
Well-definedness & Correctness Issues

• Streams and functions on streams

...well-defined?

• Correctness of programs, proof of program properties

...recursion vs. induction, proofs by induction

First...

• Mathematical background

...CPOs, fixed points, fixed point theorems

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 1

References

The following presentation is based on...

• Hanne Riis Nielson, Flemming Nielson. Semantics with Ap-
plications – A Formal Introduction. Wiley, 1992.
http://www.daimi.au.dk/∼bra8130/Wiley book/wiley.html

• Chapter 11 and 14
Paul Hudak. The Haskell School of Expression – Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000.

• Chapter 8 and 17
Simon Thompson. Haskell – The Craft of Functional Pro-
gramming. Addison-Wesley, 2nd edition, 1999.

• Chapter 10
Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-Verlag, Heidelberg, Germany, 2006. (In Ger-
man)

Streams, Fixed Points, and Equation
Systems

• Streams

– onetwo = 1 : 2 : onetwo

; [1,2,1,2,1,2,...

– onestwos = 1 : onestwos : 2

; [1,1,1,1,1,1,...

• Equation systems

– x = E[x]

More on this in the following...

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 3

Sets and Relations 1(2)

Let M be a set and R a relation on M , i.e. R ⊆ M × M .

Then R is called...

• reflexive iff ∀m ∈ M. m R m

• transitive iff ∀m, n, p ∈ M. m R n ∧ n R p ⇒ m R p

• anti-symmetric iff ∀m, n ∈ M. m R n ∧ n R m ⇒ m = n

Related further notions... (though less important for us in the following)

• symmetric iff ∀m, n ∈ M. m R n ⇐⇒ n R m

• total iff ∀m, n ∈ M. m R n ∨ n R m

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 4

Sets and Relations 2(2)

A relation R on M is called a...

• quasi-order iff R is reflexive and transitive

• partial order iff R is reflexive, transitive, and anti-symmetric

For the sake of completeness we recall...

• equivalence relation iff R is reflexive, transitive, and symmetric

...i.e., a partial order is an anti-symmetric quasi-order, an equivalence re-

lation a symmetric quasi-order.

Note: We here use terms like “partial order” as a short hand

for the more accurate term “partially ordered set”.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 5

Bounds, least and greatest Elements

Let (Q,⊑) be a quasi-order, let q ∈ Q and Q′ ⊆ Q.

Then q is called...

• upper (lower) bound of Q′, in signs: Q′ ⊑ q (q ⊑ Q′), if for

all q′ ∈ Q′ holds: q′ ⊑ q (q ⊑ q′)

• least upper (greatest lower) bound of Q′, if q is an up-

per (lower) bound of Q′ and for every other upper (lower)

bound q̂ of Q′ holds: q ⊑ q̂ (q̂ ⊑ q)

• greatest (least) element of Q, if holds: Q ⊑ q (q ⊑ Q)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 6

Uniqueness of Bounds

• Given a partial order, least upper and greatest lower bounds

are uniquely determined, if they exist.

• Given existence (and thus uniqueness), the least upper

(greatest lower) bound of a set P ′ ⊆ P of the basic set

of a partial order (P,⊑) is denoted by ⊔P ′ (⊓P ′). These

elements are also called supremum and infimum of P ′.

• Analogously this holds for least and greatest elements. Gi-

ven existence, these elements are usually denoted by ⊥ and

⊤.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 7

Lattices and Complete Lattices

Let (P,⊑) be a partial order.

Then (P,⊑) is called a...

• lattice, if each finite subset P ′ of P contains a least upper

and a greatest lower bound in P

• complete lattice, if each subset P ′ of P contains a least

upper and a greatest lower bound in P

...(complete) lattices are special partial orders.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 8

Complete Partial Orders

...a slightly weaker, in computer science, however, often suffi-

cient and thus more adequate notion:

Let (P,⊑) be a partial order.

Then (P,⊑) is called...

• complete, or shorter a CPO (complete partial order), if

each ascending chain C ⊆ P has a least upper bound in P .

We have:

• A CPO (C,⊑) (more accurate would be: “chain-complete partially or-
dered set (CCPO)”) has always a least element. This element is uni-
quely determined as supremum of the empty chain and usually denoted
by ⊥: ⊥=df ⊔∅.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 9

Chains

Let (P,⊑) be a partial order.

A subset C ⊆ P is called...

• chain of P , if the elements of C are totally ordered. For

C = {c0 ⊑ c1 ⊑ c2 ⊑ . . .} ({c0 ⊒ c1 ⊒ c2 ⊒ . . .}) we also

speak more precisely of an ascending (descending) chain

of P .

A chain C is called...

• finite, if C is finite; infinite otherwise.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 10

Finite Chains, finite Elements

A partial order (P,⊑) is called

• chain-finite (German: kettenendlich) iff P is free of infinite

chains

An element p ∈ P is called

• finite iff the set Q=df {q ∈ P | q ⊑ p} is free of infinite chains

• finite relative to r ∈ P iff the set Q=df {q ∈ P | r ⊑ q ⊑ p} is

free of infinite chains

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 11

(Standard) CPO Constructions 1(4)

Flat CPOs...

Let (C,⊑) be a CPO. Then (C,⊑) is called...

• flat, if for all c, d ∈ C holds: c ⊑ d ⇔ c=⊥ ∨ c= d

c1 c2 c3 c5 c7c6c4

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 12

(Standard) CPO Constructions 2(4)

Product construction...

Let (P1,⊑1), (P2,⊑2), . . . , (Pn,⊑n) be CPOs. Then...

• the non-strict (direct) product (×Pi,⊑) with

– (×Pi,⊑)=(P1 × P2 × . . . × Pn,⊑) with ∀ (p1, p2, . . . , pn),
(q1, q2, . . . , qn) ∈×Pi. (p1, p2, . . . , pn) ⊑ (q1, q2, . . . , qn) ⇒
∀ i ∈ {1, . . . , n}. pi ⊑i qi

• and the strict (direct) product (smash product) with

– (
⊗

Pi,⊑)=(P1 ⊗P2 ⊗ . . .⊗Pn,⊑), where ⊑ is defined as
above under the additional constraint:

(p1, p2, . . . , pn)=⊥ ⇒ ∃ i ∈ {1, . . . , n}. pi =⊥i

are CPOs, too.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 13

(Standard) CPO Constructions 3(4)

Sum construction...

Let (P1,⊑1), (P2,⊑2), . . . , (Pn,⊑n) CPOs. Then...

• the direct sum (
⊕

Pi,⊑) with...

– (
⊕

Pi,⊑)= (P1
·∪P2

·∪ . . .
·∪ Pn,⊑) disjoint union of Pi, i ∈

{1, . . . , n} and ∀ p, q ∈ ⊕

Pi. p ⊑ q ⇒ ∃ i ∈ {1, . . . , n}. p, q ∈
Pi ∧ p ⊑i q and the identification of the least elements

of (Pi,⊑i), i ∈ {1, . . . , n}, i.e. ⊥=df ⊥i, i ∈ {1, . . . , n}
is a CPO.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 14

(Standard) CPO Constructions 4(4)

Function space...

Let (C,⊑C) and (D,⊑D) be two CPOs and [C → D]=df

{f : C → D | f continuous} the set of continuous functions

from C to D.

Then...

• the continuous function space ([C → D],⊑) is a CPO where

– ∀ f, g ∈ [C → D]. f ⊑ g ⇐⇒ ∀ c ∈ C. f(c) ⊑D g(c)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 15

Functions on CPOs / Properties

Let (C,⊑C) and (D,⊑D) be two CPOs and let f : C → D be a
function from C to D.

Then f is called...

• monotone iff ∀ c, c′ ∈ C. c ⊑C c′ ⇒ f(c) ⊑D f(c′)
(Preservation of the ordering of elements)

• continuous iff ∀C′ ⊆ C. f(⊔CC′) = D ⊔Df(C′)
(Preservation of least upper bounds)

Let (C,⊑) be a CPO and let f : C → C be a function on C.

Then f is called...

• inflationary (increasing) iff ∀ c ∈ C. c ⊑ f(c)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 16

Functions on CPOs / Results

Using the notations introduced before...

Lemma

f is monotone iff ∀C′ ⊆ C. f(⊔CC′) ⊒D ⊔Df(C′)

Corollary

A continuous function is always monotone, i.e. f continuous

⇒ f monotone.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 17

Least and greatest Fixed Points 1(2)

Let (C,⊑) be a CPO, f : C → C be a function on C and let c

be an element of C, i.e., c ∈ C.

Then c is called...

• fixed point of f iff f(c) = c

A fixed point c of f is called...

• least fixed point of f iff ∀ d ∈ C. f(d)= d ⇒ c ⊑ d

• greatest fixed point of f iff ∀ d ∈ C. f(d)= d ⇒ d ⊑ c

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 18

Least and greatest Fixed Points 2(2)

Let d, cd ∈ C. Then cd is called...

• conditional (German: bedingter) least fixed point of f wrt

d iff cd is the least fixed point of C with d ⊑ cd, i.e. for all

other fixed points x of f with d ⊑ x holds: cd ⊑ x.

Notations:

The least resp. greatest fixed point of a function f is usually

denoted by µf resp. νf .

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 19

Fixed Point Theorem

Theorem (Knaster/Tarski, Kleene)

Let (C,⊑) be a CPO and let f : C → C be a continuous

function on C.

Then f has a least fixed point µf , which equals the

least upper bound of the chain (so-called Kleene-Chain)

{⊥, f(⊥), f2(⊥), . . .}, i.e.

µf =⊔i∈IN0
f i(⊥)=⊔{⊥, f(⊥), f2(⊥), . . .}

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 20

Proof of the Fixed Point Theorem 1(4)

We have to prove: µf ...

1. exists

2. is a fixed point

3. is the least fixed point

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 21

Proof of the Fixed Point Theorem 2(4)

1. Existence

• It holds f0 ⊥=⊥ and ⊥ ⊑ c for all c ∈ C.

• By means of (complete) induction we can show: fn⊥ ⊑
fnc for all c ∈ C.

• Thus we have fn⊥ ⊑ fm⊥ for all n, m with n ≤ m. Hence,

{fn⊥ | n ≥ 0} is a (non-finite) chain of C.

• The existence of ⊔i∈IN0
f i(⊥) is thus an immediate con-

sequence of the CPO properties of (C,⊑).

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 22

Proof of the Fixed Point Theorem 3(4)

2. Fixed point property

f(⊔i∈IN0
f i(⊥))

(f continuous) = ⊔i∈IN0
f(fn⊥)

= ⊔i∈IN1
fn⊥

(K chain ⇒⊔K =⊥ ⊔⊔K) = ⊔i∈IN1
fn⊥ ⊔ ⊥

(f0⊥=⊥) = ⊔i∈IN0
fn⊥

= ⊔i∈IN0
f i(⊥)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 23

Proof of the Fixed Point Theorem 4(4)

3. Least fixed point

– Let c be an arbitrarily chosen fixed point of f . Then we

have ⊥ ⊑ c, and hence also fn⊥ ⊑ fnc for all n ≥ 0.

– Thus, we have fn⊥ ⊑ c because of our choice of c as

fixed point of f .

– Thus, we also have that c is an upper bound of

{f i(⊥) | i ∈ IN0}.
– Since ⊔i∈IN0

f i(⊥) is the least upper bound of this chain

by definition, we obtain as desired ⊔i∈IN0
f i(⊥) ⊑ c.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 24

Conditional Fixed Points

Theorem (Conditional Fixed Points)

Let (C,⊑) be a CPO, let f : C → C be a continuous, inflatio-

nary function on C, and let d ∈ C.

Then f has a unique conditional fixed point µfd. This

fixed point equals the least upper bound of the chain

{d, f(d), f2(d), . . .}, d.h.

µfd =⊔i∈IN0
f i(d)=⊔{d, f(d), f2(d), . . .}

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 25

Finite Fixed Points

Theorem (Finite Fixed Points)

Let (C,⊑) be a CPO and let f : C → C be a continuous

function on C.

Then we have: If two elements in a row occurring in the

Kleene-chain of f are equal, e.g. f i(⊥)= f i+1(⊥), then we

have: µf = f i(⊥).

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 26

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points

e.g. are...

• Finiteness of domain and range of f

• f is of the form f(c)= c ⊔ g(c) for monotone g on some

chain-complete domain

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 27

Cones und Ideals

Let (P,⊑) be a partial order and Q be a subset of P , i.e.,
Q ⊆ P .

Then Q is called...

• directed set (German: gerichtet (gerichtete Menge)), if
each finite subset R ⊆ Q has a supremum in Q, i.e. ∃ q ∈
Q. q = ⊔R

• cone (German: Kegel), if Q is downward closed, i.e. ∀ q ∈
Q ∀ p ∈ P. p ⊑ q ⇒ p ∈ Q

• ideal (German: Ideal), if Q is a directed cone, i.e. if Q is
downward closed and each finite subset has a supremum
in Q.

Note: If Q is a directed set, then, we have because of ∅ ⊆ Q also⊔∅=⊥ ∈ Q

and thus Q 6= ∅.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 28

Completion of Ideals

Theorem (Completion of Ideals)
Let (P,⊑) be a partial order and let IP be the set of all ideals
of P . Then we have:

• (IP ,⊆) is a CPO.

Induced “completion”...

• Identifying each element p ∈ P with its corresponding ideal
Ip=df {q | q ⊑ p} yields an embedding of P into IP with
p ⊑ q ⇔ IP ⊆ IQ

Corollary (Extensability of Functions)
Let (P,⊑P) be a partial order and let (C,⊑C) be a CPO. Then
we have: All monotone functions f : P → C can be extended
to a uniquely determined continuous function f̂ : IP → C.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 29

Conclusion

The previous result implies...

• Streams constitute a CPO

• Recursive equations and functions on streams are well-

defined

• The application of a function to the finite prefixes of a

stream yields the chain of approximations of the application

of the function to the stream itself; it is thus correct

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 30

Correctness of Programs/Proof of Pro-
gram Properties

Induction vs. recursion

• ...a list is either empty or a pair consisting of an element
and another list

• ...a tree is either empty or consists of a node and a set of
other trees

Note:

• Definition of data structures
...follow often an inductive definition pattern

• Functions on data structures
...follow often a recursive definition pattern

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 31

Inductive Proving / Proof Principles

Complete, generalized, structural induction

As a reminder : The principles of...

• complete induction

(A(1) ∧ (∀n ∈ IN. A(n) ⇒ A(n + 1))) ⇒ ∀n ∈ IN. A(n)

• generalized induction

(∀n ∈ IN. (∀m < n. A(m)) ⇒ A(n)) ⇒ ∀n ∈ IN. A(n)

• structural induction

(∀ s ∈ S. ∀ s′ ∈ Comp(s). A(s′)) ⇒ A(s)) ⇒ ∀ s ∈ S. A(s)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 32

Example: Generalized Induction

Direct computation of the Fibonacci numbers...

Let Fn, n ∈ IN, denote the n-th F-number, which is defined as

follows:

F0 = 0; F1 = 1; for each n ≥ 2, Fn = Fn−2 + Fn−1

Using these notations we can prove:

Theorem

∀n ∈ IN. Fn =

(

1+
√

5
2

)n
−
(

1−
√

5
2

)n

√
5

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 33

Observation

Since

(Fi)i∈IN = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

(fibi)i∈IN = 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

we conclude:

Corollary ∀n ∈ IN. fib(n) = Fn+1

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 34

Proof of the Theorem 1(5)

Proof of the theorem ...by means of generalized induction.

Using the induction hypothesis that for all k < n with n ∈ IN

some natural number the equality

Fk =

(

1+
√

5
2

)k
−
(

1−
√

5
2

)k

√
5

holds, we can prove the premise underlying the implication of

the principle of generalized induction for all natural numbers n

by investigating the following cases.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 35

Proof of the Theorem 2(5)

Case 1: n = 0. In this case we obtain by a simple calculation

as desired:

F0 =0=
1 − 1√

5
=

(

1+
√

5
2

)0
−
(

1−
√

5
2

)0

√
5

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 36

Proof of the Theorem 3(5)

Case 2: n = 1. Also in this case, we obtain by a straightforward

calculation as desired:

F1 =1=

√
5√
5

=

(

1+
√

5
2

)1
−
(

1−
√

5
2

)1

√
5

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 37

Proof of the Theorem 4(5)

Case 3: n ≥ 2. Applying the induction hypothesis (IH) for n − 2 and n − 1

we obtain the desired equality:

Fn

(Def. of Fn) = Fn−2 + Fn−1

(IH (two times)) =

(

1+
√

5
2

)n−2

−
(

1−
√

5
2

)n−2

√
5

+

(

1+
√

5
2

)n−1

−
(

1−
√

5
2

)n−1

√
5

=

[

(

1+
√

5
2

)n−2

+
(

1+
√

5
2

)n−1
]

−
[

(

1−
√

5
2

)n−2

+
(

1−
√

5
2

)n−1
]

√
5

=

(

1+
√

5
2

)n−2 [

1 + 1+
√

5
2

]

−
(

1−
√

5
2

)n−2 [

1 + 1−
√

5
2

]

√
5

(∗) =

(

1+
√

5
2

)n−2 (
1+

√
5

2

)2

−
(

1−
√

5
2

)n−2 (
1−

√
5

2

)2

√
5

=

(

1+
√

5
2

)n

−
(

1−
√

5
2

)n

√
5

Proof of the Theorem 5(5)

...where the equality marked by (∗) holds because of the following two

sequences of equalities, whose validity can be established by means of the

binomial formulae:

(

1 +
√

5

2

)2

=
1 + 2

√
5 + 5

4
=

6 + 2
√

5

4
=

3 +
√

5

2
= 1+

1 +
√

5

2

Similarly we can show:

(

1 −
√

5

2

)2

=
1 − 2

√
5 + 5

4
=

6 − 2
√

5

4
=

3 −
√

5

2
= 1 +

1 −
√

5

2

2

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 39

Inductive Proofs on (finite) Lists

Proof pattern... Let P be a property on lists...

1. Induction start: ...prove that P holds for the empty list,

i.e. prove P([]).

2. Induction step: ...prove under the assumption of the validity

of P(xs) (induction hypothesis) the validity of

P(x : xs).

More generally

• ...not only for lists

inductive proof along the structure (structural induc-

tion)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 40

Induction on finite Lists / Example 1(2)

Proposition

∀xs, ys. length (xs ++ys) = length xs + length ys

Proof ...over the inductive structure of xs

Induction start

length([] ++ys)

= length ys

= 0 + length ys

= length [] + length ys

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 41

Induction on finite Lists / Example 2(2)

Induction step

length((x : xs) ++ys)

= length (x : (xs ++ys))

= 1 + length (xs ++ys)

= 1 + (length xs + length ys) (Induction hypothesis)

= (1 + length xs) + length ys

= length (x : xs) + length ys

2

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 42

Equality of Functions 1(2)

listSum :: Num a => [a] -> a

listSum [] = 0

listSum (x:xs) = x + listSum xs

Proposition

∀xs. listSum xs = foldr (+) 0 xs

Proof ...over the inductive structure of xs

Induction start

listSum []

= 0

= foldr (+) 0 []

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 43

Equality of Functions 2(2)

Induction step

listSum (x : xs)

= x + listSum xs

= x + foldr (+) 0 xs (Induction hypothesis)

= foldr (+) 0 (x : xs)

2

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 44

Properties of map and fold 1(2)

Some more examples of inductively provable properties...

map (\x -> x) = \x -> x

map (f.g) = map f . map g

map f.tail = tail . map f

map f . reverse = reverse . map f

map f . concat = concat . map (map f)

map f (xs++ys) = map f xs ++ map f ys

Supposed f is strict, we can additionally prove:

f . head = head . map f

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 45

Properties of map and fold 2(2)

We can also show inductively...

(1) If op is associative with e ’op’ x = x and x ’op’ e = x for
all x, then for all finite xs

foldr op e xs = foldl op e xs

(2) If

x ’op1’ (y ’op2’ z) = (x ’op1’ y) ’op2’ z and

x ’op1’ e = e ’op2’ x

then for all finite xs

foldr op1 e xs = foldl op2 e xs

(3) For all finite xs

foldr op e xs = foldl (flip op) e (reverse xs)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 46

Properties of List Concatenation

...for all xs, ys and zs hold:

(xs++ys) ++ zs = xs ++ (ys++zs) (Associativity of ++)

xs++[] = []++xs ([] neutral element of ++)

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 47

Properties of take and drop

...for all m, n with m,n ≥ 0 and finite xs holds:

take n xs ++ drop n xs = xs

take m . take n = take (min m n)

drop m . drop n = drop (m+n)

take m . drop n = drop n . take (m+n)

...for n ≥ m holds additionally

drop m . take n = take (n-m) . drop m

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 48

Properties of reverse

...for all finite xs hold:

reverse (reverse xs) = xs

head (reverse xs) = last xs

last (reverse xs) = head xs

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 49

Finite Lists vs. Streams

Properties of finite lists

• can...

e.g. take n xs ++ drop n xs = xs

• ...but need not be transferable to streams

e.g. reverse (reverse xs)) = xs

...new proof strategies are required.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 50

Intuition

Successively approximating lists

• finite situation ...[1,2,3,4]

bottom
1 : bottom
1 : 2 : bottom
1 : 2 : 3 : bottom
1 : 2 : 3 : 4 : bottom
1 : 2 : 3 : 4 : []

• infinite situation ...[1,2,3,4,..

bottom
1 : bottom
1 : 2 : bottom
1 : 2 : 3 : bottom
1 : 2 : 3 : 4 : bottom
1 : 2 : 3 : 4 : 5 : bottom
...

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 51

We say...

• bottom ...totally undefined list

• 1 : 2 : 3 : 4 : 5 : .. : bottom ...partial list

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 52

Remark

...each Haskell data type has a special value ⊥.

Polymorphic Concrete

bot :: a bot :: Integer

bot = bot

⊥ represents...

• faulty or non-terminating computations

• can be considered the “least” approximation of (ordinary)

elements of the corresponding data type

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 53

Inductive Proofs over Streams

Proof pattern... Let P be a property of streams

1. Induction start: ...prove that P holds for the least defined

list, i.e. prove P(⊥) (instead of P([])).

2. Induction step: ...prove under the assumption of the validity

of P(xs) (induction hypothesis) the validity of

P(x : xs).

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 54

Induction over Streams / Example 1(2)

Proposition

∀ streams xs. take n xs + + drop n xs = xs

Proof ...over the inductive structure of xs

Induction start

take n ⊥ + + drop n ⊥
= ⊥ + + drop n ⊥
= ⊥

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 55

Induction over Streams / Example 2(2)

Induction step

take n (x : xs) + + drop n (x : xs)

= x : (take (n − 1) xs + + drop (n − 1) xs

= x : xs (induction hypothesis)

2

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 56

Further Readings

• L. C. Paulson. Logic and Computation – Interactive Proof

with Cambridge LCF. Cambridge University Press, 1987.

• Simon Thompson. Proof for Functional Programming. In

K. Hammond, G. Michaelson (Hrsg.), Research Directions

in Parallel Functional Programming, Springer, 1999.

• Hanne and Flemming Nielson, Semantics with Applicati-

ons: An Appetizer, Springer-Verlag, Heidelberg, Germany,

2007.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 57

Next lectures...

• Thu, May 15, 2008: No lecture (“epilog”)

• Thu, May 22, 2008: No lecture (Public holiday)

• Thu, May 29, 2008, lecture time: 4.15 p.m. to 5.45 p.m.,
lecture room on the ground floor of the building Argenti-
nierstr. 8

• Thu, June 5, 2008, lecture time: 4.15 p.m. to 5.45 p.m.,
lecture room on the ground floor of the building Argenti-
nierstr. 8

Fifth assignment...

• Please check out the homepage of the course for details.

Advanced functional Programming (SS 2008) / Part 4 (Thu, 05/08/08) 58

