Infinite Lists: Programming with Streams

The following presentation is based on...

- Chapter 14

Paul Hudak. The Haskell School of Expression - Learning Functional Programming through Multimedia, Cambridge University Press, 2000.

- Chapter 17

Simon Thompson. Haskell - The Craft of Functional Programming, Addison-Wesley, 2nd edition, 1999.

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Streams

Jargon
Stream ...synonymous to infinite list synonymous to lazy list

Streams

- ...(in combination with lazy evaluation) allow to solve many problems elegantly, concisely, and efficiently
- ...are a source of hassle if applied inappropriately

More on this on the following slides...

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Streams

Convention
Instead of introducing a polymorphic data type Stream...

```
data Stream a = a :* Stream a
```

...we will model streams by ordinary lists waiving the usage of the empty list [].

This is motivated by:

- Convenience/Adequacy ...many pre-defined (polymorphic) functions on lists can be reused this way, which otherwise would have to be defined on the new data type Stream

Some Examples of Streams

- Built-in Streams in Haskell
$[3 \ldots]=[3,4,5,6,7, \ldots$
[3,5 ..] = $[3,5,7,9,11, \ldots$
- User-defined recursive lists (Streams)

The infinite lists of "twos"
2,2,2,...
In Haskell this can be realized...

- ...using list comprehension: [2..]
- ...as a recursive stream: twos $=2$: twos Illustration

$$
\begin{aligned}
\text { twos } & =2: \text { twos } \\
& =2: 2: \text { twos } \\
& =2: 2: 2: \text { twos } \\
& \Rightarrow 2
\end{aligned}
$$

...twos represents an infinite list; or more concisely, a stream

Functions on Streams

```
head :: [a] -> a
head (x:_) = x
```

Application

```
head twos
    => head (2 : twos)
    => 2
```

Note: Normal-order reduction (resp. its efficient implementation variant lazy evaluation) ensures termination (in this example).

The infinite sequence of reductions...
head twos
\Rightarrow head (2 : twos)
\Rightarrow head (2 : 2 : twos)
\Rightarrow head (2 : $2: 2$: twos)
=> . . .
is thus excluded.

Reminder

...whenever there is a terminating reduction sequence of an expression, then normal-order reduction terminates (Church/Rosser-Theorem)

- Normal-order reduction corresponds to leftmost-outermost evaluation
Note: In case of...

$$
\begin{aligned}
& \text { ignore : : a -> b -> b } \\
& \text { ignore a b = b }
\end{aligned}
$$

in both cases

- ignore twos 42
- twos 'ignore' 42
the leftmost-outermost operator is given by the call ignore.

Further Examples on Streams

- User-defined recursive lists/streams
from :: Int $->$ [Int]
from $n=n:$ from ($n+1$)
fromStep : : Int $->$ Int $->$ [Int]
fromStep $\mathrm{n} m=\mathrm{n}$: fromStep ($\mathrm{n}+\mathrm{m}$) m
Application

```
from 42 => [42, 43, 44,...
fromStep 3 2 => 3 : fromStep 5 2
=> 3 : 5 : fromStep 7 2
=> 3 : 5 : 7 : fromStep 9 2
    => ...
```


Further Examples

- The powers of an integer...

```
powers :: Int -> [Int]
powers n = [n^x | x <- [0 ..]]
```

- More general: The prelude function iterate...

```
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
```

The function iterate yields the stream

$$
[x, f x,(f . f) x,(f . f . f) x, \ldots
$$

Prime Numbers: The Sieve of Eratosthenes 1(4)

Intuition

1. Write down the natural numbers starting at 2 .
2. The smallest number not yet cancelled is a prime number. Cancel all multiples of this number
3. Repeat Step 2 with the smallest number not yet cancelled.

Illustration

Step 1:	2	3	4	5	6	7	8	9	10	11	12
Step 2:	2	3		5		7		9		11	
("with 2")											
Step 2: ("with 3")	2	3		5		7			11		$13 \ldots$

Prime Numbers: The Sieve of Eratosthenes 2(4)

The sequence of prime numbers...

```
primes :: [Int]
```

primes :: [Int]
primes = sieve [2 ..]
primes = sieve [2 ..]
sieve :: [Int] -> [Int]
sieve :: [Int] -> [Int]
sieve (x:xs) = x : sieve [y | y <- xs, mod y x > 0]

```
sieve (x:xs) = x : sieve [ y | y <- xs, mod y x > 0 ]
```

```
Prime Numbers: The Sieve of Era-
tosthenes 3(4)
Illustration ...by manual evaluation
    primes
    => sieve [2 ..]
    => 2 : sieve [ y | y <- [3 ..], mod y 2 > 0 ]
    => 2 : sieve (3 : [ y | y <- [4 ..], mod y 2 > 0 ]
    => 2 : 3 : sieve [z | z<- [ y | y <- [4 ..], mod y 2 > 0],
        mod z 3 > 0]
    => ...
    => 2 : 3 : sieve [ z | z <- [5, 7, 9 ..], mod z 3 > 0 ]
    #> ...
    => 2 : 3 : sieve [5, 7, 11,...]
    => ..
```


Prime Numbers: The Sieve of Eratosthenes 4(4)

- Application

```
member primes 7 ...yields "True"
    member primes 6 ...does not terminate!
```

but
where

```
member :: [a] -> a -> Bool
member [] y = False
member (x:xs) y = (x==y) || member xs y
```

- Question(n): Why? Can primes be embedded into a context allowing us to detect if a specific argument is prime or not?

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Random Numbers 1(2)

Generating a sequence of (pseudo-) random numbers..

```
nextRandNum :: Int -> Int
nextRandNum n = (multiplier*n + increment) 'mod' modulus
randomSequence :: Int -> [Int]
randomSequence = iterate nextRandNum
Choosing
\begin{tabular}{lll} 
seed & \(=17489\) & increment \\
multiplier \(=25173\) & modulus & \(=65536\)
\end{tabular}
```

we obtain the following sequence of (pseudo-) random numbers
[17489, 59134, 9327, 52468, 43805, 8378,...
ranging from 0 to 65536, where all numbers of this interval occur with the same frequency.

Advanced functional Proarammina (SS 20n8) / Part 3 (Thu 04/24/08)
14

Principles of Modularization

..related to streams

- The Generator/Selector Principle
...e.g. Computing the square root, the Fibonacci numbers
- The Generator/Transformer Principle
...e.g. "scaling" random numbers

More on Recursive Streams

Reminder ...the sequence of Fibonacci Numbers

$$
1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

is defined by

$$
\begin{aligned}
& f i b: \mathbb{N} \rightarrow \mathbb{I N} \\
& f i b(n)={ }_{d f} \begin{cases}1 & \text { if } n=0 \vee n=1 \\
f i b(n-1)+f i b(n-2) & \text { otherwise }\end{cases}
\end{aligned}
$$

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

The Fibonacci Numbers 1(4)

We learned already.

```
fib :: Integer -> Integer
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
```

..that a naive implementation as above is inacceptably inefficient.

The Fibonacci Numbers 2(4)

Illustration ...by manual evaluation

```
fib O => 1 -- 1 call of fib
fib 1 => 1 -- 1 call of fib
fib 2 => fib 1 + fib 0
    => 1 + 1
    => 2 -- 3 calls of fib
```

fib 3 => fib $2+$ fib 1
$\Rightarrow(f i b 1+f i b 0)+1$
=> (1 + 1) + 1
=> 3 -- 5 calls of fib

The Fibonacci Numbers 3(4)

fib 4 => fib $3+f i b 2$
$\Rightarrow(f i b 2+f i b 1)+(f i b 1+f i b 0)$
$\Rightarrow((f i b 1+f i b 0)+1)+(1+1)$
$\Rightarrow((1+1)+1)+(1+1)$
=> 5 -- 9 calls of fib
fib 5 => fib $4+f i b 3$
$\Rightarrow(f i b 3+f i b 2)+(f i b 2+f i b 1)$
=> ((fib $2+f i b 1)+(f i b 1+f i b 0))$
$+((f i b 1+f i b 0)+1)$
$\Rightarrow(((f i b 1+f i b 0)+1)+(1+1))+((1+1)+1)$
$\Rightarrow(((1+1)+1)+(1+1))+((1+1)+1)$
=> 8 -- 15 calls of fib

The Fibonacci Numbers 4(4)

fib 8 => fib $7+$ fib 6
$\Rightarrow(f i b 6+f i b 5)+(f i b 5+f i b 4)$
\Rightarrow ((fib $5+f i b 4)+(f i b 4+f i b 3))$
$+((f i b 4+f i b 3)+(f i b 3+f i b 2))$
$\Rightarrow(((f i b 4+f i b 3)+(f i b 3+f i b 2))$

$$
+(f i b 3+\text { fib 2) + (fib } 2+\text { fib 1))) }
$$

$+(((f i b 3+f i b 2)+(f i b 2+f i b 1))$
$+((f i b 2+f i b 1)+(f i b 1+f i b 0)))$
=> ... -- 60 calls of fib
...tree-like recursion (exponential growth!)

Reminder: Complexity 2(3)

Examples of common cost functions...

Code	Costs	Intuition: input a thousandfold as large means...
$\mathcal{O}(c)$	constant	\ldots equal effort
$\mathcal{O}(\log n)$	logarithmic	\ldots only tenfold effort
$\mathcal{O}(n)$	linear	\ldots also a thousandfold effort
$\mathcal{O}(n \log n)$	" $n \log n "$	\ldots tenthousandfold effort
$\mathcal{O}\left(n^{2}\right)$	quadratic	\ldots millionfold effort
$\mathcal{O}\left(n^{3}\right)$	cubic	\ldots billiardfold effort
$\mathcal{O}\left(n^{c}\right)$	polynomial	\ldots gigantic much effort (for big c)
$\mathcal{O}\left(2^{n}\right)$	exponential	\ldots hopeless

Reminder: Complexity 1(3)

See P. Pepper. Funktionale Programmierung in OPAL, ML, Haskell und Gofer, 2nd Edition (In German), 2003, Chapter 11.

Reminder ...O Notation

- Let f be a function $f: \alpha \rightarrow I R^{+}$with some data type α as domain and the set of positive real numbers as range. Then the class $\mathcal{O}(f)$ denotes the set of all functions which "grow slower" than f :

$$
\begin{gathered}
\mathcal{O}(f)={ }_{d f}\{h \mid h(n) \leq c * f(n) \text { for some positive } \\
\text { constant } \left.c \text { and all } n \geq N_{0}\right\}
\end{gathered}
$$

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Reminder: Complexity 3(3)

...and the impact of growing inputs in practice in hard numbers:

n	linear	quadratic	cubic	exponential
1	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
10	$10 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	1 ms	1 ms
20	$20 \mu \mathrm{~s}$	$400 \mu \mathrm{~s}$	8 ms	1 s
30	$30 \mu \mathrm{~s}$	$900 \mu \mathrm{~s}$	27 ms	18 min
40	$40 \mu \mathrm{~s}$	2 ms	64 ms	13 days
50	$50 \mu \mathrm{~s}$	3 ms	125 ms	36 years
60	$60 \mu \mathrm{~s}$	4 ms	216 ms	36560 years
100	$100 \mu \mathrm{~s}$	10 ms	1 sec	$4 * 10^{16}$ years
1000	1 ms	1 sec	17 min	very, very long...

Remedy: Recursive Streams 1(4)

Idea

Efficient implementation as a recursive stream

```
fibs :: [Integer]
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
where
```

```
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
```

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _

```
zipWith f _
```

..reminds to Münchhausen's famous trick of "sich am eigenen Schopfe aus dem Sumpfe ziehen"

Remedy: Recursive Streams 2(4)

```
fibs => 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : 34 : 55 : 89 :...
take 10 fibs => [1,1,2,3,5,8,13,21,34,55]
where
take :: Integer -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ _ = error "PreludeList.take: negative argument"
```

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Remedy: Recursive Streams 3(4)

Summing up

```
fib :: Integer -> Integer
fib n = last take n fibs
```

or even yet shorter

$$
\text { fib } n=f i b s!!n
$$

Note:

- Also in this example...

Application of the Generator/Selector Principle

Remedy: Recursive Streams 4(4)

Illustration ...by manual evaluation (with add instead of zipWith (+))

```
fibs => Replace the call of fibs by the body of fibs
    1 : 1 : add fibs (tail fibs)
    => // Replace both calls of fibs by the body of fibs
        1 : 1 : add (1 : 1 : add fibs (tail fibs))
            (tail (1 : 1 : add fibs (tail fibs)))
        => // Application of tail
        1 : 1 : add (1 : 1 : add fibs (tail fibs))
                            (1 : add fibs (tail fibs))
        => ...
```

- Observation
..the computational effort remains exponential this (naive) way!
- Clou
.lazy evaluation: ...common subexpressions will not be computed multiple times!

Illustration 1(3)

```
fibs => 1 : 1 : add fibs (tail fibs)
```

 => // Introducing abbreviations allows sharing of results
 1 : tf // (tf reminds to "tail of fibs")
 where tf = 1 : add fibs (tail fibs)
 => 1 : tf
 where tf = 1 : add fibs tf
 => // Introducing abbreviations allows sharing
 1 : tf
 where tf = \(1:\) tf2 // (tf2 reminds to "tail of tail
 // of fibs")
 where tf2 = add fibs tf
 => // Unfolding of add
1 : tf
where $\mathrm{tf}=1$: tf2
where tf2 = 2 : add tf tf2

Illustration 3(3)

=> // Finally, we obtain successsively longer prefixes // the sequence of Fibonacci numbers
1 : 1 : tf2
where tf2 = 2 : tf3
where $\mathrm{tf} 3=3: \operatorname{tf} 4$
where tf4 = add tf2 tf3
$\Rightarrow 1: 1: t f 2$
where tf2 = 2 : tf3

$$
\text { where } \mathrm{tf} 3=3: \mathrm{tf} 4
$$

where $\mathrm{tf} 4=5$: add tf 3 tf 4
// Note: eliminating where-clauses corresponds to
// garbage collection of unused memory by an implementation
"> 1 : 1 : 2 : tf3

$$
\text { where } \begin{aligned}
\mathrm{tf} 3= & 3: \operatorname{tf} 4 \\
& \text { where } \mathrm{tf} 4=5: \text { add tf3 tf4 }
\end{aligned}
$$

Illustration 2(3)

```
=> // Repeating the above steps
    1 : tf
    where tf = 1 : tf2
            where tf2 = 2 : tf3 // (tf3 reminds to "tail of
                    // tail of tail of fibs")
=> 1 : tf
    where tf = 1 : tf2
            where tf2 = 2 : tf3
                            where tf3 = 3 : add tf2 tf3
```

=> // tf is only used at one place and can thus be
// eliminated
1 : 1 : tf2
where tf2 = $2:$ tf 3
where tf3 = 3 : add tf2 tf3

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Alternatively: Stream Diagrams

Problems on streams can often be considered and visualized as processes.

Considering the sequence of Fibonacci Numbers as an example...

Another Example: A Client/Server Application

Interaction of a server and a client (e.g. Web server/Web browser)

```
    client :: [Response] -> [Request]
    server :: [Request] -> [Response]
    reqs = client resps
    resps = server reqs
```

Implementation
type Request = Integer
type Response $=$ Integer
client ys = 1 : ys // ...issues 1 as first request and then
// each integer it receives from the server
server $x s=\operatorname{map}(+1) \mathrm{xs} / /$...adds 1 to each request it receives

```
```

=> 1 : tr

```
```

=> 1 : tr
where tr = 2 : tr2
where tr = 2 : tr2
where tr2 = 3 : server tr2
where tr2 = 3 : server tr2
=> 1 : 2 : tr2
=> 1 : 2 : tr2
where tr2 = 3 : server tr2
where tr2 = 3 : server tr2
=> ...

```
```

=> ...

```
```

In particular

$$
\text { take } 10 \text { reqs } \Rightarrow[1,2,3,4,5,6,7,8,9,10]
$$

\section*{Client/Server Application}
 (Cont'd. 2(2))

Client/Server Application
(Cont'd. 1(2))

Example

```
reqs => client resps
```

=> 1 : resps
=> 1 : server reqs
=> // Introducing abbreviations 1 : tr
where tr $=$ server reqs
$\Rightarrow 1$: tr
where tr = 2 : server tr
$\Rightarrow 1: ~ t r$
where $\operatorname{tr}=2: \operatorname{tr} 2$
where $\operatorname{tr} 2$ = server tr

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

The Client/Server Example as a
Stream Diagram

Overcoming Hassle... Lazy Patterns

Suppose, the client wants to check the first response...

```
client (y:ys) = if ok y then 1 : (y:ys)
    else error "Faulty Server"
```

```
where
```

where
ok y = True // Apparently a trivial predicate

```
ok y = True // Apparently a trivial predicate
```

The evaluation of..

```
reqs => client resps
    => client (server reqs)
    => client (server (client resps))
    => client (server (client (server reqs)))
    => ...
```

...does not terminate!
The problem:
Deadlock! Neither client nor server can be unfolded! Pattern matching is too "eager."

Lazy Patterns 1(3)

Ad-hoc Remedy
client ys = 1 : if ok (head ys) then ys else error "Faulty Server"

- Replacing of pattern matching by an explicit usage of the selector function head
- Moving the conditional inside of the list

Lazy Patterns 2(3)

Systematic remedy ...lazy patterns

- Syntax: ...preceding tilde (\sim)
- Effect: ...like using an explicit selector function;

> pattern-matching is defered
client ~(y:ys) = 1 : if ok y then y:ys else error "Faulty Server"

Note ...even when using a lazy pattern the conditional must still be moved. But: selector functions are avoided!

Lazy Patterns 3(3)

Illustration ...by manual evaluation

```
reqs => client resps
    => 1 : if ok y then y : ys
            else error "Faulty Server"
        where y:ys = resps
    => 1 : (y:ys)
        where y:ys = resps
    => 1 : resps
```


Overcoming Hassle... Memo Tables

Note ...Dividing/Recognizing of common structures is limited The below variant of the Fibonacci function...
fibsFn :: () -> [Integer]
fibsFn $x=1$: 1 : zipWith (+) (fibsFn ()) (tail (fibsFn ()))
...exposes again exponential run-time and storage behaviour! Key word:

- Space (Memory) Leak ...the memory space is consumed so fast that the performance of the program is significantly impacted

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Illustration

```
fibsFn ()
    => 1 : 1 : add (fibsFn ()) (tail (fibsFn ()))
    => 1 : tf
        where tf = 1 : add (fibsFn ()) (tail (fibsFn ()))
```

The equality of tf and tail(fibsFn()) remains undetected. Hence, the following simplification is not done
=> 1 : tf
where tf = 1 : add (fibsFn ()) tf
In a special case like here, this is possible, but not in general!

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Memo Functions 1(4)

Memo functions (engl. Memoization)

- ...the concept goes back to D. Michie. ""Memo" Functions and Machine Learning", Nature, 218, 19-22, 1968.
- ...Idea: Replace, where possible, the computation of a function according to its body by looking up its value in a table

Memo Functions 2(4)

- ...Hence: A memo function is an ordinary function, but stores for some or all arguments it has been applied to the corresponding results \sim Memo Tables.
- ...Utility: Memo Tables - allow to replace recomputation by table look-up
Correctness: Referential transparency of functional programming languages

Memo Functions 3(4)

Computing the Fibonacci Numbers using a memo function:
Preparation:

```
flist = [ f x | x <- [0 ..] ]
```

...where f is a function on integers. Application: Each call of f is replaced by a look-up in flist.

Considering the Fibonacci numbers as example:

```
flist = [ fib x | x <- [0 ..] ]
fib 0 = 1
fib 1 = 1
fib n = flist !! (n-1) + flist !! (n-2)
instead of..
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
```


Memo Tables 1(2)

Memo functions/tables
memo :: (a -> b) -> (a -> b)
are used such that the following equality holds:

```
memo f x = f x
```

Key word: Referential transparency (in particular, absence of side effects!)

Memo Functions 4(4)

Conclusion..

- ...Memo Functions: Are meant to replace costly to compute functions by a table look-up
- ...Example ($2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots$):

```
power 0 = 1
power i = power (i-1) + power (i-1)
```

Looking-up the result of the second call instead of recomputing it requires only $1+n$ calls of power instead of $1+2^{n}$ \leadsto significant performance gain

Memo Tables 2(2)

The function memo..

- essentially the identity on functions but...
- memo keeps track on the arguments, it has been applied to and the corresponding results
...motto: look-up a result which has been computed previously instead of recomputing it!
- Memo functions are not part of the Haskell standard, but there are nonstandard libraries
- Important design decision when implementing Memo functions: ...how many argument/result pairs shall be traced? (e.g. memo1 for one argument/result pair)

In the example
mfibsFn :: () -> [Integer]
mfibsFn $x=1 e t$ mfibs $=$ memo1 mfibsFn
in 1 : 1 : zipWith (+) (mfibs ()) (tail (mfibs ()))

More on Memo Functions...

...and their implementation
For example in...

- Chapter 19

Anthony J. Field, Peter G. Harrison. Functional Programming, Addison-Wesley, 1988.

Advanced functional Programming (SS 2008) / Part 3 (Thu, 04/24/08)

Generator/Transformer Principle

Illustration...
Generator

Combining Generator and Transformer

Transformer

Generator/Selector Principle

Next lectures...

- Thu, May 1, 2008: No lecture (Public holiday)
- Thu, May 8, 2008, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr. 8
- Thu, May 15, 2008: No lecture ("epilog")
- Thu, May 22, 2008: No lecture (Public holiday)
- Thu, May 29, 2008, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr. 8

Fourth assignment...

- Please check out the homepage of the course for details.

