
Today’s Topic

Declarative programming...

• Functional style

• Logical style

Apparently desirable...

• A combination of (features of) functional and logical pro-
gramming

In the following we will show how to...

• Integrate features of logical programming into functional
programming

• Central means: Monads and monadic programming

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 1

Reference

The following presentation is based on...

• Michael Spivey, Silvija Seres. Combinators for Logic Pro-

gramming. In Jeremy Gibbons, Oege de Moor (Eds.), The

Fun of Programming. Palgrave MacMillan, 2003.

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 2

Declarative Programming

• Distinguishing ...emphasizes the “what” rather than the

“how”

– Essence ...programs are declarative assertions about a

problem, rather than imperative solution procedures

• Variants ...functional and logical programming

• Question ...can functional and logical programming be uni-

formly combined?

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 3

Towards Combining Functio-
nal&Logical Programming

Basic approaches...

• Classical ...designing new programming languages, which

enjoy aspects of both programming styles (e.g. Curry)

• Simpler ...implementing an interpreter for one style using

the other style

• Still simpler ...write “logical” programs in Haskell using a

library of combinators

; this is the approach used in the following!

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 4

Further Reading

...on functional/logical programming languages:

• Michael Hanus, Herbert Kuchen, Juan Jose Moreno-

Navarro. Curry: A Truly Functional Logic Language. In

Proceedings of ILPS’95 Workshop on Visions for the Fu-

ture of Logic Programming, 1995, 95-107.

• Zoltan Somogyi, Fergus Herderson, Thomas Conway. Mer-

cury: An Efficient Purely Declarative Logic Programming

Language. In Proceedings of the Australian Computer

Science Conference, 1995, 499-512.

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 5

Remarks on the Combinator Approach
used here

• Advantages and disadvantages in comparison to functio-
nal/logical programming languages

– less expressive

– bus less costly

Central problems

• Modelling logical programs yielding...

– multiple answers

– logical variables (no distinction between input and out-
put variables)

• Modelling of the evaluation strategy inherent to logical
programs

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 6

Running Example: Factoring of Natural
Numbers

...decomposing a positive integer into the set of pairs of its

factors

Example:
Integer Factor-Pairs

24 (1,24), (2,12), (3,8), (4,6), ..., (24,1)

Apparent Solution:

factor :: Int -> [(Int,Int)]

factor n = [(r,s) | r <- [1..n], s <- [1..n], r*s == n]

?factor 24

[(1,24),(2,12),(3,8),(4,6),(6,4),(8,3),(12,2),(24,1)]

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 7

Observation

The previous solution exploits...

• Explicit domain knowledge

– E.g. r ∗ s = n ⇒ r ≤ n ∧ s ≤ n

– This renders possible: Restriction to a finite search
space [1..24] × [1..24]

Often such knowledge is not available. In general...

• The search space cannot be restricted a priori

• Therefore, in the following: Consideration of the factoring
problem as a search problem in an infinite search space
[1..] × [1..]

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 8

Tackling the 1st Problem: Several Re-
sults

Solution ...lists of successes

;lazy lists (Phil Wadler)

Idea

• Functions of type a -> b can on principle be replaced by

functions of type a -> [b]

• Lazy evaluation ensures that the elements of the result list

(list of successes) are provided as their are found, rather

than as a complete list after termination of the computa-

tion

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 9

Back to the Example

Realizing this idea in the factoring example:

factor :: Int -> [(Int,Int)]

factor n = [(r,s) | r <- [1..], s <- [1..], r*s == n]

?factor 24

[(1,24)

...followed by an infinite wait.

...thus it is of questionable practical value.

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 10

Remedy: Fair Order via Diagonalization

Run through the search space of pairs in a fair order:

factor n = [(r,s) | (r,s) <- diagprod [1..][1..], r*s == n]

where

diagprod :: [a] -> [b] -> [(a,b)]

diagprod xs ys = [(xs!!i, y!!(n-i) | n <- [0..], i <- [0..n]]

...each pair (x,y) is reached after a finite number of steps

[(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),...]

Hence, in our example:

?factor 24

[(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),(1,24),(24,1)

...and consequently all results; followed, however, by

an infinite wait again.

Certainly: ...this was expected, since the search space is infinite

Systematic Remedy: Using Monads

Reminder :

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Convention for the following development:

• Stream a ...for potentially infinite lists

• [a] ...for finite lists

• Note: The distinction between Stream a for infinite lists
and [a] for finite lists is only conceptually. The following
definition makes this explicit:

type Stream a = [a]

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 12

List Monad

The monad of (potentially infinite) lists

-- return yields the singleton list

return :: a -> Stream a

return x = [x]

-- binding operator defined as follows

(>>=) :: Stream a -> (a -> Stream b) -> Stream b

xs >>= f = concat (map f xs)

-- other monad operations irrelevant in this context

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 13

Benefit 1(2)

...return and (>>=) allow to model/to replace list comprehen-
sion:

We have: The expression

[(x,y) | x <- [1..], y <- [10..]]

...is equivalent to

concat (map (\x -> [(x,y) | y <- [10..]])[1..])

...is equivalent to

concat (map (\x -> concat (map (\y -> [(x,y)])[10..]))[1..])

Using return and (>>=) this can concisely be expressed by:

[1..] >>= (\x -> [10..] >>= (\y -> return (x,y)))

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 14

Benefit 2(2)

...and Haskell’s do-notation allows an even more compact equi-

valent representation:

do x <- [1..]; y <- [10..]; return (x,y)

Recall:

General Rule:

do x1 <- e1; x2 <- e2; ... ; xn <- en; e

...is semantially equivalent to

e1 >>= (\x1 -> e2 >>= (\x2 -> ... >>= (\xn -> e)...))

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 15

Fairness: Adapting the binding operator
(>>=) 1(5)

Are we done? Not yet because...

Exploring the pairs of the search space is still not fair.

The expression

do x <- [1..]; y <- [10..]; return (x,y)

yields the stream

[(1,10),(1,11),(1,12),(1,13),(1,14),...

This problem is going to be tackled next...

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 16

Fairness: Adapting the binding operator
(>>=) 2(5)

Idea ...embedding diagonalization in (>>=)

Implementation

Introducing a new type Diag a:

newtype Diag a = MkDiag (Stream a) deriving Show

...and an auxiliary function for stripping off the type construc-

tor MkDiag

unDiag (MkDiag xs) = xs

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 17

Fairness: Adapting the binding operator
(>>=) 3(5)

Diag is made an instance of the constructor class Monad:

instance Monad Diag where

return x = MkDiag [x]

MkDiag xs >>= f = MkDiag (concat (diag (map (unDiag . f) xs)))

where

-- Rearranging the values into a fair order

diag :: Stream (Stream a) -> Stream [a]

diag [] = []

diag (xs:xss) = lzw (++) [[x] | x <- xs] ([] : diag xss)

-- lzw equals zipWith, however, the non-empty remainder

-- of the list is attached, if an argument list gets empty

lzw :: (a -> a -> a) -> Stream a -> Stream a -> Stream a

lzw f [] ys = ys

lzw f xs [] = xs

lzw f (x:xs) (y:ys) = (f x y) : (lzw f xs ys)

Fairness 4(5)

Intuition:

• return yields the singleton list

• undiag strips off the constructor added by the function f

:: a -> Diag b

• diag arranges the elements of the list into a fair order

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 19

Fairness 5(5)

The idea underlying diag:

...transforms an infinite list of infinite lists

[[x11,x12,x13,...],[x21,x22,...],[x31,x32,...],...]

...into an infinite list of finite diagonals

[[x11],[x12,x21],[x13,x22,x31],...]

Thereby:

?do x <- MkDiag [1..]; y <- MkDiag [10..]; return (x,y)

MkDiag[(1,10),(1,11),(2,10),(1,12),(2,11),(3,10),(1,13),...

Thus now achieved: The pairs are delivered in a fair order!

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 20

Back to the Factoring Problem 1(3)

Current state of our solution:

• Generating (pairs in a fair order): done

• Selecting (those pairs being part of the solution): still open

Approach for solving the selection problem: ...filtering with
conditions

For that purpose...

class Monad m => Bunch m where

zero :: m a -- empty result, no answer

alt :: m a -> m a -> m a -- all answers either in xm or ym

wrap :: m a -> m a -- answers yielded by auxiliary

-- calculations; right now, wrap is

-- defined as the identity function

The value zero allows to express an empty answer set.

Back to the Factoring Problem 2(3)

In detail: The instance declaration for ordinary lazy lists

instance Bunch [] where

zero = []

alt xs ys = xs ++ ys

wrap xs = xs

and for the monad Diag:

instance Bunch Diag where

zero = MkDiag[]

alt (MkDiag xs)(MkDiag ys) = MkDiag (shuffle xs ys)

wrap xm = xm

shuffle [] ys = ys

shuffle (x:xs) ys = x : shuffle ys xs

(Remark: alt and wrap will be used only later.)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 22

Back to the Factoring Problem 3(3)

By means of zero, test yields the key for filtering...

test :: Bunch m => Bool -> m()

test b = if b then return() else zero

This doesn’t look useful, but it provides the key to filtering:

?do x <- [1..]; () <- test (x ’mod’ 3 == 0); return x

[3,6,9,12,15,18,21,24,27,30,33,...

?do x <- MkDiag [1..]; test (x ’mod’ 3 == 0); return x

MkDiag[3,6,9,12,15,18,21,24,27,30,33,...

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 23

Are we done? 1(2)

Not yet! Consider...

?do r <- MkDiag[1..]; s <- MkDiag[1..]; test(r*s==24); return (r,s)

MkDiag[(1,24)

...followed by an infinite wait.

What are the reasons for that...

do r <- MkDiag[1..]; s <- MkDiag[1..]; test(r*s==24); return (r,s)

is equivalent to

do x <- MkDiag[1..]

(do y <- MkDiag[1..]; test(x*y==24); return (x,y))

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 24

Are we done? 2(2)

I.e. the generator for y is merged with the subsequent test to

the following (sub-) expression:

do y <- MkDiag[1..]; test(x*y==24); return (x,y)

Intuition:

• This expression yields for a given value of x all values of y

with x ∗ y = 24

• For x = 1 the answer (1,24) will be found, in order to

search in vain for further values of y

• For x = 5 we thus do not observe any output

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 25

Solution Approach

The deeper reason for this undesired behaviour...

Missing associativity of (>>=) for Diag.

(xm >>= f) >>= g = xm >>= (\x -> f x >>= g)

...does not hold for (>>=) and Diag!

Remedy ...explicit ordering

?do (x,y) <- (do u <- MkDiag[1..]; v <- MkDiag[1..]; return (u,v))

test (x*y==24); return (x,y)

MkDiag[(4,6),(6,4),(3,8),(8,3),(2,12),(12,2),(1,24),(24,1)

...all results, subsequently followed by an infinite wait

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 26

Remarks

• ...all results, subsequently followed by an infinite wait

...is the best we can hope for if the search space is infinite.

• ...explicit ordering

...required only because of missing associativity of >>=,

otherwise both expressions would be equivalent.

• In the following

...avoid infinite waiting by indicating that a result has not

(yet) been found.

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 27

Indicating that no solution is found...

To this purpose... a new type and breadth search

Intuition

• Type Matrix ...infinite list of finite lists

• Goal ...a program, which yields a matrix of answers, where

row i contains all answers, which can be computed with

costs c(i).

• Solving the indication problem ...by returning the empty

list in a row (means “nothing found”)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 28

Implementation... 1(3)

A new type

newtype Matrix a = MkMatrix (Stream [a]) deriving Show

with an auxiliary function for stripping off the constructor

unMatrix (MkMatrix xm) = xm

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 29

Implementation... 2(3)

Preliminary definitions to make Matrix an instance of class
Bunch:

return x = MkMatrix[[x]] -- Matrix with a single row

zero = MkMatrix[] -- Matrix without rows

alt(MkMatrix xm) (MkMatrix ym) = MkMatrix(lzw (++) xm ym)

wrap(MkMatrix xm) = MkMatrix([]:xm) -- the clou is encoded in wrap!

(>>=) :: Matrix a -> (a -> Matrix b) -> Matrix b

(MkMatrix xm) >>= f = MkMatrix (bindm xm (unMatrix . f))

bindm :: Stream[a] -> (a -> Stream[b]) -> Stream[b]

bindm xm f = map concat (diag (map (concatAll . map f) xm))

concatAll :: [Stream [b]] -> Stream [b]

concatAll = foldr (lzw (++)) []

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 30

Implementation... 3(3)

In total we are now ready to make Matrix an instance of Monad

and Bunch...

instance Monad Matrix where

return x = MkMatrix[[x]]

(MkMatrix xm) >>= f = MkMatrix(bindm xm (unMatrix . f))

instance Bunch Matrix where

zero = MkMatrix[]

alt(MkMatrix xm)(MkMatrix ym) = MkMatrix(lzw (++) xm ym)

wrap(MkMatrix xm) = MkMatrix([]:xm)

intMat = MkMatrix[[n] | n <- [1..]]

Example

?do r <- intMat; s <- intMat; test(r*s==24); return (r,s)

MkMatrix[[],[],[],[],[],[],[],[],[(4,6),(6,4)],[(3,8),(8,3)],

[],[],[(2,12),(12,2)],[],[],[],[],[],[],[],[],[],[],

[(1,24),(24,1)],[],[],[],...

Independence of the Search Strategy
1(2)

Breadth search (MkMatrix[[n]|n<-[1..]]), depth search ([1..]),

diagonalization...

Additional functions in order to be able to fix the strategy at

the time of calling (“just in time”)...

Control via a monad type...

choose :: Bunch m => Stream a -> m a

choose (x:xs) = wrap (return x ’alt’ choose xs)

factor :: Bunch m => Int -> m(Int, Int)

factor n = do r <- choose[1..]; s <- choose[1..];

test(r*s==n); return (r,s)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 32

Independence of the Search Strategy
2(2)

This allows...

• Usage of factor with different search strategies

• The specified type of factor determines the search monad

(and hence the search strategy)

?factor 24 :: Stream(Int,Int)

[(1,24)

?factor 24 :: Matrix(Int, Int)

Matrix[[],[],[],[],[],[],[],[],[],[],[(4,6),(6,4)],

[(3,8),(8,3)],[],[],[(2,12),(12,2)],[],[],[],[],[],[],

[],[],[],[],[(1,24),(24,1)],[],[],[],...

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 33

Summary of Progress

Reminder...

Central problems

• Modelling logical programs with...

– multiple results: done (essentially by means of lazy lists)

– logical variables: still open

∗ Common for logical programs: not a pure simplification of an
initially completely given expression, but a simplification of an
expression containing variables, for which appropriate values ha-
ve to be determined. In the course of the computation, varia-
bles can be replaced by other subexpressions containing variables
themselves, for which then appropriate values have to be found.

– Modelling of the evaluation strategy inherent to logical programs:
done

∗ implicit search of logical programming languages has been made
explicit

∗ by means of type classes of Haskell even different search strate-
gies were conveniently be realizable

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 34

Tackling the Final Problem: Terms,
Substitutions & Predicates 1(5)

Towards the modelling in Haskell...

Terms will describe values of logical variables

data Term = Int Int | Nil | Cons Term Term | Var Variable

deriving Eq

Named variables will be used for formulating queries, generated

variables evolve in the course of the computation

data Variable = Named String | Generated Int

deriving (Show, Eq)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 35

Terms, Substitutions & Predicates 2(5)

Some auxiliary functions

• for transforming a string into a named variable

var :: String -> Term

var s = Var (Named s)

• for constructing a term representation of a list of integers

list :: [Int] -> Term

list xs = foldr Cons Nil (map Int xs)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 36

Terms, Substitutions & Predicates 3(5)

Substitution and unification

-- Substitution: essentially a mapping from variables to terms

-- Details later

newtype Subst

Further support functions

apply :: Subst -> Term -> Term

idsubst :: Subst

unify :: (Term, Term) -> Subst -> Maybe Subst

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 37

Terms, Substitutions & Predicates 4(5)

Logical programs (in our Haskell environment) with m of type

bunch:

-- Logical programs have type Pred m

type Pred m = Answer -> m Answer

-- Answers; the integer-component controls

-- the generation of new variables

newtype Answer = MkAnswer (Subst, Int)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 38

Terms, Substitutions & Predicates 5(5)

-- "Initial answer"

initial :: Answer

initial = MkAnswer (idsubst, 0)

run :: Bunch m => Pred m -> m Answer

run p = p initial

-- "Program run of a predicate as query", where

-- p is applied to the initial answer

run p :: Stream Answer

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 39

Writing logical programs

Example...

append(a,b,c) where a,b lists and c concatenation of a and b

Implementation as a function of terms on predicates...

append :: Bunch m => (Term, Term, Term) -> Pred m

-- Implementation of append (later!) and of appropriate

-- Show-Functions is supposed

?run(append(list[1,2],list[3,4],var "z")) :: Stream Answer

[{z=[1,2,3,4]}]

-- note: more accurate and equivalent to the above list would be:

Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 40

Combinators for logical programs 1(4)

Simple predicates are formed by means of the operators (=:=)

(equality of terms):

?run(var "x" =:= Int 3) :: Stream Answer

[{x=3}]

Implementation of (=:=) by means of unify:

(=:=) :: Bunch m => Term -> Term -> Pred m

(t=:=u)(MkAnswer(s,n)) =

case unify(tu) s of

Just s’ -> return(MkAnswer(s’,n))

Nothing -> zero

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 41

Combinators for logical programs 2(4)

Conjunction of predicates by means of the operator (&&&) (con-
junction):

?run(var "x" =:= Int 3 &&& var "y" =:= Int 4) :: Stream Answer

[{x=3,y=4}]

?run(var "x" =:= Int 3 &&& var "x" =:= Int 4) :: Stream Answer

[]

Implementation by means of the operator (>>=) of type bunch:

(&&&) :: Bunch m => Pred m -> Pred m -> Pred m

(p &&& q) s = p s >>= q

-- equivalent and emphasizing the sequentiality would be

do t <- p s; u <- q t; return u

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 42

Combinators for logical programs 3(4)

Disjunction of predicates by means of the operator (|||) (Dis-

junction):

?run(var "x" =:= Int 3 ||| var "x" =:= Int 4) :: Stream Answer

[{x=3,x=4}]

Implementation by means of the operator alt of type bunch:

(|||) :: Bunch m => Pred m -> Pred m -> Pred m

(p ||| q) s = alt (p s) (q s)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 43

Combinators for logical programs 4(4)

Introducing new variables in predicates (exploiting the integer-

component of answers)

...on the construction of local variables in recursive predicates

exists :: Bunch m => (Term -> Pred m) -> Pred m

exists p (MkAnswer (s,n)) =

p (Var(Generated n)) (MkAnswer(s,n+1))

Also for handling recursive predicates

...ensures that in connection with Matrix the costs per recur-

sion unfolding increase by 1

step :: Bunch m => Pred m -> Pred m

step p s = wrap (p s)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 44

Example

Examples of applications of wrap and step

?run (var "x" =:= Int 0) :: Matrix Answer

MkMatrix[[{x=0}]]

?run(step(var "x" =:= Int 0)) :: Matrix Answer

MkMatrix[[],[{x=0}]]

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 45

Recursive Programs 1(2)

This allows us to provide the implementation of append:

append(p,q,r) =

step(p =:= Nil &&& q =:= r

||| exists (\x -> exists (\a -> exists (\b ->

p =:= Cons x a &&& r =:= Cons x b

&&& append(a,q,b)))))

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 46

Recursive Programs 2(2)

Also the following application is possible (which is common for

logical programs):

The concatenation of which lists equals the list [1,2,3]?

?run(append(var "x", var "y", list[1,2,3])) :: Stream Answer

[{x = Nil, y = [1,2,3]},

{x = [1], y = [2,3]},

{x = [1,2], y = [3]},

{x = [1,2,3], y = Nil}]

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 47

A More Complex Example 1(2)

Constructing “good” sequences consisting of zeros and ones.

Convention

1. The sequence [0] is good

2. If the sequences s1 and s2 are good, then also the sequence

[1] ++ s1 ++ s2

3. Except of the sequences according to 1. and 2., there are

no other good sequences

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 48

A More Complex Example 2(2)

Implementation as predicate

good(s) =

step (s =:= Cons(Int 0) Nil

||| exist (\t -> exists (\q -> exists (\r ->

s =:= Cons (Int 1) t &&& append(q,r,t)

&&& good(q) &&& good(r)))))

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 49

Examples 1(4)

Test of being “good”:

?run (good (list[1,0,1,1,0,0,1,0,0])) :: Stream Answer

[{}] -- empty answer set, if list is good

?run (good (list[1,0,1,1,0,0,1,0,1])) :: Stream Answer

[] -- no answer, if list is not good

Note: The “empty answer” and “no answer” correspond to

“yes” and “no” of a Prolog system.

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 50

Examples 2(4)

Constructing good lists

-- Unfair bunch-type: some answers are missing

?run(good(var "s")) :: Stream Answer

[{s=[0]},

{s=[1,0,0]},

{s=[1,0,1,0,0]},

{s=[1,0,1,0,1,0,0]},

{s=[1,0,1,0,1,0,1,0,0]},...

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 51

Examples 3(4)

-- For comparison: fair bunch-type

?run(good(var "s")) :: Diag Answer

Diag[{s=[0]},

{s=[1,0,0]},

{s=[1,0,1,0,0]},

{s=[1,0,1,0,1,0,0]},

{s=[1,1,0,0,0]},

{s=[1,0,1,0,1,0,1,0,0]},

{s=[1,1,0,0,1,0,0]},

{s=[1,0,1,1,0,0,0]},

{s=[1,1,0,0,1,0,1,0,0]},...

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 52

Examples 4(4)

-- For comparison: breadth-first search bunch-type

-- The output of results is more "predictable"

?run(good(var "s")) :: Matrix Answer

MkMatrix[[],

[{s=[0]}],[],[],[],

[{s=[1,0,0]}],[],[],[],

[{s=[1,0,1,0,0]}],[],

[{s=[1,1,0,0,0]}],[],

[{s=[1,0,1,0,1,0,0]}],[],

[{s=[1,0,1,1,0,0,0]}],{s=[1,1,0,0,1,0,0]}],[],

...

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 53

Finally: Definitions still to be delivered
1(4)

New infix operators

infixr 4 =:=

infixr 3 &&&

infixr 2 |||

Substition

newtype Subst = MkSubst [(Var, Term)]

unSubst(MkSubst s) = s

idsubst = MkSubst[]

extend x t (MkSubst s) = MkSubst ((x,t):s)

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 54

Definitions to be delivered 2(4)

Application of substitution

apply :: Subst -> Term -> Term

apply s t =

case deref s t of

Cons x xs -> Cons (apply s x) (apply s xs)

t’ -> t’

deref :: Subst -> Term -> Term

deref s (Var v) =

case lookup v (unSubst s) of

Just t -> deref s t

Nothing -> Var v

deref s t = t

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 55

Definitions to be delivered 3(4)

Unification

unify :: (Term, Term) -> Subst -> Maybe Subst

unify (t,u) s =

case (deref s t, deref s u) of

(Nil, Nil) -> Just s

(Cons x xs, Cons y ys) -> unify (x,y) s >>= unify (xs, ys)

(Int n, Int m) | (n==m) -> Just s

(Var x, Var y) | (x==y) -> Just s

(Var x, t) -> if occurs x t s then Nothing

else Just (extend x t s)

(t, Var x) -> if occurs x t s then Nothing

else Just (extend x t s)

(_,_) -> Nothing

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 56

Definitions to be delivered 4(4)

occurs :: Variable -> Term -> Subst -> Bool

occurs x t s =

case deref s t of

Var y -> x == y

Cons y ys -> occurs x y s || occurs x ys s

_ -> False

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 57

Next lectures...

• Thu, June 5, 2008: lecture time: 4.15 p.m. to 5.45 p.m.,

lecture room on the ground floor of the building Argenti-

nierstr. 8

• Thu, June 12, 2007, lecture time: 4.15 p.m. to 5.45 p.m.,

lecture room on the ground floor of the building Argenti-

nierstr. 8

Fifth assignment (as well as previous assignments)...

• Please check out the homepage of the course for details.

Advanced functional Programming (SS 2008) / Part 5 (Thu, 05/29/08) 58

