Assignment 1
Advanced Functional Programming
Topics: Higher-order functions
Issued on: 03/19/2008, due date: 04/28/2008

For this assignment a Haskell script named AssFFP1.hs shall be writ-
ten offering functions which solve the problems described below. This file
AssFFP1.hs shall be stored in your home directory, as usual on the top
most level. Comment your programs meaningfully. Use constants and au-
xiliary functions, where appropriate.

e Higher-order functions such as map, filter, and foldl demonstrate
the usefulness of allowing functions as arguments of other functions.
As an exercise we here want to extend our portfolio of higher-order
functions by a few additional instances allowing us in the future to
conveniently deal with various variants of iteration.

To this end, develop Haskell functions for, while, repeat, and loop
with the signatures

—for :: (a ->a) -> Int -> a -> a

— while :: (a -> Bool) -> (a -> a) -> a -> a

— repeat :: (a -> a) -> (a -> Bool) -> a -> a

—loop :: (a ->a) -> (a -> Bool) > (a -> a) > a -> a

which shall be defined as follows:

— Applied to arguments £, n, and z, the expression for f n z shall
evaluate to £ (z), if n is positive; otherwise to z.

— Applied to arguments b, £, and z, the expression while b f z
evaluates to z, if b z evaluates to False; otherwise to while b
f (f 2).

— Applied to arguments £, b, and z, the expression repeat f b z
evaluates to f z, if (b . f) z evaluates to True; otherwise to
repeat f b (f z).

— Applied to arguments f, b, g and z, the expression loop f b g
z evaluates to f z, if (b . f) z evaluates to True; otherwise to
loop f b g ((g . £) 2).



