

Assignment 3


Advanced Functional Programming


Topic: Specification-based Testing


Issued on: 03/19/2008, due date: 04/28/2008


For this assignment a Haskell script named AssFFP3.hs shall be written offering
functions which solve the problems described below. This file AssFFP3.hs shall
be stored in your home directory, as usual on the top most level. Comment your
programs meaningfully. Use constants and auxiliary functions, where appropriate.


In Haskell, an editor buffer can be realized as a string together with the position
of a cursor as shown below:


type Buffer = (Int,String)


empty :: Buffer -- the empty buffer


insert :: Char -> Buffer -> Buffer -- insert character before cursor


delete :: Buffer -> Buffer -- delete character before cursor


left :: Buffer -> Buffer -- move cursor left one character


right :: Buffer -> Buffer -- move cursor right one character


atLeft :: Buffer -> Bool -- is cursor at left end?


atRight :: Buffer -> Bool -- is cursor at right end?


• Provide implementations for the above functions of an editor buffer.


• A more efficient implementation of the editor buffer is possible if the data
type


type BufferI = (String,String)


is used instead of Buffer. We here assume that the first string gives in
reverse order the characters up to (but not including) the one at the cursor
position, the second string the characters starting at (and including) the
character at the cursor position.


Provide implementations for the above buffer functions on the new data type
BufferI, which shall be denoted emptyI, insertI, etc.


• Define a Haskell function retrieve with signature retrieve :: BufferI


-> Buffer, which maps a buffer given in “efficient” representation to the
equivalent buffer in the standard representation.


• Check, using QuickCheck, the correctness of the implementation of the buffer
functions on BufferI with respect to the corresponding functions on Buffer.
We consider the latter as the specification of the buffer operations for this
purpose. Define similarly to the example on queues in lecture part 3 for each
of the above functions one (or more) properties in your Haskell program







allowing to check the desired equivalence of functions. Regarding names,
please follow the naming convention used in the example on queues from
lecture part 2.






