
Today’s Topic

Parsing: Lexical and syntactical analysis

• Combinator parsing

• Monadic parsing

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 1

Lexical and Syntactical Analysis

• ...in the following summarized as parsing

...an application of functional programming typically used to

demonstrate its power and elegance.

Enjoys a long history. As an example of early work see e.g...

• W. Burge. Recursive Programming Techniques, Addison-

Wesley, 1975.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 2

Parsing – Implementation Variants

Two variants...

• Combinator parsing

; recursive descent parsing

– Graham Hutton. Higher-Order Functions for Par-

sing. Journal of Functional Programming 2(3):323-343,

1992.

• Monadic parsing

– Graham Hutton, Erik Meijer. Monadic Parser Combi-

nators. Technical Report NOTTCS-TR-96-4, Dept. of

Computer Science, University of Nottingham, 1996.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 3

Reference

The following presentation is based on...

• Chapter 17

Simon Thompson. Haskell – The Craft of Functional Pro-

gramming, Addison-Wesley, 2nd edition, 1999.

• Graham Hutton, Erik Meijer. Monadic Parsing in Haskell.

Journal of Functional Programming 1(1), 1993.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 4

Parsing informally

The basic problem...

• Read a sequence of objects of type a and

• extract from this sequence an object or a list of objects of

type b.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 5

Example: Parsing of Expressions

Consider...

• Expressions

data Expr = Lit Int | Var Name | Op Ops Expr Expr

data Ops = Add | Sub | Mul | Div | Mod

Op Mul (Op Add (Lit 2) (Lit 3)) (Lit 3)

corresponds to ((2+3)*3)

The parsing task to be solved...

• Read an expression of the form ((2+3)*5) and yield the
corresponding expression of type expr.

(Note: This can be considered the reverse of the show function. It is

similar to the derived read function, but differs in the arguments it

takes (expressions of the form ((2+3)*5) vs. expressions of the form Op

Mul (Add (Lit 2) (Lit 3)) (Lit 5)).

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 6

Initial Considerations 1(2)

What should be the type of a parsing function?

type BSParse1 a b = [a] -> b

-- Parser Input Expected Output
bracket "(xyz" --> ’(’
number "234" --> 2 or 23 or 234 ?
bracket "234" --> no result, failure?

We have to answer...

How shall the parser behave if there ...

• ...are multiple results?

• ...is a failure?

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 7

Initial Considerations 2(2)

type BSParse2 a b = [a] -> [b]

-- Parser Input Expected Output
bracket "(xyz" --> [’(’]
number "234" --> [2, 23, 234]
bracket "234" --> []

Now we have to answer...

• What shall be done with the remaining input?

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 8

Type of the Parser 1(2)

The conclusion of our initial considerations...

type Parse a b = [a] -> [(b,[a])]

-- Parser Input Expected Output

bracket "(xyz" --> [(’(’, "xyz")]

number "234" --> [(2,"34"), (23,"4"), (234,"")]

bracket "234" --> []

Remark:

• The capability of delivering multiple results enables the
analysis of ambiguous grammars

; list of successes technique

• Each element in the output list represents a successful
parse.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 9

Type of the Parser 2(2)

Convention:

• Delivery of the empty list ...signals failure of the analysis.

• Delivery of a non-empty list ...signals success of the ana-

lysis; each element of the list is a pair, whose first com-

ponent is the identified object (token) and whose second

component is the input not yet considered.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 10

Basic Parsers 1(3)

Primitive, input-independent parsing functions

• The always failing parsing function

none :: Parse a b

none inp = []

• The always successful parsing function

succeed :: b -> Parse a b

succeed val inp = [(val,inp)]

Remark:

• The none parser always fails. It does not accept anything.

• The succeed parser does not consume its input. In BNF-
notation this corresponds to the symbol ε representing the
empty word.

Basic Parsers 2(3)

Primitive, input-dependent parsing functions

• Recognizing single objects (token)...

token :: Eq a => a -> Parse a a

token t (x:xs)

| t == x = [(t,xs)]

| otherwise = []

token t [] = []

• Recognizing single objects satisfying a particular property...

spot :: (a -> Bool) -> Parse a a

spot p (x:xs)

| p x = [(x,xs)]

| otherwise = []

spot p [] = []

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 12

Basic Parsers 3(3)

Application:

bracket = token ’(’

dig = spot isDigit

isDigit :: Char -> Bool

isDigit ch = (’0’ <= ch) && (ch <= ’9’)

Note: ...token can be defined by means of spot

token t = spot (== t)

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 13

Combining Parsers 1(4)

...to obtain (more) complex parsing functions

; Combinator Parsing

...building a library of higher-order polymorphic functions,
which are then used to construct parsers

• Alternatives

alt :: Parse a b -> Parse a b -> Parse a b

alt p1 p2 inp = p1 inp ++ p2 inp

Underlying intuition:

...an expression is either a literal, or a variable or an ope-
rator expression

Example:

(bracket ’alt’ dig) "234" --> [] ++ [(2,"34")]

; ...the alt parser combines the results of the parses given
by parsers p1 and p2

Combining Parsers 2(4)

• Sequential composition of parsers

infixr 5 >*>

(>*>) :: Parse a b -> Parse a c -> Parse a (b,c)

(>*>) p1 p2 inp

= [((y,z),rem2) | (y,rem1) <- p1 inp,

(z,rem2) <- p2 rem1]

Underlying intuition:

...an operator expression starts with a bracket followed by

a number

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 15

Combining Parsers 3(4)

Example:

Because of number "24(" --> [(2,"4("), (24,"(")] we obtain

(number >*> bracket) "24("

--> [((y,z),rem2) | (y,rem1) <- [(2,"4("), (24,"(")],

(z,rem2) <- bracket rem1]

--> [((2,z),rem2) | (z,rem2) <- bracket "4("] ++

[((24,z),rem2) | (z,rem2) <- bracket "("]

--> [] ++ [((24,z),rem2) | (z,rem2) <- bracket "("]

Because of bracket "(" --> [(’(’,"")] we finally obtain

--> [((24,z),rem2) | (z,rem2) <- [(’(’,"")]]

--> [((24,’(’), "")]

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 16

Combining Parsers 4(4)

• Transformation/Modification

; change the item returned by the parser, or build some-
thing from it...

build :: Parse a b -> (b -> c) -> Parse a c

build p f inp = [(f x, rem) | (x,rem) <- p inp]

Example:

(digList ’build’ digsToNum) "21a3"

--> [(digsToNum x,rem) | (x,rem) <- digList "21a3"]

--> [(digsToNum x,rem) | (x,rem) <-

[("2","1a3"),("21","a3")]]

--> [(digsToNum "2", "1a3"), (digsToNum "21", "a3")]

--> [(2,"1a3"), (21,"a3")]

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 17

The Clou

The combinators

• alt

• >*>

• build

together with the basic parsers constitute a universal “parser

basis,” i.e., allow to build any parser which might be desired.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 18

Example: A Parser for a List of Objects

We suppose to be given a parser recognizing single objects:

list :: Parse a b -> Parse a [b]

list p = (succeed []) ’alt’

((p >*> list p) ’build’ (uncurry (:)))

Intuition:

• A list can be empty.
; ...recognized by the parser succeed []

• A list can be non-empty, i.e., it consists of an object follo-

wed by a list of objects.
; ...recognized by the combined parser p >*> list p, whe-
re we use build to turn a pair (x,xs) into the list (x:xs).

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 19

Summary and Conclusion

...about combining parsers (parser combinators)

• Parsing functions in the above fashion are structurally si-

milar to grammars in BNF-form. For each operator of the

BNF-grammar there is a corresponding (higher-order) par-

sing function.

• These higher-order functions combine simple(r) parsing

functions to (more) complex parsing functions.

• They are thus also called combining forms, or, as a

short hand, combinators (cf. Graham Hutton. Higher-

Order Functions for Parsing).

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 20

Overview of the Parsing Functions 1(4)

-- Sequence operator

infixr 5 >*>

-- Parser type

type Parse a b = [a] -> [(b,[a])]

-- Input-independent parsing functions

none :: Parse a b

none inp = []

succeed :: b -> Parse a b

succeed val inp = [(val,inp)]

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 21

Overview of the Parsing Functions 2(4)

-- Recognizing single objects

token :: Eq a => a -> Parse a a

token t = spot (==t)

-- Recognizing single objects satisfying a particular property

spot :: (a -> Bool) -> Parse a a

spot p (x:xs)

| p x = [(x,xs)]

| otherwise = []

spot p [] = []

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 22

Overview of the Parsing Functions 3(4)

-- Alternatives

alt :: Parse a b -> Parse a b -> Parse a b

alt p1 p2 inp = p1 inp ++ p2 inp

-- Sequences

(>*>) :: Parse a b -> Parse a c -> Parse a (b,c)

(>*>) p1 p2 inp

= [((y,z),rem2) | (y,rem1) <- p1 inp, (z,rem2) <- p2 rem1]

-- Transformation/Modification

build :: Parse a b -> (b -> c) -> Parse a c

build p f inp = [(f x, rem) | (x,rem) <- p inp]

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 23

Overview of the Parsing Functions 4(4)

-- Application example

list :: Parse a b -> Parse a [b]

list p = (succeed []) ’alt’

((p >*> list p) ’build’ (uncurry (:)))

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 24

Application: Back to the Initial Example

We consider expressions of the form...

data Expr = Lit Int | Var Name | Op Ops Expr Expr

data Ops = Add | Sub | Mul | Div | Mod

Op Add (Lit 2) (Lit 3) corresponds to 2+3

...where the following convention shall hold:

• Literals ...67, ∼89, etc., where ∼ is used for unary minus

• Names ...the lower case characters from ’a’ to ’z’

• Applications of the binary operations ...+, ∗,−, /,%, where
% is used for mod and / for integer division.

• Expressions are fully bracketed, and white space is not per-
mitted.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 25

A Parser for Expressions 1(3)

The parser consists...

parser :: Parse Char Expr

parser = litParse ’alt’ nameParse ’alt’ opExpParse

...of three parts corresponding to the three sorts of expressions.

Part I: Parsing names of variables

nameParse :: Parse Char Expr

nameParse = spot isName ’build’ Name

isName :: Char -> Bool

isName x = (’a’ <= x && x <= ’z’)

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 26

A Parser for Expressions 2(3)

Part II: Parsing (fully bracketed binary) operator expressions

opExpParse

= (token ’(’ >*>

parser >*>

spot isOp >*>

parser >*>

token ’)’)

’build’ makeExpr

Part III: Parsing literals (numerals)

litParse

= ((optional (token ’~’)) >*>

(neList (spot isDigit))

’build’ (charlistToExpr . uncurry (++))

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 27

A Parser for Expressions 3(3)

Note that a number of supporting functions used such as...

• isOp

• charlistToExpr

• ...

are yet to be defined (; exercise).

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 28

The Top-level Parser

Converting a string to the expression it represents...

topLevel :: Parse a b -> [a] -> b

topLevel p inp

= case results of

[] -> error ‘‘parse unsuccessful’’

_ -> head results

where

results = [found | (found, []) <- p inp]

Note:

• The input string is provided by the value of inp.

• The parse is successful, if the result contains at least one
parse, in which all the input has been read.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 29

Summary and Conclusions 1(2)

Parsers of the form...

type Parse a b = [a] -> [(b,[a])]

none :: Parse a b

succeed :: b -> Parse a b

spot :: (a -> Bool) -> Parse a a

alt :: Parse a b -> Parse a b -> Parse a b

>*> :: Parse a b -> Parse a c -> Parse a (b,c)

build :: Parse a b -> (b -> c) -> Parse a c

topLevel :: Parse a b -> [a] -> b

...support particularly well the construction of so-called recur-

sive descent parsers.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 30

Summary and Conclusions 2(2)

The following language features proved invaluable...

• Higher-order functions ...Parse a b is of a functional type;

all parser combinators are thus higher-order functions, too.

• Polymorphism ...consider again the type of Parse a b: We

do need to be specific about either the input or the out-

put type of the parsers we build. Hence, the above parser

combinator can immediately be reused for other (token-)

and data types.

• Lazy evaluation ...“on demand” generation of the possible

parses, automatical backtracking.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 31

Monadic Parsing

newtype Parser a = Parser (String -> [(a,String)])

We use again the convention:

• Delivery of the empty list ...signals failure of the analysis

• Delivery of a non-empty list ...signals success of the analysis; each ele-
ment of the list is a pair, whose first component is the identified object
(token) and whose second component the input still to be examined

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 32

A Monad of Parsers

Basic Parsers...

• Recognizing single characters...

item :: Parser Char

item = Parser (\cs -> case cs of

"" -> []

(c:cs) -> [(c,cs)])

Compare: item vs. token

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 33

The Parser Monad

Reminder : The class monad...

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Note: Parser is a type constructor. This allows...

instance Monad Parser where

-- The always successful parser

return a = Parser (\cs -> [(a,cs)])

-- Sequences

p >>= f = Parser (\cs -> concat [parse (f a) cs’ |

(a,cs’) <- parse p cs])

Compare: return vs. succeed and (>>=) vs. infixr

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 34

Properties of return and (>>=)

As required for instances of class Monad, we can show...

return a >>= f = f a

p >>= return = p

p >>= (\a -> (f a >>= g)) = (p >>= (\a -> f a)) >>= g

Reminder :

• The above properties are required for each instance of class Monad, not
just for the specific instance of the parser monad

– ...return is left-unit and right-unit for (>>=)
; ...allows a simpler and more concise definition of some parsers

– ...(>>=) is associative
; ...allows suppression of parentheses when parsers are applied

sequentially

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 35

Typical Structure of a Parser 1(2)

...using the operator (>>=)

p1 >>= \a1 ->

p2 >>= \a2 ->

...

pn >>= \an ->

f a1 a2 ... an

Intuition:
There is a natural operational reading of such a parser...

• Apply parser p1 and denote its result value a1

• Apply subsequently parser p2 and denote its result value a2

• ...

• Apply concludingly parser pn and denote its result value an

• Combine finally the intermediate result values by applying some suita-
ble function f

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 36

Typical Structure of a Parser 2(2)

The do-notation allows a more elegant and appealing notati-

on...

do a1 <- p1

a2 <- p2

...

an <- pn

f a1 a2 ... an

Alternatively, in just one line...

do {a1 <- p1; a2 <- p2; ...; an <- pn; f a1 a2 ... an}

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 37

Notational Conventions

Expressions of the form

• ai <- pi are called generators

(since they generate values for the variables ai)

Remark:

A generator of the form ai <- pi can be

• replaced by pi, if the generated value will not be used

afterwards

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 38

Example

A Parser p, which...

• reads three characters

• drops the second character of these and

• returns the first and the third character as a pair

Implementation:

p :: Parser (Char,Char)

p = do {c <- item; item; d <- item; return (c,d)}

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 39

Parser Extensions 1(2)

Monads with a zero and a plus are captured by two built-in

class definitions in Haskell...

class Monad m => MonadZero m where

zero :: m a

class MonadZero m => MonadPlus m where

(++) :: m a -> m a -> m a

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 40

Parser Extensions 2(2)

The type constructor Parser can be made into instances of

these two classes as follows:

• The parser which always fails...

instance MonadZero Parser where

zero = Parser (\cs -> [])

• The parser which non-deterministically selects...

instance MonadPlus Parser where

p ++ q = (\cs -> parse p cs ++ parse q cs)

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 41

Simple Properties 1(2)

We can show...

zero ++ p = p

p ++ zero = p

p ++ (q ++ r) = (p ++ q) ++ r

Remark: The above properties are required to hold for each

monad with zero and plus

Informally :

• ...zero is left-unit and right-unit for (++)

• ...(++) is associative

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 42

Simple Properties 2(2)

Specifically for the parser monad we can additionally show...

zero >>= f = zero

p >>= const zero = zero

(p ++ q) >>= f = (p >>= f) ++ (q >>= f)

p >>= (\a -> f a ++ g a) = (p >>= f) ++ (p >>= g)

Informally :

• ...zero is left-zero and right-zero element for (>>=)

• ...(>>=) distributes through (++)

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 43

Deterministic Selection

The parser which deterministically selects...

(+++) :: Parser a -> Parser a -> Parser a

p +++ q = Parser (\cs -> case parse (p ++ q) cs of

[] -> []

(x:xs) -> [x])

Note:

• (+++) shows the same behavior as (++), but yields at most

one result

• (+++) satisfies all of the previously mentioned properties of

(++)

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 44

Further Parsers

Recognizing...

• single objects satisfying a particular property

sat :: (Char -> Bool) -> Parser Char

sat p = do {c <- item; if p c then return c else zero}

• single objects

char :: Char -> Parser Char

char c = sat (c ==)

• sequences of numbers, lower case and upper case charac-
ters, etc.

...analogously to char

Compare: sat and char vs. spot and token

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 45

Recursion Combinators 1(3)

Useful parsers can often recursively be defined...

• Parse a specific string

string :: String -> Parser String

string "" = return ""

string (c:cs) = do {char c; string cs; return (c:cs)}

• Parse repeated applications of a parser p

(Zero or more applications of p)

many :: Parser a -> Parser [a]

many p = many1 p +++ return []

(One or more applications of p)

many1 :: Parser a -> Parser [a]

many1 p = do {a <- p; as <- many p; return (a:as)}

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 46

Recursion Combinators 2(3)

• Similar to the parser many but with interspersed applications

of the parser sep, whose result values are thrown away

sepby :: Parser a -> Parser b -> Parser [a]

p ’sepby’ sep = (p ’sepby1’ sep) +++ return []

sepby1 :: Parser a -> Parser b -> Parser [a]

p ’sepby1’ sep = do a <- p

as <- many (do {sep; p})

return (a:as)

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 47

Recursion Combinators 3(3)

• Parse repeated applications of a parser p, separated by
applications of a parser op, whose result value is an operator
that is assumed to associate to the left, and which is used
to combine the results from the p parsers

chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a

chainl p op a = (p ’chainl1’ op) +++ return a

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a

p ’chainl1’ op = do {a <- p; rest a}

where

rest a = (do f <- op

b <- p

rest (f a b))

+++ return a

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 48

Lexical Combinators

Suitable combinators allow suppression of a lexical analysis
(token recognition), which traditionally precedes parsing...

• Parsing of a string with blanks and line breaks

space :: Parser String
space = many (sat isSpace)

• Parsing of a token by means of parsers p

token :: Parser a -> Parser a
token p = do {a <- p; space; return a}

• Parsing of a symbol token

symb :: String -> Parser String
symb cs = token (string cs)

• Application of parser p, removal of initial blanks

apply :: Parser a -> String -> [(a,String)]
apply p = parse (do {space; p}]

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 49

Example: Parsing of Expressions 1(3)

Grammar :

...for arithmetic expressions built up from single digits using

the operators +, -, *, /, and parentheses:

expr ::= expr addop term | term

term ::= term mulop factor | factor

factor ::= digit | (expr)

digit ::= 0 | 1 | ... | 9

addop ::= + | -

mulop ::= * | /

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 50

Example: Parsing of Expressions 2(3)

Parsing and evaluating expressions (yielding integer values)
using the chainl1 combinator to implement the left-recursive
production rules for expr and term...

expr :: Parser Int

addop :: Parser (Int -> Int -> Int)

mulop :: Parser (Int -> Int -> Int)

expr = term ’chainl1’ addop

term = factor ’chainl1’ mulop

factor = digit +++ do {symb "("; n <- expr; symb ")"; return n}

digit = do {x <- token (sat isDIgit); return (ord x - ord ’0’)}

addop = do {symb "+"; return (+)} +++ do {symb "-"; return (-)}

mulop = do {symb "*"; return (*)} +++ do {symb "/"; return (div)}

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 51

Example: Parsing of Expressions 3(3)

Example:

Evaluating

apply expr " 1 - 2 * 3 + 4 "

gives the singleton list

[(-1,"")] as desired

as desired.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 52

Further Readings 1(3)

On combinator parsing...

• J. Fokker. Functional Parsers. In: Advanced Functional

Programming, First International Summer School, Sprin-

ger, LNCS 925 (1995), 1-23.

• S. Hill. Combinators for Parsing Expressions. Journal of

Functional Programming 6:445-463, 1996.

• P. Koopman, R. Plasmeijer. Efficient Combinator Parsers.

In Proceedings of Implementation of Functional Langua-

ges, Springer, LNCS 1595 (1999), 122-138.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 53

Further Readings 2(3)

On error-correcting parsing...

• P. Wadler. How to Replace Failure with a List of Succes-

ses, in: Functional Programming Languages and Computer
Architectures, Springer, LNCS 201 (1985), 113 - 128.

• D. Swierstra, P. Azero Alcocer. Fast, Error Correcting Par-

ser Combinators: A Short Tutorial. In Proceedings SOF-
SEM’99, Theory and Practice of Informatics, 26th Seminar
on Current Trends in Theory and Practice of Informatics,
Springer, LNCS 1725 (1999), 111-129.

• D. Swierstra, L. Duponcheel. Deterministic, Error Correc-

ting Combinator Parsers. In: Advanced Functional Pro-

gramming, Second International Spring School, Springer,
LNCS 1129 (1996), 184-207.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 54

Further Readings 3(3)

On parser libraries...

• Daan Leijen, Erik Meijer. Parsec: A Practical Parser Li-

brary. Electronic Notes in Theoretical Computer Science

41(1), 2001.

• A. Gill, S. Marlow. Happy – The Parser Generator for Has-

kell. University of Glasgow, 1995.

http://www.haskell.org/happy

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 55

Next lecture...

• Thu, June 12, 2008, lecture time: 4.15 p.m. to 5.45 p.m.,

lecture room on the ground floor of the building Argenti-

nierstr. 8

Sixth assignment (as well as previous assignments)...

• Please check out the homepage of the course for details.

Advanced functional Programming (SS 2008) / Part 6 (Thu, 06/05/08) 56

