Well-definedness & Correctness Issues

- Streams and functions on streamswell-defined?
- Correctness of programs, proof of program properties ...recursion vs. induction, proofs by induction

First...

• *Mathematical background* ...CPOs, fixed points, fixed point theorems

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Streams, Fixed Points, and Equation Systems

• Streams

```
- onetwo = 1 : 2 : onetwo
→ [1,2,1,2,1,2,...
```

- Equation systems
 - -x = E[x]

More on this in the following...

References

The following presentation is based on...

- Hanne Riis Nielson, Flemming Nielson. Semantics with Applications A Formal Introduction. Wiley, 1992. http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
- Chapter 11 and 14 Paul Hudak. *The Haskell School of Expression – Learning Functional Programming through Multimedia*. Cambridge University Press, 2000.
- Chapter 8 and 17
 Simon Thompson. Haskell The Craft of Functional Programming. Addison-Wesley, 2nd edition, 1999.
- Chapter 10
 Peter Pepper, Petra Hofstedt. Funktionale Programmierung. Springer-Verlag, Heidelberg, Germany, 2006. (In German)

Sets and Relations 1(2)

Let M be a set and R a relation on M, i.e. $R\subseteq M\times M.$

Then R is called...

- reflexive iff $\forall m \in M. m R m$
- transitive iff $\forall\,m,n,p\in M.\ m\,R\,n\ \land\ n\,R\,p\ \Rightarrow\ m\,R\,p$
- anti-symmetric iff $\forall m, n \in M. \ m \ R n \ \land \ n \ R m \ \Rightarrow \ m = n$

Related further notions... (though less important for us in the following)

- symmetric iff $\forall m, n \in M. \ m R n \iff n R m$
- total iff $\forall m, n \in M. \ m R n \ \lor \ n R m$

3

Sets and Relations 2(2)

A relation R on M is called a...

- quasi-order iff R is reflexive and transitive
- *partial order* iff *R* is reflexive, transitive, and anti-symmetric

For the sake of completeness we recall...

• equivalence relation iff ${\it R}$ is reflexive, transitive, and symmetric

...i.e., a partial order is an anti-symmetric quasi-order, an equivalence relation a symmetric quasi-order.

Note: We here use terms like "partial order" as a short hand for the more accurate term "partially ordered set".

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Bounds, least and greatest Elements

Let (Q, \sqsubseteq) be a quasi-order, let $q \in Q$ and $Q' \subseteq Q$.

Then q is called...

- upper (lower) bound of Q', in signs: $Q' \sqsubseteq q$ $(q \sqsubseteq Q')$, if for all $q' \in Q'$ holds: $q' \sqsubseteq q$ $(q \sqsubseteq q')$
- greatest (least) element of Q, if holds: $Q \sqsubseteq q$ ($q \sqsubseteq Q$)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

6

Uniqueness of Bounds

- Given a partial order, least upper and greatest lower bounds are uniquely determined, if they exist.
- Given existence (and thus uniqueness), the least upper (greatest lower) bound of a set $P' \subseteq P$ of the basic set of a partial order (P, \sqsubseteq) is denoted by $\bigsqcup P'$ $(\sqcap P')$. These elements are also called *supremum* and *infimum* of P'.
- Analogously this holds for least and greatest elements. Given existence, these elements are usually denoted by \perp and $\top.$

Lattices and Complete Lattices

Let (P, \sqsubseteq) be a partial order.

Then (P, \sqsubseteq) is called a...

- *lattice*, if each *finite* subset P' of P contains a least upper and a greatest lower bound in P
- complete lattice, if each subset P' of P contains a least upper and a greatest lower bound in P

...(complete) lattices are special partial orders.

7

Complete Partial Orders

...a slightly weaker, in computer science, however, often sufficient and thus more adequate notion:

Let (P, \sqsubseteq) be a partial order.

Then (P, \sqsubseteq) is called...

• complete, or shorter a CPO (complete partial order), if each ascending chain $C \subseteq P$ has a least upper bound in P.

We have:

A CPO (C, ⊑) (more accurate would be: "chain-complete partially ordered set (CCPO)") has always a least element. This element is uniquely determined as supremum of the empty chain and usually denoted by ⊥: ⊥=_{df} ⊥Ø.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Chains

Let (P, \sqsubseteq) be a partial order.

A subset $C \subseteq P$ is called...

• *chain* of *P*, if the elements of *C* are totally ordered. For $C = \{c_0 \sqsubseteq c_1 \sqsubseteq c_2 \sqsubseteq ...\}$ ($\{c_0 \sqsupseteq c_1 \sqsupseteq c_2 \sqsupseteq ...\}$) we also speak more precisely of an *ascending* (*descending*) chain of *P*.

A chain C is called...

• *finite*, if *C* is finite; *infinite* otherwise.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Finite Chains, finite Elements

A partial order (P, \sqsubseteq) is called

• *chain-finite* (German: kettenendlich) iff *P* is free of infinite chains

An element $p \in P$ is called

- *finite* iff the set $Q =_{df} \{q \in P \mid q \sqsubseteq p\}$ is free of infinite chains
- finite relative to $r \in P$ iff the set $Q =_{df} \{q \in P \mid r \sqsubseteq q \sqsubseteq p\}$ is free of infinite chains

(Standard) CPO Constructions 1(4)

Flat CPOs...

Let (C, \sqsubseteq) be a CPO. Then (C, \sqsubseteq) is called...

• flat, if for all $c, d \in C$ holds: $c \sqsubseteq d \Leftrightarrow c = \bot \lor c = d$

9

(Standard) CPO Constructions 2(4)

Product construction...

Let $(P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2), \ldots, (P_n, \sqsubseteq_n)$ be CPOs. Then...

- the non-strict (direct) product ($\times P_i, \sqsubseteq$) with
 - $(\times P_i, \sqsubseteq) = (P_1 \times P_2 \times \ldots \times P_n, \sqsubseteq)$ with $\forall (p_1, p_2, \ldots, p_n),$ $(q_1, q_2, \ldots, q_n) \in \times P_i. (p_1, p_2, \ldots, p_n) \sqsubseteq (q_1, q_2, \ldots, q_n) \Rightarrow$ $\forall i \in \{1, \ldots, n\}. p_i \sqsubseteq_i q_i$
- and the strict (direct) product (smash product) with
 - $(\otimes P_i, \sqsubseteq) = (P_1 \otimes P_2 \otimes \ldots \otimes P_n, \sqsubseteq)$, where \sqsubseteq is defined as above under the additional constraint:

```
(p_1, p_2, \ldots, p_n) = \bot \Rightarrow \exists i \in \{1, \ldots, n\}. p_i = \bot_i
```

are CPOs, too.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

(Standard) CPO Constructions 3(4)

Sum construction...

Let $(P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2), \dots, (P_n, \sqsubseteq_n)$ CPOs. Then...

- the *direct sum* $(\bigoplus P_i, \sqsubseteq)$ with...
- $\begin{array}{l} (\bigoplus P_i, \sqsubseteq) = (P_1 \cup P_2 \cup \ldots \cup P_n, \sqsubseteq) \text{ disjoint union of } P_i, i \in \\ \{1, \ldots, n\} \text{ and } \forall p, q \in \bigoplus P_i. p \sqsubseteq q \Rightarrow \exists i \in \{1, \ldots, n\}. p, q \in \\ P_i \land p \sqsubseteq_i q \text{ and the identification of the least elements} \\ \text{of } (P_i, \sqsubseteq_i), i \in \{1, \ldots, n\}, \text{ i.e. } \bot =_{df} \bot_i, i \in \{1, \ldots, n\} \end{array}$

is a CPO.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

14

(Standard) CPO Constructions 4(4)

Function space...

Let (C, \sqsubseteq_C) and (D, \sqsubseteq_D) be two CPOs and $[C \rightarrow D] =_{df} \{f : C \rightarrow D \mid f \text{ continuous}\}$ the set of continuous functions from C to D.

Then...

- the continuous function space $([C \rightarrow D], \sqsubseteq)$ is a CPO where
 - $\forall f, g \in [C \to D]. \ f \sqsubseteq g \Longleftrightarrow \forall c \in C. \ f(c) \sqsubseteq_D g(c)$

Functions on CPOs / Properties

Let (C, \sqsubseteq_C) and (D, \sqsubseteq_D) be two CPOs and let $f : C \to D$ be a function from C to D.

Then f is called...

- monotone iff $\forall c, c' \in C. \ c \sqsubseteq_C c' \Rightarrow f(c) \sqsubseteq_D f(c')$ (Preservation of the ordering of elements)
- continuous iff $\forall C' \subseteq C$. $f(\bigsqcup_C C') =_D \bigsqcup_D f(C')$ (Preservation of least upper bounds)

Let (C, \sqsubseteq) be a CPO and let $f : C \to C$ be a function on C. Then f is called...

• inflationary (increasing) iff $\forall c \in C. \ c \sqsubseteq f(c)$

15

Least and greatest Fixed Points 1(2) Functions on CPOs / Results Let (C, \Box) be a CPO, $f: C \to C$ be a function on C and let c be an element of C, i.e., $c \in C$. Using the notations introduced before... Then c is called... Lemma *f* is monotone iff $\forall C' \subseteq C$. $f(\bigsqcup_C C') \sqsupset_D \bigsqcup_D f(C')$ • fixed point of f iff f(c) = cA fixed point c of f is called... Corollarv A continuous function is always monotone, i.e. f continuous • least fixed point of f iff $\forall d \in C$. $f(d) = d \Rightarrow c \sqsubset d$ \Rightarrow f monotone. • greatest fixed point of f iff $\forall d \in C$. $f(d) = d \Rightarrow d \sqsubset c$ Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 17 Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 18

Least and greatest Fixed Points 2(2)

Let $d, c_d \in C$. Then c_d is called...

• conditional (German: bedingter) least fixed point of f wrt d iff c_d is the least fixed point of C with $d \sqsubseteq c_d$, i.e. for all other fixed points x of f with $d \sqsubseteq x$ holds: $c_d \sqsubseteq x$.

Notations:

The least resp. greatest fixed point of a function f is usually denoted by μf resp. $\nu f.$

Fixed Point Theorem

Theorem (Knaster/Tarski, Kleene) Let (C, \sqsubseteq) be a CPO and let $f : C \rightarrow C$ be a continuous function on C.

Then f has a least fixed point μf , which equals the least upper bound of the chain (so-called *Kleene*-Chain) $\{\perp, f(\perp), f^2(\perp), \ldots\}$, i.e.

$$\mu f = \bigsqcup_{i \in \mathbb{I} \mathbb{N}_0} f^i(\bot) = \bigsqcup \{\bot, f(\bot), f^2(\bot), \ldots \}$$

	Proof of the Fixed Point Theorem 2(4)
Proof of the Fixed Point Theorem 1(4)	1. Existence
We have to prove: μf	• It holds $f^0 \perp = \perp$ and $\perp \sqsubseteq c$ for all $c \in C$.
1. exists	• By means of (complete) induction we can show: $f^n \perp f^n c$ for all $c \in C$.
2. is a fixed point	• Thus we have $f^n \perp \sqsubseteq f^m \perp$ for all n, m with $n \le m$. Henc $\{f^n \perp \mid n \ge 0\}$ is a (non-finite) chain of C .
3. is the least fixed point	• The existence of $\bigsqcup_{i \in \mathbb{IN}_0} f^i(\bot)$ is thus an immediate co sequence of the CPO properties of (C, \sqsubseteq) .
Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 21	Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)
Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 21 Proof of the Fixed Point Theorem 3(4)	Proof of the Fixed Point Theorem 4(4
Proof of the Fixed Point Theorem 3(4) 2. Fixed point property	Proof of the Fixed Point Theorem 4(4 3. Least fixed point
Proof of the Fixed Point Theorem 3(4) 2. Fixed point property	Proof of the Fixed Point Theorem 4(4 3. Least fixed point - Let c be an arbitrarily chosen fixed point of f. Then y
Proof of the Fixed Point Theorem 3(4)	Proof of the Fixed Point Theorem 4(4) 3. Least fixed point - Let c be an arbitrarily chosen fixed point of f. Then whave $\bot \sqsubseteq c$, and hence also $f^n \bot \sqsubseteq f^n c$ for all $n \ge 0$. - Thus, we have $f^n \bot \sqsubseteq c$ because of our choice of c

Conditional Fixed Points

Theorem (Conditional Fixed Points)

Let (C, \sqsubseteq) be a CPO, let $f : C \to C$ be a continuous, inflationary function on C, and let $d \in C$.

Then f has a unique conditional fixed point μf_d . This fixed point equals the least upper bound of the chain $\{d, f(d), f^2(d), \ldots\}$, d.h.

 $\mu f_d = \bigsqcup_{i \in \mathbb{IN}_0} f^i(d) = \bigsqcup \{d, f(d), f^2(d), \ldots \}$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Finite Fixed Points

Theorem (Finite Fixed Points) Let (C, \sqsubseteq) be a CPO and let $f : C \to C$ be a continuous function on C.

Then we have: If two elements in a row occurring in the Kleene-chain of f are equal, e.g. $f^i(\bot) = f^{i+1}(\bot)$, then we have: $\mu f = f^i(\bot)$.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

26

Cones und Ideals

Let (P, \sqsubseteq) be a partial order and Q be a subset of P, i.e., $Q \subseteq P$.

Then Q is called...

- directed set (German: gerichtet (gerichtete Menge)), if each finite subset $R \subseteq Q$ has a supremum in Q, i.e. $\exists q \in Q$. $q = \bigsqcup R$
- cone (German: Kegel), if Q is downward closed, i.e. $\forall q \in Q \ \forall p \in P. \ p \sqsubseteq q \Rightarrow p \in Q$
- *ideal* (German: Ideal), if Q is a directed cone, i.e. if Q is downward closed and each finite subset has a supremum in Q.

Note: If Q is a directed set, then, we have because of $\emptyset \subseteq Q$ also $\square \emptyset = \bot \in Q$ and thus $Q \neq \emptyset$.

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points e.g. are...

- Finiteness of domain and range of \boldsymbol{f}
- f is of the form $f(c) = c \sqcup g(c)$ for monotone g on some chain-complete domain

27

Completion of Ideals

Theorem (Completion of Ideals) Let (P, \sqsubseteq) be a partial order and let I_P be the set of all ideals of P. Then we have:

• (I_P, \subseteq) is a CPO.

Induced "completion" ...

• Identifying each element $p \in P$ with its corresponding ideal $I_p =_{df} \{q \mid q \sqsubseteq p\}$ yields an embedding of P into I_P with $p \sqsubseteq q \Leftrightarrow I_P \subseteq I_Q$

Corollary (Extensability of Functions)

Let (P, \sqsubseteq_P) be a partial order and let (C, \sqsubseteq_C) be a CPO. Then we have: All monotone functions $f : P \to C$ can be extended to a uniquely determined continuous function $\hat{f} : I_P \to C$.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Correctness of Programs/Proof of Program Properties

Induction vs. recursion

- ...a list is either empty or a pair consisting of an element and another list
- ...a tree is either empty or consists of a node and a set of other trees

Note:

- Definition of data structuresfollow often an inductive definition pattern
- Functions on data structuresfollow often a recursive definition pattern

The previous result implies...

- Streams constitute a CPO
- Recursive equations and functions on streams are well-defined
- The application of a function to the finite prefixes of a stream yields the chain of approximations of the application of the function to the stream itself; it is thus correct

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Inductive Proving / Proof Principles

Complete, generalized, structural induction

As a reminder: The principles of...

• complete induction

 $(A(1) \land (\forall n \in \mathbb{N}. A(n) \Rightarrow A(n+1))) \Rightarrow \forall n \in \mathbb{N}. A(n)$

• generalized induction

 $(\forall n \in \mathbb{N}. (\forall m < n. A(m)) \Rightarrow A(n)) \Rightarrow \forall n \in \mathbb{N}. A(n)$

• structural induction

 $(\forall s \in S. \forall s' \in Comp(s). A(s')) \Rightarrow A(s)) \Rightarrow \forall s \in S. A(s)$

31

29

32

Example: Generalized Induction

Direct computation of the Fibonacci numbers...

Let F_n , $n \in \mathbb{I}N$, denote the *n*-th F-number, which is defined as follows:

 $F_0 = 0$; $F_1 = 1$; for each $n \ge 2$, $F_n = F_{n-2} + F_{n-1}$

Using these notations we can prove:

Theorem

$$\forall n \in \mathbb{N}. F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Observation

Since

$$(F_i)_{i \in \mathbb{IN}} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

 $(fib_i)_{i \in \mathbb{IN}} = 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

we conclude:

Corollary $\forall n \in \mathbb{IN}$. $fib(n) = F_{n+1}$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

34

Proof of the Theorem 1(5)

Proof of the theorem ...by means of generalized induction.

Using the induction hypothesis that for all k < n with $n \in {\rm I\!N}$ some natural number the equality

$$F_k = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k}{\sqrt{5}}$$

holds, we can prove the premise underlying the implication of the principle of generalized induction for all natural numbers n by investigating the following cases.

Proof of the Theorem 2(5)

<u>Case 1:</u> n = 0. In this case we obtain by a simple calculation as desired:

$$F_0 = 0 = \frac{1 - 1}{\sqrt{5}} = \frac{\left(\frac{1 + \sqrt{5}}{2}\right)^0 - \left(\frac{1 - \sqrt{5}}{2}\right)^0}{\sqrt{5}}$$

Proof of the Theorem 3(5)

<u>Case 2</u>: n = 1. Also in this case, we obtain by a straightforward calculation as desired:

$$F_1 = 1 = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^1 - \left(\frac{1-\sqrt{5}}{2}\right)^2}{\sqrt{5}}$$

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Proof of the Theorem 5(5)

...where the equality marked by (*) holds because of the following two sequences of equalities, whose validity can be established by means of the binomial formulae:

$$\left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+2\sqrt{5}+5}{4} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2} = 1 + \frac{1+\sqrt{5}}{2}$$

Similarly we can show:

$$\left(\frac{1-\sqrt{5}}{2}\right)^2 = \frac{1-2\sqrt{5}+5}{4} = \frac{6-2\sqrt{5}}{4} = \frac{3-\sqrt{5}}{2} = 1 + \frac{1-\sqrt{5}}{2}$$

39

37

Proof of the Theorem 4(5)

<u>Case 3:</u> $n \ge 2$. Applying the induction hypothesis (IH) for n-2 and n-1 we obtain the desired equality:

$$(\text{Def. of } F_n) = \frac{F_n}{F_{n-2} + F_{n-1}}$$

$$(\text{IH (two times)}) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}}$$

$$= \frac{\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} + \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\right] - \left[\left(\frac{1-\sqrt{5}}{2}\right)^{n-2} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\right]}{\sqrt{5}}$$

$$= \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} \left[1 + \frac{1+\sqrt{5}}{2}\right] - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left[1 + \frac{1-\sqrt{5}}{2}\right]}{\sqrt{5}}$$

$$(*) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} \left(\frac{1+\sqrt{5}}{2}\right)^2 - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left(\frac{1-\sqrt{5}}{2}\right)^2}{\sqrt{5}}$$

$$= \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$

Inductive Proofs on (finite) Lists

Proof pattern... Let *P* be a property on lists...

- 1. *Induction start*: ...prove that *P* holds for the empty list, i.e. prove *P*([]).
- 2. Induction step: ...prove under the assumption of the validity of P(xs) (induction hypothesis) the validity of P(x : xs).

More generally

• ...not only for lists inductive proof along the structure (*structural induction*)

Induction on finite Lists / Example 1(2) Induction on finite Lists / Example 2(2) Proposition Induction step $\forall xs, ys. length (xs + +ys) = length xs + length ys$ length((x : xs) + +ys)**Proof** ... over the inductive structure of xs = length (x : (xs + +ys))= 1 + length (xs + +ys) Induction start = 1 + (length xs + length ys) (Induction hypothesis) length([] + +ys)= (1 + length xs) + length ys = length ys = length (x : xs) + length ys = 0 + length us= length [] + length ys Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 41 Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 42 Equality of Functions 1(2) listSum :: Num a => [a] -> a Equality of Functions 2(2) listSum [] = 0listSum (x:xs) = x + listSum xs Induction step Proposition listSum (x : xs) $\forall xs. \ listSum \ xs = foldr \ (+) \ 0 \ xs$ = x + listSum xs= x + foldr (+) 0 xs (Induction hypothesis) **Proof** ... over the inductive structure of xs = foldr (+) 0 (x : xs) Induction start listSum [] = 0= foldr (+) 0 []Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 43 Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 44

Properties of map and fold 1(2)

Some more examples of inductively provable properties...

```
map (\x -> x) = \x -> x
map (f.g) = map f . map g
map f.tail = tail . map f
map f . reverse = reverse . map f
map f . concat = concat . map (map f)
map f (xs++ys) = map f xs ++ map f ys
```

Supposed f is strict, we can additionally prove:

f . head = head . map f

... for all xs, ys and zs hold:

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Properties of map and fold 2(2)

We can also show inductively...

(1) If op is associative with e 'op' x = x and x 'op' e = x for all x, then for all finite xs

foldr op e xs = foldl op e xs

(2) If

x 'op1' (y 'op2' z) = (x 'op1' y) 'op2' z and x 'op1' e = e 'op2' x

then for all finite xs

foldr op1 e xs = foldl op2 e xs

(3) For all finite xs

foldr op e xs = foldl (flip op) e (reverse xs)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

46

Properties of take and drop

...for all m, n with m, $n \ge 0$ and finite xs holds: take n xs ++ drop n xs = xs take m . take n = take (min m n)

drop m . drop n = drop (m+n)

take m . drop n = drop n . take (m+n)

...for $\mathtt{n} \geq \mathtt{m}$ holds additionally

drop m . take n = take (n-m) . drop m

Properties of List Concatenation

xs++[] = []++xs ([] neutral element of ++)

(xs++ys) ++ zs = xs ++ (ys++zs) (Associativity of ++)

Properties of reverse

...for all finite xs hold:

reverse (reverse xs) = xs head (reverse xs) = last xs last (reverse xs) = head xs

Finite Lists vs. Streams

Properties of finite lists

- Can... e.g. take n xs ++ drop n xs = xs
- ...but need not be transferable to streams
 e.g. reverse (reverse xs)) = xs

...new proof strategies are required.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 49 Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 50 Intuition Successively approximating lists • finite situation ...[1,2,3,4] bottom We say... 1 : bottom 1:2:bottom1 : 2 : 3 : bottom ...totally undefined list • bottom 1 : 2 : 3 : 4 : bottom 1:2:3:4:[] • 1 : 2 : 3 : 4 : 5 : .. : bottom ...partial list • infinite situation ... [1,2,3,4,... bottom 1 : bottom 1 : 2 : bottom 1 : 2 : 3 : bottom 1 : 2 : 3 : 4 : bottom 1 : 2 : 3 : 4 : 5 : bottom . . . Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 52 Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 51

Remark

...each Haskell data type has a special value \perp .

Polymorphic bot :: a bot = bot Concrete bot :: Integer

⊥ represents...

- faulty or non-terminating computations
- can be considered the "least" approximation of (ordinary) elements of the corresponding data type

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Inductive Proofs over Streams

Proof pattern... Let *P* be a property of streams

- 1. *Induction start*: ...prove that P holds for the least defined list, i.e. prove $P(\perp)$ (instead of P([])).
- 2. Induction step: ...prove under the assumption of the validity of P(xs) (induction hypothesis) the validity of P(x : xs).

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

54

Induction over Streams / Example 1(2)

Proposition

 \forall streams xs. take n xs ++ drop n xs = xs

Proof ... over the inductive structure of xs

Induction start

$$take \ n \perp + + \ drop \ n \perp$$
$$= \perp + + \ drop \ n \perp$$
$$= \perp$$

Induction over Streams / Example 2(2)

Induction step

```
take \ n \ (x : xs) + + \ drop \ n \ (x : xs)
= x : (take \ (n-1) \ xs + + \ drop \ (n-1) \ xs
= x : xs \qquad (induction \ hypothesis)
```

56

Further Readings

- L. C. Paulson. *Logic and Computation Interactive Proof with Cambridge LCF.* Cambridge University Press, 1987.
- Simon Thompson. *Proof for Functional Programming*. In K. Hammond, G. Michaelson (Hrsg.), *Research Directions in Parallel Functional Programming*, Springer, 1999.
- Hanne and Flemming Nielson, *Semantics with Applications: An Appetizer*, Springer-Verlag, Heidelberg, Germany, 2007.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)

Next lectures...

- Thu, May 15, 2008: No lecture ("epilog")
- Thu, May 22, 2008: No lecture (Public holiday)
- Thu, May 29, 2008, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr. 8
- Thu, June 5, 2008, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr. 8

Fifth assignment...

• Please check out the homepage of the course for details.

БO

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08)