Well-definedness \& Correctness Issues

- Streams and functions on streams
...well-defined?
- Correctness of programs, proof of program properties ...recursion vs. induction, proofs by induction

First...

- Mathematical background
...CPOs, fixed points, fixed point theorems

References

The following presentation is based on...

- Hanne Riis Nielson, Flemming Nielson. Semantics with Applications - A Formal Introduction. Wiley, 1992. http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
- Chapter 11 and 14

Paul Hudak. The Haskell School of Expression - Learning Functional Programming through Multimedia. Cambridge University Press, 2000.

- Chapter 8 and 17

Simon Thompson. Haskell - The Craft of Functional Programming. Addison-Wesley, 2nd edition, 1999.

- Chapter 10

Peter Pepper, Petra Hofstedt. Funktionale Programmierung. Springer-Verlag, Heidelberg, Germany, 2006. (In German)

Sets and Relations 1(2)

Let M be a set and R a relation on M, i.e. $R \subseteq M \times M$.
Then R is called..

- reflexive iff $\forall m \in M . m R m$
- transitive iff $\forall m, n, p \in M . m R n \wedge n R p \Rightarrow m R p$
- anti-symmetric iff $\forall m, n \in M . m R n \wedge n R m \Rightarrow m=n$

Related further notions... (though less important for us in the following)

- symmetric iff $\forall m, n \in M . m R n \Longleftrightarrow n R m$
- total iff $\forall m, n \in M . m R n \vee n R m$

Sets and Relations 2(2)

A relation R on M is called a...

- quasi-order iff R is reflexive and transitive
- partial order iff R is reflexive, transitive, and anti-symmetric

For the sake of completeness we recall..

- equivalence relation iff R is reflexive, transitive, and symmetric
...i.e., a partial order is an anti-symmetric quasi-order, an equivalence relation a symmetric quasi-order.

Note: We here use terms like "partial order" as a short hand for the more accurate term "partially ordered set".

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Bounds, least and greatest Elements

Let (Q, \sqsubseteq) be a quasi-order, let $q \in Q$ and $Q^{\prime} \subseteq Q$.
Then q is called...

- upper (lower) bound of Q^{\prime}, in signs: $Q^{\prime} \sqsubseteq q\left(q \sqsubseteq Q^{\prime}\right)$, if for all $q^{\prime} \in Q^{\prime}$ holds: $q^{\prime} \sqsubseteq q\left(q \sqsubseteq q^{\prime}\right)$
- least upper (greatest lower) bound of Q^{\prime}, if q is an upper (lower) bound of Q^{\prime} and for every other upper (lower) bound \widehat{q} of Q^{\prime} holds: $q \sqsubseteq \widehat{q}(\widehat{q} \sqsubseteq q)$
- greatest (least) element of Q, if holds: $Q \sqsubseteq q$ ($q \sqsubseteq Q$)

Uniqueness of Bounds

- Given a partial order, least upper and greatest lower bounds are uniquely determined, if they exist.
- Given existence (and thus uniqueness), the least upper (greatest lower) bound of a set $P^{\prime} \subseteq P$ of the basic set of a partial order (P, \sqsubseteq) is denoted by $\bigsqcup P^{\prime}\left(\Pi P^{\prime}\right)$. These elements are also called supremum and infimum of P^{\prime}.
- Analogously this holds for least and greatest elements. Given existence, these elements are usually denoted by \perp and T.

Lattices and Complete Lattices

Let (P, \sqsubseteq) be a partial order.
Then (P, \sqsubseteq) is called $\mathrm{a} \ldots$

- lattice, if each finite subset P^{\prime} of P contains a least upper and a greatest lower bound in P
- complete lattice, if each subset P^{\prime} of P contains a least upper and a greatest lower bound in P
..(complete) lattices are special partial orders.

Complete Partial Orders

...a slightly weaker, in computer science, however, often sufficient and thus more adequate notion:

Let (P, \sqsubseteq) be a partial order.
Then (P, \sqsubseteq) is called...

- complete, or shorter a CPO (complete partial order), if each ascending chain $C \subseteq P$ has a least upper bound in P.

We have:

- A CPO (C, \sqsubseteq) (more accurate would be: "chain-complete partially ordered set (CCPO)") has always a least element. This element is uniquely determined as supremum of the empty chain and usually denoted by $\perp: \perp={ }_{d f} \sqcup \emptyset$.

Chains

Let (P, \sqsubseteq) be a partial order.
A subset $C \subseteq P$ is called...

- chain of P, if the elements of C are totally ordered. For $C=\left\{c_{0} \sqsubseteq c_{1} \sqsubseteq c_{2} \sqsubseteq \ldots\right\}\left(\left\{c_{0} \sqsupseteq c_{1} \sqsupseteq c_{2} \sqsupseteq \ldots\right\}\right)$ we also speak more precisely of an ascending (descending) chain of P.

A chain C is called...

- finite, if C is finite; infinite otherwise.

A partial order (P, \sqsubseteq) is called

- chain-finite (German: kettenendlich) iff P is free of infinite chains

An element $p \in P$ is called

- finite iff the set $Q={ }_{d f}\{q \in P \mid q \sqsubseteq p\}$ is free of infinite chains
- finite relative to $r \in P$ iff the set $Q={ }_{d f}\{q \in P \mid r \sqsubseteq q \sqsubseteq p\}$ is free of infinite chains

(Standard) CPO Constructions 1(4)

Flat CPOs..
Let (C, \sqsubseteq) be a CPO. Then (C, \sqsubseteq) is called...

- flat, if for all $c, d \in C$ holds: $c \sqsubseteq d \Leftrightarrow c=\perp \vee c=d$

(Standard) CPO Constructions 2(4)
Product construction..
Let $\left(P_{1}, \sqsubseteq_{1}\right),\left(P_{2}, \sqsubseteq_{2}\right), \ldots,\left(P_{n}, \sqsubseteq_{n}\right)$ be CPOs. Then...
- the non-strict (direct) product ($\times P_{i}, \sqsubseteq$) with
$-\left(\times P_{i}, \sqsubseteq\right)=\left(P_{1} \times P_{2} \times \ldots \times P_{n}, \sqsubseteq\right)$ with $\forall\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, $\left(q_{1}, q_{2}, \ldots, q_{n}\right) \in \times P_{i} .\left(p_{1}, p_{2}, \ldots, p_{n}\right) \sqsubseteq\left(q_{1}, q_{2}, \ldots, q_{n}\right) \Rightarrow$ $\forall i \in\{1, \ldots, n\} . p_{i} \sqsubseteq_{i} q_{i}$
- and the strict (direct) product (smash product) with
$-\left(\otimes P_{i}, \sqsubset\right)=\left(P_{1} \otimes P_{2} \otimes \ldots \otimes P_{n}, \sqsubset\right)$, where \sqsubset is defined as above under the additional constraint:

$$
\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\perp \Rightarrow \exists i \in\{1, \ldots, n\} . p_{i}=\perp_{i}
$$

are CPOs, too.

(Standard) CPO Constructions 3(4)

Sum construction..
Let $\left(P_{1}, \sqsubseteq_{1}\right),\left(P_{2}, \sqsubseteq_{2}\right), \ldots,\left(P_{n}, \sqsubseteq_{n}\right)$ CPOs. Then...

- the direct sum $\left(\oplus P_{i}, \sqsubseteq\right)$ with..
- $\left(\oplus P_{i}, \sqsubseteq\right)=\left(P_{1} \dot{\cup} P_{2} \dot{\cup} \ldots \dot{\cup} P_{n}, \sqsubseteq\right)$ disjoint union of $P_{i}, i \in$ $\{1, \ldots, n\}$ and $\forall p, q \in \bigoplus P_{i} . p \sqsubseteq q \Rightarrow \exists i \in\{1, \ldots, n\} . p, q \in$ $P_{i} \wedge p \sqsubseteq_{i} q$ and the identification of the least elements of $\left(P_{i}, \sqsubseteq_{i}\right), i \in\{1, \ldots, n\}$, i.e. $\perp=_{d f} \perp_{i}, i \in\{1, \ldots, n\}$
is a CPO

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

(Standard) CPO Constructions 4(4)

Function space...
Let $\left(C, \sqsubseteq_{C}\right)$ and $\left(D, \sqsubseteq_{D}\right)$ be two CPOs and $[C \rightarrow D]={ }_{d f}$ $\{f: C \rightarrow D \mid f$ continuous $\}$ the set of continuous functions from C to D

Then...

- the continuous function space $([C \rightarrow D], \sqsubseteq)$ is a CPO where

$$
-\forall f, g \in[C \rightarrow D] . f \sqsubseteq g \Longleftrightarrow \forall c \in C . f(c) \sqsubseteq_{D} g(c)
$$

Functions on CPOs / Properties

Let $\left(C, \sqsubseteq_{C}\right)$ and $\left(D, \sqsubseteq_{D}\right)$ be two CPOs and let $f: C \rightarrow D$ be a function from C to D.

Then f is called..

- monotone iff $\forall c, c^{\prime} \in C . c \sqsubseteq_{C} c^{\prime} \Rightarrow f(c) \sqsubseteq_{D} f\left(c^{\prime}\right)$
(Preservation of the ordering of elements)
- continuous iff $\forall C^{\prime} \subseteq C . f\left(\sqcup_{C} C^{\prime}\right)={ }_{D} \sqcup_{D} f\left(C^{\prime}\right)$
(Preservation of least upper bounds)
Let (C, \sqsubseteq) be a CPO and let $f: C \rightarrow C$ be a function on C.
Then f is called...
- inflationary (increasing) iff $\forall c \in C . c \sqsubseteq f(c)$

Functions on CPOs / Results

Using the notations introduced before...

Lemma

f is monotone iff $\forall C^{\prime} \subseteq C . f\left(\sqcup_{C} C^{\prime}\right) \supseteq_{D} \bigsqcup_{D} f\left(C^{\prime}\right)$

Corollary

A continuous function is always monotone, i.e. f continuous $\Rightarrow f$ monotone.

Least and greatest Fixed Points 2(2)

Let $d, c_{d} \in C$. Then c_{d} is called...

- conditional (German: bedingter) least fixed point of f wrt d iff c_{d} is the least fixed point of C with $d \sqsubseteq c_{d}$, i.e. for all other fixed points x of f with $d \sqsubseteq x$ holds: $c_{d} \sqsubseteq x$.

Notations:

The least resp. greatest fixed point of a function f is usually denoted by μf resp. νf.

Least and greatest Fixed Points 1(2)

Let (C, \sqsubseteq) be a CPO, $f: C \rightarrow C$ be a function on C and let c be an element of C, i.e., $c \in C$.

Then c is called...

- fixed point of f iff $f(c)=c$

A fixed point c of f is called...

- least fixed point of f iff $\forall d \in C . f(d)=d \Rightarrow c \sqsubseteq d$
- greatest fixed point of f iff $\forall d \in C . f(d)=d \Rightarrow d \sqsubseteq c$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Fixed Point Theorem

Theorem (Knaster/Tarski, Kleene)
Let (C, \sqsubseteq) be a CPO and let $f: C \rightarrow C$ be a continuous function on C.

Then f has a least fixed point μf, which equals the least upper bound of the chain (so-called Kleene-Chain) $\left\{\perp, f(\perp), f^{2}(\perp), \ldots\right\}$, i.e.

$$
\mu f=\sqcup_{i \in \mathbb{N}_{0}} f^{i}(\perp)=\sqcup\left\{\perp, f(\perp), f^{2}(\perp), \ldots\right\}
$$

Proof of the Fixed Point Theorem 1(4)

We have to prove: $\mu f \ldots$

1. exists
2. is a fixed point
3. is the least fixed point

Proof of the Fixed Point Theorem 3(4)

2. Fixed point property

$$
\begin{aligned}
& f\left(\sqcup_{i \in \mathbb{N}_{0}} f^{i}(\perp)\right) \\
(f \text { continuous }) & =\sqcup_{i \in \mathbb{N}_{0}} f\left(f^{n} \perp\right) \\
& =\sqcup_{i \in \mathbb{N}_{1}} f^{n} \perp \\
(K \text { chain } \Rightarrow \sqcup K=\perp \sqcup \sqcup K) & =\sqcup_{i \in \mathbb{N}_{1} f^{n} \perp \sqcup \perp}\left(f^{0} \perp=\perp\right) \\
& =\sqcup_{i \in \mathbb{N}_{0} f^{n} \perp} \\
& =\sqcup_{i \in \mathbb{N}_{0}} f^{i}(\perp)
\end{aligned}
$$

Proof of the Fixed Point Theorem 2(4)

1. Existence

- It holds $f^{0} \perp=\perp$ and $\perp \sqsubseteq c$ for all $c \in C$.
- By means of (complete) induction we can show: $f^{n} \perp \sqsubseteq$ $f^{n} c$ for all $c \in C$.
- Thus we have $f^{n} \perp \sqsubseteq f^{m} \perp$ for all n, m with $n \leq m$. Hence, $\left\{f^{n} \perp \mid n \geq 0\right\}$ is a (non-finite) chain of C.
- The existence of $\bigsqcup_{i \in \mathbb{I} \mathbb{N}_{0}} f^{i}(\perp)$ is thus an immediate consequence of the CPO properties of (C, \sqsubseteq).

Proof of the Fixed Point Theorem 4(4)

3. Least fixed point

- Let c be an arbitrarily chosen fixed point of f. Then we have $\perp \sqsubseteq c$, and hence also $f^{n} \perp \sqsubseteq f^{n} c$ for all $n \geq 0$.
- Thus, we have $f^{n} \perp \sqsubseteq c$ because of our choice of c as fixed point of f.
- Thus, we also have that c is an upper bound of $\left\{f^{i}(\perp) \mid i \in \mathbb{I N}_{0}\right\}$.
- Since $\bigsqcup_{i \in \mathbb{N}}{ }_{0} f^{i}(\perp)$ is the least upper bound of this chain by definition, we obtain as desired $\sqcup_{i \in \mathbb{I} \mathbb{N}_{0}} f^{i}(\perp) \sqsubseteq c$.

Conditional Fixed Points

Theorem (Conditional Fixed Points)
Let (C, \sqsubseteq) be a CPO, let $f: C \rightarrow C$ be a continuous, inflationary function on C, and let $d \in C$.

Then f has a unique conditional fixed point μf_{d}. This fixed point equals the least upper bound of the chain $\left\{d, f(d), f^{2}(d), \ldots\right\}$, d.h.

$$
\mu f_{d}=\sqcup_{i \in \mathbb{N}_{0}} f^{i}(d)=\sqcup\left\{d, f(d), f^{2}(d), \ldots\right\}
$$

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points e.g. are...

- Finiteness of domain and range of f
- f is of the form $f(c)=c \sqcup g(c)$ for monotone g on some chain-complete domain

Finite Fixed Points

Theorem (Finite Fixed Points)
Let (C, \sqsubseteq) be a CPO and let $f: C \rightarrow C$ be a continuous function on C.

Then we have: If two elements in a row occurring in the Kleene-chain of f are equal, e.g. $f^{i}(\perp)=f^{i+1}(\perp)$, then we have: $\mu f=f^{i}(\perp)$.

Completion of Ideals

Theorem (Completion of Ideals)
Let (P, \sqsubseteq) be a partial order and let I_{P} be the set of all ideals of P. Then we have:

- $\left(I_{P}, \subseteq\right)$ is a CPO.

Induced "completion"...

- Identifying each element $p \in P$ with its corresponding ideal $I_{p}={ }_{d f}\{q \mid q \sqsubseteq p\}$ yields an embedding of P into I_{P} with $p \sqsubseteq q \Leftrightarrow I_{P} \subseteq I_{Q}$

Corollary (Extensability of Functions)
Let $\left(P, \sqsubseteq_{P}\right)$ be a partial order and let $\left(C, \sqsubseteq_{C}\right)$ be a CPO. Then we have: All monotone functions $f: P \rightarrow C$ can be extended to a uniquely determined continuous function $\hat{f}: I_{P} \rightarrow C$.

Conclusion

The previous result implies...

- Streams constitute a CPO
- Recursive equations and functions on streams are welldefined
- The application of a function to the finite prefixes of a stream yields the chain of approximations of the application of the function to the stream itself; it is thus correct

Correctness of Programs/Proof of Program Properties

Induction vs. recursion

- ...a list is either empty or a pair consisting of an element and another list
- ...a tree is either empty or consists of a node and a set of other trees

Note:

- Definition of data structures
..follow often an inductive definition pattern
- Functions on data structures
...follow often a recursive definition pattern

Inductive Proving / Proof Principles

Complete, generalized, structural induction
As a reminder: The principles of...

- complete induction

$$
(A(1) \wedge(\forall n \in \mathbb{I N} . A(n) \Rightarrow A(n+1))) \quad \Rightarrow \quad \forall n \in \mathbb{I N} . A(n)
$$

- generalized induction

$$
(\forall n \in \mathbb{I N} .(\forall m<n . A(m)) \Rightarrow A(n)) \quad \Rightarrow \quad \forall n \in \mathbb{I N} . A(n)
$$

- structural induction

$$
\left.\left(\forall s \in S . \forall s^{\prime} \in \operatorname{Comp}(s) \cdot A\left(s^{\prime}\right)\right) \Rightarrow A(s)\right) \quad \Rightarrow \quad \forall s \in S . A(s)
$$

Example: Generalized Induction

Direct computation of the Fibonacci numbers...
Let $F_{n}, n \in \mathbb{N}$, denote the n-th F-number, which is defined as follows:

$$
F_{0}=0 ; F_{1}=1 ; \text { for each } n \geq 2, F_{n}=F_{n-2}+F_{n-1}
$$

Using these notations we can prove:

Theorem

$$
\forall n \in \mathbb{I N} . F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
$$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Observation

Since

$$
\begin{aligned}
\left(F_{i}\right)_{i \in \mathbb{I N}} & =0,1,1,2,3,5,8,13,21,34, \ldots \\
\left(f i b_{i}\right)_{i \in \mathbb{I N}} & =1,1,2,3,5,8,13,21,34, \ldots
\end{aligned}
$$

we conclude:
Corollary $\quad \forall n \in \mathbb{I N}$. $f i b(n)=F_{n+1}$

Proof of the Theorem 1(5)

Proof of the theorem ...by means of generalized induction.

Using the induction hypothesis that for all $k<n$ with $n \in \mathbb{I N}$ some natural number the equality

$$
F_{k}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}}{\sqrt{5}}
$$

holds, we can prove the premise underlying the implication of the principle of generalized induction for all natural numbers n by investigating the following cases.

Proof of the Theorem 2(5)

Case 1: $n=0$. In this case we obtain by a simple calculation as desired:

$$
F_{0}=0=\frac{1-1}{\sqrt{5}}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{0}-\left(\frac{1-\sqrt{5}}{2}\right)^{0}}{\sqrt{5}}
$$

Proof of the Theorem 3(5)

Case 2: $n=1$. Also in this case, we obtain by a straightforward calculation as desired:

$$
F_{1}=1=\frac{\sqrt{5}}{\sqrt{5}}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{1}-\left(\frac{1-\sqrt{5}}{2}\right)^{1}}{\sqrt{5}}
$$

Proof of the Theorem 5(5)

...where the equality marked by (*) holds because of the following two sequences of equalities, whose validity can be established by means of the binomial formulae:

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1+2 \sqrt{5}+5}{4}=\frac{6+2 \sqrt{5}}{4}=\frac{3+\sqrt{5}}{2}=1+\frac{1+\sqrt{5}}{2}
$$

Similarly we can show:

$$
\left(\frac{1-\sqrt{5}}{2}\right)^{2}=\frac{1-2 \sqrt{5}+5}{4}=\frac{6-2 \sqrt{5}}{4}=\frac{3-\sqrt{5}}{2}=1+\frac{1-\sqrt{5}}{2}
$$

Proof of the Theorem 4(5)

Case 3: $n \geq 2$. Applying the induction hypothesis (IH) for $n-2$ and $n-1$ we obtain the desired equality:

$$
\left(\text { Def. of } F_{n}\right)=F_{n-2}+F_{n-1}
$$

$\left(\mathrm{IH}\right.$ (two times) $=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}}{\sqrt{5}}+\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}}$

$$
\begin{aligned}
& =\frac{\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}+\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\right]-\left[\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}+\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\right]}{\sqrt{5}} \\
& =\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}\left[1+\frac{1+\sqrt{5}}{2}\right]-\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\left[1+\frac{1-\sqrt{5}}{2}\right]}{\sqrt{5}} \\
(*) & =\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\left(\frac{1-\sqrt{5}}{2}\right)^{2}}{\sqrt{5}} \\
& =\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
\end{aligned}
$$

Inductive Proofs on (finite) Lists

Proof pattern... Let P be a property on lists...

1. Induction start: ...prove that P holds for the empty list, i.e. prove $P([])$.
2. Induction step: ...prove under the assumption of the validity of $P(x s)$ (induction hypothesis) the validity of $P(x: x s)$.

More generally

- ...not only for lists
inductive proof along the structure (structural induction)

Induction on finite Lists / Example 1(2)

Proposition

$\forall x s, y s . l e n g t h(x s++y s)=$ length $x s+$ length $y s$
Proof ...over the inductive structure of $x s$
Induction start

$$
\begin{aligned}
& \text { length }([]++y s) \\
= & \text { length ys } \\
= & 0+\text { length ys } \\
= & \text { length }[]+\text { length ys }
\end{aligned}
$$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Equality of Functions 1(2)

```
listSum :: Num a => [a] -> a
listSum [] = 0
listSum (x:xs) = x + listSum xs
```


Proposition

$$
\forall x s . \text { listSum } x s=\text { foldr }(+) 0 x s
$$

Proof ...over the inductive structure of $x s$
Induction start

$$
\begin{aligned}
& \text { listSum }[] \\
= & 0 \\
= & \text { foldr }(+) 0[]
\end{aligned}
$$

Induction on finite Lists / Example 2(2)

Induction step

$$
\begin{aligned}
& \text { length }((x: x s)++y s) \\
= & \text { length }(x:(x s++y s)) \\
= & 1+\text { length }(x s++y s) \\
= & 1+(\text { length } x s+\text { length ys }) \quad \text { (Induction hypothesis) } \\
= & (1+\text { length } x s)+\text { length ys } \\
= & \text { length }(x: x s)+\text { length ys }
\end{aligned}
$$

Equality of Functions 2(2)

Induction step

$$
\begin{aligned}
& \text { listSum }(x: x s) \\
= & x+\text { listSum xs } \\
= & x+\text { foldr }(+) 0 x s \quad \text { (Induction hypothesis) } \\
= & \text { foldr }(+) 0(x: x s)
\end{aligned}
$$

Properties of map and fold 1(2)

Some more examples of inductively provable properties...

```
map (\x -> x) = \x -> x
map (f.g) = map f . map g
map f.tail = tail . map f
map f . reverse = reverse . map f
map f . concat = concat . map (map f)
map f (xs++ys) = map f xs ++ map f ys
```

Supposed f is strict, we can additionally prove:
f . head $=$ head . map f

Properties of List Concatenation

...for all xs, ys and zs hold:

```
(xs++ys) ++ zs = xs ++ (ys++zs) (Associativity of ++)
xs++[] = []++xs ([] neutral element of ++)
```


Properties of map and fold 2(2)

We can also show inductively...
(1) If op is associative with e 'op' $x=x$ and x 'op' $e=x$ for all x, then for all finite x

$$
\text { foldr op e xs }=\text { foldl op e xs }
$$

(2) If

```
x 'op1' (y 'op2' z) = (x 'op1' y) 'op2' z
x 'op1' e = e 'op2' x
```

then for all finite x
foldr op1 e xs = foldl op2 e xs
(3) For all finite x s
foldr op e xs = foldl (flip op) e (reverse xs)

Properties of take and drop

...for all m, n with $m, n \geq 0$ and finite x s holds:

```
take n xs ++ drop n xs = xs
take m . take n = take (min m n)
drop m . drop n = drop (m+n)
take m. drop n = drop n . take (m+n)
.for n \geqm holds additionally
drop m . take n = take (n-m) . drop m
```


Properties of reverse

...for all finite xs hold:
reverse (reverse xs) = xs
head (reverse xs) = last xs
last (reverse xs) $=$ head $x s$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Intuition

Successively approximating lists

- finite situation ...[1,2,3,4]

bottom

1 : bottom
1 : 2 : bottom
$1: 2:$ bottom
$1: 2: 3$: bottom
$1: 2: 3: 4$: bottom
$1: 2: 3$: 4 : []

- infinite situation $\ldots[1,2,3,4, \ldots$
bottom
1 : bottom
1 : 2 : bottom
$1: 2: 3$: bottom
$1: 2: 3: 4$: bottom
$1: 2: 3: 4: 5$: bottom

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Finite Lists vs. Streams

Properties of finite lists

- can..
e.g. take n xs ++ drop n xs $=\mathrm{xs}$
- ...but need not be transferable to streams
e.g. reverse (reverse xs)) $=\mathrm{xs}$
..new proof strategies are required.

We say...

- bottom ...totally undefined list
- $1: 2: 3: 4: 5: \ldots$: bottom ...partial list

Remark

...each Haskell data type has a special value \perp.

Polymorphic	Concrete
bot $::$ a	bot : : Integer
bot $=$ bot	

\perp represents...

- faulty or non-terminating computations
- can be considered the "least" approximation of (ordinary) elements of the corresponding data type

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Induction over Streams / Example 1(2)

Proposition

\forall streams x s. take $n x s++$ drop $n x s=x s$
Proof ...over the inductive structure of $x s$
Induction start

$$
\begin{aligned}
& \text { take } n \perp++ \text { drop } n \perp \\
= & \perp++ \text { drop } n \perp \\
= & \perp
\end{aligned}
$$

Inductive Proofs over Streams

Proof pattern... Let P be a property of streams

1. Induction start: ...prove that P holds for the least defined list, i.e. prove $P(\perp)$ (instead of $P([])$).
2. Induction step: ...prove under the assumption of the validity of $P(x s)$ (induction hypothesis) the validity of $P(x: x s)$.

Induction over Streams / Example 2(2)

Induction step

$$
\begin{aligned}
& \text { take } n(x: x s)++\operatorname{drop} n(x: x s) \\
= & x:(\text { take }(n-1) x s++\operatorname{drop}(n-1) x s \\
= & x: x s \quad \text { (induction hypothesis) }
\end{aligned}
$$

Further Readings

- L. C. Paulson. Logic and Computation - Interactive Proof with Cambridge LCF. Cambridge University Press, 1987.
- Simon Thompson. Proof for Functional Programming. In K. Hammond, G. Michaelson (Hrsg.), Research Directions in Parallel Functional Programming, Springer, 1999.
- Hanne and Flemming Nielson, Semantics with Applications: An Appetizer, Springer-Verlag, Heidelberg, Germany, 2007.

Next lectures...

- Thu, May 15, 2008: No lecture ("epilog")
- Thu, May 22, 2008: No lecture (Public holiday)
- Thu, May 29, 2008, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr. 8
- Thu, June 5, 2008, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr. 8

Fifth assignment...

- Please check out the homepage of the course for details.

