (s ’Text’ x) = s ++ layout x

layout (i ’Line’ x) = ’\n’ : copy i ’ ’ ++ layout x

layout Nil = ""

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 26

On the Correctness

...of the derived implementations:

• Derivation of (s ’Text’ x) <> y = s ’Text’ (x <> y)

(s ’Text’ x) <> y

= { Definition of Text }

(text s <> x) <> y

= { Associativity of <> }

text s <> (x <> y)

= { Definition of Text }

s ’Text’ (x <> y)

• Remaining equations: Similar reasoning

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 27

Documents with Multiple Layouts: Ad-
ding Flexibility

• Up to now... documents were equivalent to a string (i.e.,
they have a fixed single layout)

• Next... documents shall be equivalent to a set of strings
(i.e., they may have multiple layouts)

where each string corresponds to a layout.

All what is needed to render this possible:
Addition of a new function

group :: Doc -> Doc

Informally :
Given a document, representing a set of layouts, group returns
the set with one new element added, which represents the
layout in which everything is compressed on one line: Replace
each newline (plus indentation) by a single space.

Preferred Layouts

Technically, it also requires...

• layout is replaced by pretty

pretty :: Int -> Doc -> String

which picks the prettiest layout depending on the preferred

maximum line width argument

Remark: pretty’s integer-argument specifies the preferred

maximum line length of the output (and hence the prettiest

layout out of the set of alternatives at hand).

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 29

Example

Using the modified showTree function based on group...

showTree (Node s ts) = group (text s

<> nest (length s) (showBracket ts))

...the call of pretty 30 yields the output:

aaa[bbbbb[ccc, dd],

eee,

ffff[gg, hhh, ii]]

This ensures:

• Trees are fit onto one line where possible (i.e., length ≤ 30)

• Insertion of sufficiently many line breaks in order to avoid exceeding
the given maximum line length

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 30

Implementation of the new Functions

The following supporting functions are required:

-- Forming the union of two sets of layouts

(<|>) :: Doc -> Doc -> Doc

-- Replacement of each line break (and its associated

indentation) by a single space

flatten :: Doc -> Doc

• Observation ...a document always represents a non-empty
set of layouts

• Requirements

– ...in (x <|> y) all layouts of x and y enjoy the same flat
layout (mandatory invariant of <|>)

– ...each first line in x is at least as long as each first line
in y (second invariant)

– <|> and flatten are not directly exposed to the user
(only via group and other supporting functions)

Properties (Laws) of (<|>)

...operators on simple documents are extended pointwise

through union:

(x <|> y) <> z = (x <> z) <|> (y <> z)

x <> (y <|> z) = (x <> y) <|> (x <> z)

nest i (x <|> y) = nest i x <|> nest i y

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 32

Properties (Laws) of flatten

...the interaction of flatten with other document operators:

flatten (x <|> y) = flatten x -- distribution law

flatten (x <> y) = flatten x <> flatten y

flatten nil = nil

flatten (text s) = text s

flatten line = text " " -- the most interesting case

flatten (nest i x) = flatten x

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 33

Implementation of group

...by means of flatten and (<>), the implementation of group

can be given:

group x = flatten x <|> x

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 34

Normal Form

Based on the previous laws each document can be reduced to

a normal form of the form

x1 <|> ... <|> xn

where each xi is in the normal form of simple documents

(which was introduced previously).

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 35

Selecting a “best” Layout out of a Set
of Layouts

...by defining an ordering relation on lines in dependence of the
given maximum line length

Out of two lines...

• which do not exceed the maximum length, select the longer
one

• of which at least one exceeds the maximum length, select
the shorter one

Note: Sometimes we have to pick a layout where some line
exceeds the limit (a key difference to the approach of Hughes).
However, this is done only, if this is unavoidable.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 36

The Adapted Implementation of Doc

The new implementation of Doc. It is quite similar to the ori-

ginal one...

data Doc = -- As before: The first 3 alternatives

Nil

| String ’Text’ Doc

| Int ’Line’ Doc

-- New: We add a construct representing the

union of two documents

| Doc ’Union’ Doc

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 37

Relationship of Constructors and Docu-
ment Operators

The following relationships hold between the constructors and

the document operators...

Nil = nil

s ’Text’ x = text s <> x

i ’Line’ x = nest i line <> x

x ’Union’ y = x <|> y

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 38

Example 1(8)

The document...

group(

group(

group(

group(text "hello" <> line <> text "a")

<> line <> text "b")

<> line <> text "c")

<> line <> text "d")

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 39

Example 2(8)

...has the following possible layouts:

hello a b c d hello a b c hello a b hello a hello

d c b a

d c b

d c

d

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 40

Example 3(8)

Task: ...print the above document under the constraint that

the maximum line width is 5

; the right-most layout of the previous slide is requested

Initial (performance) considerations:

• ...Factoring out "hello" of all the layouts in x and y

"hello" ’Text’ ((" " ’Text’ x) ’Union’ (0 ’Line’ y))

• ...Defining additionally the interplay of (<>) and nest with

Union

(x ’Union’ y) <> z = (x <> z) ’Union’ (y <> z)

nest k (x ’Union’ y) = nest k x ’Union’ nest k y

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 41

Example 4(8)

Implementations of group and flatten can easily be derived...

group Nil = Nil

group (i ’Line’ x) = (" " ’Text’ flatten x) ’Union’

(i ’Line’ x)

group (s ’Text’ x) = s ’Text’ group x

group (x ’Union’ y) = group x ’Union’ y

flatten Nil = Nil

flatten (i ’Line’ x) = " " ’Text’ flatten x

flatten (s ’Text’ x) = s ’Text’ flatten x

flatten (x ’Union’ y) = flatten x

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 42

Example 5(8)

Considerations on correctness...

Derivation of group (i ’Line’ x) (see line two) (preserving the

invariant required by union)

group (i ’Line’ x)

= { Definition of Line }

group (nest i line <> x)

= { Definition of group}

flatten (nest i line <> x) <|> (nest i line s <> x)

= { Definition of flatten }

(text " " <> flatten x) <|> (nest i line <> x)

= { Definition of Text, Union, Line }

(" " ’Text’ flatten x) ’Union’ (i ’Line’ x)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 43

Example 6(8)

Correctness considerations...

Derivation of group (s ’Text’ x) (see line three)

group (s ’Text’ x)

= { Definition Text }

group (text s <> x)

= { Definition group}

flatten (text s <> x) <|> (text s <> x)

= { Definition flatten }

(text s <> flatten x) <|> (text s <> x)

= { <> distributes through <|> }

text s <> (flatten x <|> x)

= { Definition group }

text s <> group x

= { Definition Text }

s ’Text’ group x

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 44

Example 7(8)

Selecting the “best” layout...

best w k Nil = Nil

best w k (i ’Line’ x) = i ’Line’ best w i x

best w k (s ’Text’ x) = s ’Text’ best w (k + length s) x

best w k (x ’Union’ y) = better w k (best w k x) (best w k y)

better w k x y = if fits (w-k) x then x else y

Remark:

• best ...converts a “union”-afflicted document into a “union”-free do-
cument

• Argument w ...maximum line width

• Argument k ...already consumed letters (including indentation) on cur-
rent line

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 45

Example 8(8)

Check, if the first document line stays within the maximum

line length w...

fits w x | w<0 = False -- cannot fit

fits w Nil = True -- fits trivially

fits w (s ’Text’ x) = fits (w - length s) x

fits w (i ’Line’ x) = True -- yes, it fits

Last but not least, the output routine (layout remains unchan-

ged): Select the best layout and convert it to a string...

pretty w x = layout (best w 0 x)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 46

Enhancing Performance: A More Effi-
cient Variant

Sources of inefficiency:

• Concatenation of documents might pile up to the left

• Nesting of documents adds a layer of processing to incre-
ment the indentation of the inner document

Thus, a new implementation of documents:

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

Remark:

• In distinction to the previous document type we here use capital letters
in order to avoid name clashes with the previous definitions

Implementing the Document Operators

Defining the operators to build a document: Straightforward...

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 48

Implementing group and flatten

As before, we require the following invariants:

• ...in (x :<|> y) all layouts in x and y flatten to the same
layout

• ...no first line in x is shorter than any first line in y

Definitions of group and flatten are then straightforward:

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 49

Representation Function

...generating the document from an indentation-afflicted do-

cument

rep z = fold (<>) nil [nest i x | (i,x) <- z]

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 50

Selecting the “best” Layout

Generalizing the function “best”by composing the old function
with the representation function to work on lists of indentation-
document pairs...

be w k z = best w k (rep z) (Hypothesis)

best w k x = be w k [(0,x)]

where the definition is derived from the old one...

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y) : z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ’Text’ be w (k+length s) z

be w k ((i,LINE) : z) = i ’Line’ be w i z

be w k ((i.x :<|> y) : z) = better w k (be w k ((i.x) : z))

(be w k (i,y) : z))

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 51

In Preparation of further Applications
1(3)

First some useful convenience functions:

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

spread = folddoc (<+>)

stack = folddoc (</>)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 52

In Preparation of further Applications
2(3)

Further supportive functions:

-- An often recurring output pattern

bracket l x r = group (text 1 <>

nest 2 (line <> x) <>

line <> text r)

-- Abbreviation of the alternative tree layout function

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

-- Filling up lines (using words out of the Haskell Standard Lib.)

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 53

In Preparation of further Applications
3(3)

fill, a variant of fillwords

; ...collapses a list of documents to a single document

fill [] = nil

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs)) :<|>

(x </> fill (y : zs)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 54

Application 1(2)

Printing XML-documents (simplified syntax)...

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 55

Application 2(2)

Continuation...

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 56

XML Example 1

...for a given maximum line length of 30 letters:

<p

color="red" font="Times"

size="10"

>

Here is some

 emphasized text.

Here is a

<a

href="http://www.eg.com/"

> link

elsewhere.

</p>

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 57

XML Example 2

...for a given maximum line length of 60 letters:

<p color="red" font="Times" size="10" >

Here is some emphasized text. Here is a

 link elsewhere.

</p>

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 58

XML Example 3:

...after dropping of flatten in fill:

<p color="red" font="Times" size="10" >

Here is some

emphasized

 text. Here is a <a

href="http://www.eg.com/"

> link elsewhere.

</p>

...start and close tags are crammed together with other text

; less beautifully than before.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 59

Overview of the Code 1(11)

Source: Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oege de

Moor (Eds.), The Fun of Programming. Palgrave MacMillan, 2003.

-- The pretty printer

infixr 5:<|>

infixr 6:<>

infixr 6 <>

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

data Doc = Nil

| String ’Text’ Doc

| Int ’Line’ Doc

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 60

Overview of the Code 2(11)

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 61

Overview of the Code 3(11)

layout Nil = ""

layout (s ’Text’ x) = s ++ layout x

layout (i ’Line’ x) = ’\n’: copy i ’ ’ ++ layout x

copy i x = [x | _ <- [1..i]]

best w k x = be w k [(0,x)]

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y) : z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ’Text’ be w (k+length s) z

be w k ((i,LINE) : z) = i ’Line’ be w i z

be w k ((i.x :<|> y) : z) = better w k (be w k ((i.x) : z))

(be w k (i,y) : z))

better w k x y = if fits (w-k) x then x else y

Overview of the Code 4(11)

fits w x | w<0 = False

fits w Nil = True

fits w (s ’Text’ x) = fits (w - length s) x

fits w (i ’Line’ x) = True

pretty w x = layout (best w 0 x)

-- Utility functions

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 63

Overview of the Code 5(11)

spread = folddoc (<+>)

stack = folddoc (</>)

bracket l x r = group (text 1 <>

nest 2 (line <> x) <>

line <> text r)

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

fill [] = nil

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs))

:<|> (x </> fill (y : zs)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 64

Overview of the Code 6(11)

-- Tree example

data Tree = Node String [Tree]

showTree (Node s ts) = group (text s <>

nest (length s) (showBracket ts))

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts)

<> text "]"

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 65

Overview of the Code 7(11)

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ [] = nil

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 66

Overview of the Code 8(11)

tree = Node "aaa"[Node "bbbb"[Node "ccc"[],

Node "dd"[]

],

Node "eee"[],

Node "ffff"[Node "gg"[],

Node "hhh"[],

Node "ii"[]

]

]

testtree w = putStr(pretty w (showTree tree))

testtree’ w = putStr(pretty w (showTree’ tree))

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 67

Overview of the Code 9(11)

-- XML Example

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 68

Overview of the Code 10(11)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 69

Overview of the Code 11(11)

xml = Elt "p"[Att "color" "red",

Att "font" "Times",

Att "size" "10"

] [Txt "Here is some",

Elt "em" [] [Txt "emphasized"],

Txt "text.",

Txt "Here is a",

Elt "a" [Att "href" "http://www.eg.com/"]

[Txt "link"],

Txt "elsewhere."

]

testXML w = putStr (pretty w (showXML xml))

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 70

Further Readings 1(2)

On an imperative Pretty Printer

• Derek Oppen. Pretty-printing. ACM Transactions on Pro-

gramming Languages and Systems, 2(4):465-483, 1980.

...and a functional realization of it:

• Olaf Chitil. Pretty printing with lazy dequeues. In ACM

SIGPLAN Haskell Workshop, 183-201, Florence, Italy,

2001. Universiteit Utrecht UU-CS-2001-23.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 71

Further Readings 2(2)

Overview on the evolution of a Pretty Printer Library and origin

of the development of the Prettier Printers proposed by Phil

Wadler.

• John Hughes. The design of a pretty-printer library. In

Johan Jeuring, Erik Meijers (Eds.), Advanced Functional

Programming, LNCS 925, Springer, 1995.

...a variant implemented in the Glasgow Haskell Compiler

• Simon Peyton Jones. Haskell pretty-printer library.

http://www.haskell.org/libraries/#prettyprinting, 1997.

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 72

Einladung zum epilog

epilog SS 2009

“Die Fakultät für Informatik präsentiert zwei mal pro Jahr die

Diplomarbeiten des letzten halben Jahres in einer Posteraus-

stellung und ausgewählten Vorträgen und gibt einen Einblick

in das breite Spektrum der Themen und Aufgabenstellungen

der Abschlussarbeiten”.

ZEIT: Donnerstag, 4. Juni 2009, ab 15:00 Uhr

ORT: TU Wien, Freihaus, Wiedner Hauptsraße 8, 2.OG, FH Hörsaal 6

MEHR INFO: http://www.informatik.tuwien.ac.at/epilog

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 73

Einladung zum Kolloquiumsvortrag

Die Complang-Gruppe lädt ein zu folgendem Vortrag...

Robuste Komponentensysteme durch Protokollprüfung

Prof. Dr. Wolf Zimmermann

Martin-Luther Universität Halle-Wittenberg, Deutschland

ZEIT: Freitag, 5. Juni 2009, 14:00 Uhr c.t.

ORT: TU Wien, Elektrotechnik, EI 4 Reithoffer-Hörsaal, Gußhausstr.

25-29 (Altbau), 2. Stock

MEHR INFO: http://www.complang.tuwien.ac.at/talks/Zimmermann2009-06-05

Alle Interessenten sind herzlich willkommen!

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 74

Opportunity!

HaL4 : Haskell - Tutorial + Workshop + Party

University of Halle-Wittenberg, Germany, 12 June 2009.

(Registrations on or before 31 May 2009. Registration fee: 15

EUR (including Party)).

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 75

Next Course Meeting

• Thu, June 11, 2009: No lecture (public holiday)

• Fri, June 12, 2009: No lecture (overlap with HaL4)

• Thu, June 18, 2009: 4.15 p.m. to 5.45 p.m., lecture room

on the ground floor of the building Argentinierstr. 8

Advanced functional Programming (SS 2009) / Part 7 (Thu, 05/28/09) 76

