

Assignment 6

Advanced functional Programming

Topic: Parsing – Lexical and Syntactical Analysis

Issued on: 06/06/2008, due date: 06/16/2008

For this assignment a Haskell script named AssFFP6.hs shall be writ-
ten offering functions which solve the problems described below. This file
AssFFP6.hs shall be stored in your home directory, as usual on the top
most level. Comment your programs meaningfully. Use constants and au-
xiliary functions, where appropriate.

Consider the programming language While, whose programs are cha-
racterized by the following grammar:

Prog ::= begin Stmt end

Stmt ::= AssStmt | IfStmt | WhileStmt | CompStmt

AssStmt ::= Idf := AExpr

IfStmt ::= if Bexpr then Stmt else Stmt fi

WhileStmt ::= while Bexpr do Stmt od

CompStmt ::= (Stmt ; Stmt)

We assume that Idf denotes an arbitrary identifier and that each identifier
is a non-empty sequence of lower case and upper case letters and digits
starting with a letter. The set of arithmetic and Boolean expressions is
given by the following grammar for expressions.

Expr ::= AExpr | Bexpr

AExpr ::= Term | AExpr Aop Term

Term ::= Factor | Term Mop Factor

Factor ::= Opd | (AExpr)

Opd ::= Numeral | Idf

Aop ::= + | -

Mop ::= * | /

Bexpr ::= (Aexpr Relop Aexpr)

Relop ::= = | /= | > | <

We assume that Numeral denotes an unsigned decimal number (i.e., a
natural number).

• Implement

1. a combinator parser pc and

2. a monadic parser pm

If pc and pm are applied to a While-program, they yield the cor-
responding sequence of tokens. Possible tokens are (where AssOp is
used to denote the assignment operator “:=”):

data Token = Id | AssOp | Num |

LeftParenth | RightParenth |

Plus | Minus | Mult | Div |

Equal | Unequal | Greater | Less |

BeginSymb | EndSymb |

IfSymb | ThenSymb | ElseSymb | FiSymb |

WhileSymb | DoSymb | OdSymb |

SemicolonSymb |

Err

deriving Show

Take care to implement in particular two functions main pc :: String

-> [Token] and main pm :: String -> [Token] allowing to test
the functioning of your parsers. The token Err shall be used by both
parsers, if the input string contains a substring, which does not corre-
spond to one of the tokens above. The remainder of the input string
shall then be discarded; err is then the last token in the result list
of the functions main pc and main pm.

