Well-definedness & Correctness Issues

e Streams and functions on streams
...well-defined?

e Correctness of programs, proof of program properties
...recursion vs. induction, proofs by induction

First...

e Mathematical background
...CPOs, fixed points, fixed point theorems

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 1

References

The following presentation is based on...

e Hanne Riis Nielson, Flemming Nielson. Semantics with Ap-
plications — A Formal Introduction. Wiley, 1992.
http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html

e Chapter 11 and 14
Paul Hudak. The Haskell School of Expression — Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000.

e Chapter 8 and 17
Simon Thompson. Haskell — The Craft of Functional Pro-
gramming. Addison-Wesley, 2nd edition, 1999.

e Chapter 10
Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-Verlag, Heidelberg, Germany, 2006. (In Ger-
man)

Streams, Fixed Points, and Equation
Systems

e Streams

— onetwo = 1 : 2 : onetwo
~ [1,2,1,2,1,2,...

— onestwos = 1 : onestwos : 2
~ [1,1,1,1,1,1,...

e Equation systems

— x = E[x]

More on this in the following...

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 3

Sets and Relations 1(2)

Let M be a set and R a relation on M, i.e. RC M x M.
Then R is called...

o reflexive iff Vm e M. m Rm
e transitive iff Vm,n,pe M. mRn AN nRp = mRp
e anti-symmetric iff Vm,n e M. mRn N nRm = m=mn

Related further notions... (though less important for us in the following)
o symmetric iff Vm,n € M. mRn <= nRm

e total iff Vm,ne M. mRn V nRm

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 4

Sets and Relations 2(2)

A relation R on M is called a...

e quasi-order iff R is reflexive and transitive

e partial order iff R is reflexive, transitive, and anti-symmetric
For the sake of completeness we recall...

e equivalence relation iff R is reflexive, transitive, and symmetric

...i.e., a partial order is an anti-symmetric quasi-order, an equivalence re-
lation a symmetric quasi-order.

Note: We here use terms like “partial order” as a short hand
for the more accurate term “partially ordered set”.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 5

Bounds, least and greatest Elements
Let (Q,C) be a quasi-order, let g € Q and Q' C Q.
Then ¢ is called...

o upper (lower) bound of @', in signs: Q' C q (¢ C Q"), if for
all ¢ € Q" holds: ¢ Cq (¢ ¢')

e least upper (greatest lower) bound of @', if ¢ is an up-
per (lower) bound of Q' and for every other upper (lower)
bound g of Q' holds: ¢qC ¢ (GC q)

e greatest (least) element of Q, if holds: Q C q (¢ C Q)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 6

Uniqueness of Bounds

e Given a partial order, least upper and greatest lower bounds
are uniquely determined, if they exist.

e Given existence (and thus unigueness), the least upper
(greatest lower) bound of a set P’ C P of the basic set
of a partial order (P,C) is denoted by LIP' (['1P). These
elements are also called supremum and infimum of P’.

e Analogously this holds for least and greatest elements. Gi-
ven existence, these elements are usually denoted by L and
T.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 7

Lattices and Complete Lattices
Let (P,C) be a partial order.
Then (P,C) is called a...

e lattice, if each finite subset P’ of P contains a least upper
and a greatest lower bound in P

e complete lattice, if each subset P’ of P contains a least
upper and a greatest lower bound in P

...(complete) lattices are special partial orders.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 8

Complete Partial Orders

...a slightly weaker, in computer science, however, often suffi-
cient and thus more adequate notion:

Let (P,C) be a partial order.

Then (P,C) is called...

e complete, or shorter a CPO (complete partial order), if
each ascending chain C' C P has a least upper bound in P.

We have:

e A CPO (C,C) (more accurate would be: ‘“chain-complete partially or-
dered set (CCPQO)") has always a least element. This element is uni-
quely determined as supremum of the empty chain and usually denoted
by 1: J_:df @

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 9

Chains

Let (P,C) be a partial order.

A subset C C P is called...

e chain of P, if the elements of C are totally ordered. For
C:{CO Ccp Een } ({CO Jdecp dep }) we also
speak more precisely of an ascending (descending) chain
of P.

A chain C is called...

e finite, if C is finite; infinite otherwise.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 10

Finite Chains, finite Elements

A partial order (P,C) is called

e chain-finite (German: kettenendlich) iff P is free of infinite
chains

An element p € P is called
e finite iff the set Q=4 {q € P|q C p} is free of infinite chains

e finite relative to r € P iff the set Q=g {¢€ P|rEqLC p}is
free of infinite chains

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 11

(Standard) CPO Constructions 1(4)

Flat CPOs...

Let (C,C) be a CPO. Then (C,C) is called...

e flat, if for all c,d € C holds: cEd<c=1 V c=d

G & &G ¢ G G C

TN

1

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 12

(Standard) CPO Constructions 2(4)

Product construction...

Let (P1,C1),(P2,Cp),...,(Pn,En) be CPOs. Then...

e the non-strict (direct) product (X P;,C) with

= (XP,E)=(P1 X P2 X ... X Py, C) with V(p1,p2,...,pn),
(q17QQ7"'7qn) € XPZ (plap2a"~7p’n) E (qlaq27"'aqn) =

e and the strict (direct) product (smash product) with
—(®F,C)=(PL®P,®...Q P,,C), where C is defined as
above under the additional constraint:
(p17p2)"'7pﬂ):J— = di € {1,,TL} pZ:J—’L
are CPOs, too.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 13

(Standard) CPO Constructions 3(4)

Sum construction...

Let (Pl, El), (PQ, EQ), ey (Pn, En) CPOs. Then...

e the direct sum (@ P;,C) with...

— (®P,C)= (PLUP>U...U Py, C) disjoint union of P;, i €
{1,...,n}and Vp,q e ®P,. pCqg=3Jie{l,...,n}. p,g €
P, N pLC; g and the identification of the least elements
of (B, C;), i€ {1,...,n}, i.e. J-:df L,y e{1,...,n}

is a CPO.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 14

(Standard) CPO Constructions 4(4)

Function space...

Let (C,C¢) and (D,Cp) be two CPOs and [C — D]=g4
{f : C — D | f continuous} the set of continuous functions
from C to D.

Then...

e the continuous function space ([C — D],C) is a CPO where

—VfgelC—-D]. fCg<«=VceC. f(c)Cpg(c)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 15

Functions on CPOs / Properties

Let (C,C¢) and (D,CEp) be two CPOs and let f:C — D be a
function from C to D.

Then f is called...

e monotone iff Ve, € C. cC = f(e) Ep f()
(Preservation of the ordering of elements)

e continuous iff vC' C C. f(U-C" =p Upf(ch
(Preservation of least upper bounds)

Let (C,C) be a CPO and let f: C — C be a function on C.
Then f is called...

e inflationary (increasing) iff Vc € C. ¢ C f(c)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 16

Functions on CPOs / Results

Using the notations introduced before...

Lemma
f is monotone iff VC' C C. f(LU-C") Op LUpf(Ch

Corollary
A continuous function is always monotone, i.e. f continuous
= f monotone.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 17

Least and greatest Fixed Points 1(2)

Let (C,C) be a CPO, f:C — C be a function on C and let ¢
be an element of C, i.e., ce C.

Then c is called...
e fixed point of f iff f(c) =c
A fixed point ¢ of f is called...
e least fixed point of fiffVvde C. f(d)=d=cLCd

e greatest fixed point of fiff Vde C. f(d)=d=dCc

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 18

Least and greatest Fixed Points 2(2)

Let d,cq € C. Then ¢4 is called...

e conditional (German: bedingter) least fixed point of f wrt
d iff ¢4 is the least fixed point of C with d C ¢4, i.e. for all
other fixed points « of f with d C z holds: ¢; C .

Notations:
The least resp. greatest fixed point of a function f is usually
denoted by uf resp. vf.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 19

Fixed Point Theorem

Theorem (Knaster/Tarski, Kleene)

Let (C,C) be a CPO and let f : C — C be a continuous
function on C.

Then f has a least fixed point upf, which equals the
least upper bound of the chain (so-called Kleene-Chain)

{L, f(L), f2(L),.. .}, i.e.
pf =L, FC0 =L, F(D), £2(1), .)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 20

Proof of the Fixed Point Theorem 1(4)

We have to prove: uf...
1. exists
2. is a fixed point

3. is the least fixed point

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 21

Proof of the Fixed Point Theorem 2(4)

1. Existence
e It holds fO L =1 and L C ¢ forall ceC.

e By means of (complete) induction we can show: f*1 C
fc for all ce C.

e Thuswe have f*1 C f™1 for all n,m with n < m. Hence,
{f"L | n >0} is a (non-finite) chain of C.

e The existence of I_IZ-EINOfi(J_) is thus an immediate con-
sequence of the CPO properties of (C,C).

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 22

Proof of the Fixed Point Theorem 3(4)

2. Fixed point property

F((EPENWAED)
(f continuous) = L f(f"L)
I_liEIlenJ_
(K chain = UK=10UK) = U;n, ML u L
(fOJ_:J_) = l_liE]NofnJ‘
= uie]]\lofl(l)
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 23

Proof of the Fixed Point Theorem 4(4)

3. Least fixed point

— Let ¢ be an arbitrarily chosen fixed point of f. Then we
have 1L C ¢, and hence also f*1 C f™c for all n > 0.

— Thus, we have f"1 C ¢ because of our choice of ¢ as
fixed point of f.

— Thus, we also have that ¢ is an upper bound of
{f*(L) | i € No}.

— Since l—lieINofi(J-) is the least upper bound of this chain
by definition, we obtain as desired LIielNOfi(J_) Cec.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 24

Conditional Fixed Points

Theorem (Conditional Fixed Points)
Let (C,C) be a CPO, let f: C — C be a continuous, inflatio-
nary function on C, and let d € C.

Then f has a unique conditional fixed point upf;. This
fixed point equals the least upper bound of the chain

{d, f(d), f2(d), ...}, d.h.
pfa= Ui, () =L{d, f(d), 2(d),.. .}

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 25

Finite Fixed Points

Theorem (Finite Fixed Points)
Let (C,C) be a CPO and let f : C — C be a continuous
function on C.

Then we have: If two elements in a row occurring in the
Kleene-chain of f are equal, e.g. fi(L)=fT1(L1), then we
have: uf = fi(L).

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 26

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points
e.g. are...

e Finiteness of domain and range of f

e f is of the form f(c) =cU g(c) for monotone g on some
chain-complete domain

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 27

Cones und Ideals

Let (P,C) be a partial order and Q be a subset of P, i.e.,
Q CP.

Then Q is called...
e directed set (German: gerichtet (gerichtete Menge)), if

each finite subset R C @ has a supremum in @, i.e. 3q €

Q. ¢q=ULR

e cone (German: Kegel), if Q is downward closed, i.e. Vq €
QVpeP.pEg=peqQ

e jdeal (German: Ideal), if Q is a directed cone, i.e. if Q is
downward closed and each finite subset has a supremum

in Q.

Note: If Q is a directed set, then, we have because of 0 C Q also LIp=1 € Q
and thus Q # 0.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 28

Completion of Ideals

Theorem (Completion of Ideals)
Let (P,C) be a partial order and let Ip be the set of all ideals
of P. Then we have:

e (Ip,C) is a CPO.

Induced “completion” ...

e Identifying each element p € P with its corresponding ideal
Ip=g4r{q | q¢ E p} yields an embedding of P into Ip with
pC ¢ & IpClg

Corollary (Extensability of Functions)

Let (P,Cp) be a partial order and let (C,Cs) be a CPO. Then
we have: All monotone functions f : P — C can be extended
to a uniquely determined continuous function f: Ip — C.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 29

Conclusion

The previous result implies...
e Streams constitute a CPO

e Recursive equations and functions on streams are well-
defined

e The application of a function to the finite prefixes of a
stream yields the chain of approximations of the application
of the function to the stream itself; it is thus correct

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 30

Correctness of Programs/Proof of Pro-
gram Properties

Induction vs. recursion

e ...a list is either empty or a pair consisting of an element
and another list

e ...a tree is either empty or consists of a node and a set of
other trees

Note:

e Definition of data structures
...often follow an inductive definition pattern

e Functions on data structures
...often follow a recursive definition pattern

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 31

Inductive Proving / Proof Principles
Complete, generalized, structural induction

As a reminder: The principles of...

complete induction

(A1) A (Yn € N.A(n) = A(n+1))) = VnecN. An)

generalized induction

(VneN. (VYm<n.A(m)) = A(n)) = VneNN. A(n)

structural induction

(Vs e S Vs € Comp(s). A(s')) = A(s)) = VseS. A(s)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 32

Example: Generalized Induction
Direct computation of the Fibonacci numbers...

Let F,, n € IN, denote the n-th F-number, which is defined as
follows:

Fop=0; F1 =1, foreachn>2, Fpb,=F, >+ F,_1
Using these notations we can prove:

Theorem

() - ()

Vn €IN. F, =
V5

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 33

Observation

Since

(Fi)jemw = 0,1,1,2 3,5,8, 13,21, 34,...

(fib)jenw = 1,1,2,3,5,8, 13,21, 34,...

we conclude:

Corollary Vn € IN. fib(n) = F,41

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 34

Proof of the Theorem 1(5)
Proof of the theorem ...by means of generalized induction.

Using the induction hypothesis that for all £ < n with n € IN
some natural number the equality

(45) - (=)
2 2
V5
holds, we can prove the premise underlying the implication of

the principle of generalized induction for all natural numbers n
by investigating the following cases.

Fk:

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 35

Proof of the Theorem 2(5)

Case 1: n = 0. In this case we obtain by a simple calculation
as desired:

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 36

Proof of the Theorem 3(5)

Case 2: n = 1. Also in this case, we obtain by a straightforward
calculation as desired:

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 37

Proof of the Theorem 4(5)

Case 3: n > 2. Applying the induction hypothesis (IH) forn—2 and n—1
we obtain the desired equality:

F,
(Def. of F,) = F, o2+ F,1
n—2 B n—2 n—1 B n—1
(IH (two times)) = (#> 5<1 2\6) + (1+2\/§> \/g(l 2\/5)
T[T (59
- V5
_ ()] - (59 [
(1+\/€)’“2 <1+¢§>2 _ fﬁ)”z (17\/5)2
() = 2 e 2
J— 2 >) B 72 ’
(5%) - (%7)
- V5

Proof of the Theorem 5(5)

...where the equality marked by (%) holds because of the following two
sequences of equalities, whose validity can be established by means of the
binomial formulae:

2 =1t

<1+\/§>2=1+2\/§+5=6+2\/§=3+\/§ 145
4 4 2 2

Similarly we can show:

1-v5\> 1-2v6+45 6-2v6_3-v5_ _ 1-5
(2 >_ 4 42 2

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 39

Inductive Proofs on (finite) Lists

Proof pattern... Let P be a property on lists...

1. Induction start: ...prove that P holds for the empty list,
i.e. prove P([]).

2. Induction step: ...prove under the assumption of the validity
of P(xs) (induction hypothesis) the validity of
P(z : xs).

More generally

e ...not only for lists
inductive proof along the structure (structural induc-
tion)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 40

Induction on finite Lists / Example 1(2)

Proposition

YV xs,ys. length (xs ++ys) = length xs + length ys

Proof ...over the inductive structure of xs

Induction start

length([] ++ys)
= length ys
= 0 + length ys

Induction on finite Lists / Example 2(2)

Induction step
length((x : xs) +-+ys)

= length (z: (zs +-+ys))
1 + length (xs +-+4ys)

(1 4+ length xs) + length ys
= length (x :xs) + length ys

1 4+ (length xs + length ys) (Induction hypothesis)

O
= length [| + length ys
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 41 Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 42
Equality of Functions 1(2)
listSum :: Num a => [a] -> a))
listSum [=0 Equality of Functions 2(2)
listSum (x:xs) = x + listSum xs
Induction step
Proposition
' listSum (z : xs)
Vas. listSum xs = foldr (4+) 0 zs — o 4 listSum zs
Proof ...over the inductive structure of zs = 1z + foldr (+) 0 zs (Induction hypothesis)
Induction start = Jfoldr (+) 0 (z: zs)
listSum |] m|
= 0
= foldr (+) 0]
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 43 Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 44

Properties of map and fold 1(2)

Some more examples of inductively provable properties...

Properties of map and fold 2(2)

We can also show inductively...

(1) If op is associative with e ’op’ x = x and x ’op’ e = x for
map (\x -> x) = \x -> x all x, then for all finite xs
map (f.g) = map £ . ma
P g- p. P& foldr op e xs = foldl op e xs
map f.tail = tail . map £
map f . reverse = reverse . map f (2) 1f
f . t = t . f
map conca conca map (map f) x ’opl’ (y ’op2’ z) = (x ’opl’ y) ’0p2’ z and
map f (xs++ys) = map f xs ++ map f ys X ‘opl’ e = e ’op2’ x
Supposed f is strict, we can additionally prove: then for all finite xs
£ . head = head . map f foldr opl e xs = foldl op2 e xs
(3) For all finite xs
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 45 foldr op e xs = foldl (flip op) e (reverse xs)
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 46
Properties of take and drop
- - - ..for all m, n with m,n > 0 and finite xs holds:
Properties of List Concatenation
take n xs ++ drop n xs = Xxs
...for all xs, ys and zs hold: take m . take n = take (min m n)
d . d =d +
(xs++ys) ++ zs = xs ++ (ys++zs) (Associativity of ++) ToP 1 ToP rop (m+n)
take m . drop n = drop n . take (m+n)
xs++[] = [J++xs ([] neutral element of ++)
..for n > m holds additionally
drop m . take n = take (n-m) . drop m
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 48

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 47

Properties of reverse

..for all finite xs hold:

reverse (reverse xs) = Xs
head (reverse xs) = last xs

last (reverse xs) = head xs

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09)

Finite Lists vs. Streams
Properties of finite lists

e Can...

€.g. take n xs ++ drop n xs = xs

e ...but need not be transferable to streams

€.g. reverse (reverse xs)) = xs

...new proof strategies are required.

49 Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 50
Intuition
Successively approximating lists
e finite situation ...[1,2,3,4]
bottom
botton We say...
1 2 : bottom
1:2 3 : bottom . .
1:2:3:4: bottom ® bottom ...totally undefined list
1:2 3:4 0
e1 :2:3:4:5: .. : bottom ...partial list
e infinite situation ...[1,2,3,4,..
bottom
1 : bottom
1 : 2 : bottom
1 :2: 3 : bottom
1 :2:3:4 : bottom
1 2 :3:4:5 : bottom
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 52
Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 51

Remark

...each Haskell data type has a special value L.

Polymorphic Concrete
bot :: a bot :: Integer
bot = bot

1 represents...
e faulty or non-terminating computations

e can be considered the “least” approximation of (ordinary)
elements of the corresponding data type

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 53

Inductive Proofs over Streams

Proof pattern... Let P be a property of streams

1. Induction start: ...prove that P holds for the least defined
list, i.e. prove P(L) (instead of P(]])).

2. Induction step: ...prove under the assumption of the validity
of P(xzs) (induction hypothesis) the validity of
P(x : xs).

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 54

Induction over Streams / Example 1(2)

Proposition

Vstreams xs. take n xs + + drop n xs = xs

Proof ...over the inductive structure of xs
Induction start

take n L. + + drop n L
= 1 ++ dropn L
= 1

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 55

Induction over Streams / Example 2(2)

Induction step
take n (x :xs) + 4+ drop n (z : xs)
= =z : (take (n—1) s + + drop (n—1) xs
= =z . zs (induction hypothesis)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 56

Further Readings

e L. C. Paulson. Logic and Computation — Interactive Proof
with Cambridge LCF. Cambridge University Press, 1987.

e Simon Thompson. Proof for Functional Programming. In
K. Hammond, G. Michaelson (Hrsg.), Research Directions
in Parallel Functional Programming, Springer, 1999.

e Hanne and Flemming Nielson, Semantics with Applicati-
ons: An Appetizer, Springer-Verlag, Heidelberg, Germany,
2007.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 57

Next Course Meetings...

e Tomorrow, Fri, April 24, 2009, lecture time: 4.15 p.m. to
5.45 p.m., lecture hall EI 3a, 2nd floor, GuBhausstr.25-29

e Thu, May 7, 2009, lecture time: 4.15 p.m. to 5.45 p.m.,
lecture room on the ground floor of the building Argenti-
nierstr. 8

e Fri, May 8, 2009, lecture time: 4.15 p.m. to 5.45 p.m.,
lecture hall EI 3a, 2nd floor, GuBhausstr.25-29

Advanced functional Programming (SS 2008) / Part 4 (Thu, 04/23/09) 58

