Why Functional Programming Matters

In the following a position statement by John Hughes, publis-
hed in:

e Computer Journal 32(2), 98-107, 1989

e Research Topics in Functional Programming. D. Turner (Hrsg.), Ad-
dison Wesley, 1990

e http://www.cs.chalmers.se/~rjmh/Papers/whyfp.html

“..an attempt to demonstrate to the “real world"” that func-
tional programming is vitally important, and also to help func-
tional programmers exploit its advantages to the full by making
it clear what those advantages are.”
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Typical Reasoning 1(4)
...functional programming owes its name to the facts that

e programs are composed of only functions
— the “main program’ is itself a function

— it accepts its inputs as arguments and delivers its output
as result

— it is defined in terms of other functions, which themsel-
ves are defined by other functions (eventually by primi-
tive functions)
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Typical Reasoning 2(4)
Benefits and characteristics of functional programming. A
common summary:
Functional programs are...
e free of assignments and side-effects
e function calls have no effect except of computing their result
e functional programs are thus free of a major source of bugs

e the evaluation order of expressions is irrelevant, expressions can be
evaluated any time

e programmers are free from specifying the control flow explicitly

e expressions can be replaced by their value and vice versa, programs
are referentially transparent

e functional programs are thus easier to cope with mathematically
(e.g. for proving their correctness)
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Typical Reasoning 3(4)

...the “default” -list of benefits and characteristica of functional
programming yields

e essentially an “is-not” -characterization

“It says a lot about what functional programming is
not (it has no assignments, no side effects, no flow of
control) but not much about what it is.”
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Typical Reasoning 4(4)

No hard facts providing evidence for “real” benefits?

Yes, there are. Often heard e.g.:

e Functional programs are

— a magnitude of order smaller than conventional pro-
grams

— functional programmers are thus much more productive

But why? Justifyable by the benefits from the default cata-
logue? By dropping features? Hardly. Not convincing.
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Conclusion

e The default catalogue is not satisfying

e \We need a positive characterization of the principal nature
of
— functional programming and its strengths and

— what makes up a “good” functional program
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TE)V\)/ards a Positive Characterization...
1(2

Analogue: Structured vs. non-structured programming
Structured programs are
e free of goto-statements (‘“‘goto considered harmful)
e blocks are free of multiple entries and exits

e casier to cope with mathematically than unstructured pro-
grams

Essentially an “is-not" -characterization, too...
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Towards... 2(2)

Conceptually more important...

Structured programs are...
e designed modularly in distinction to non-structured programs

e Structured programming is more efficient/productive for this reason
— Small modules are easier and faster to write and to maintain
— Re-use becomes easier

— Modules can be tested independently

Note: Dropping goto-statements is not an essential source of productivity
gain.

e Absence of gotos supports “programming in the small”

e Modularity supports “programming in the large”
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Thesis

e T he expressive power of a language, which supports modu-
lar design, depends much on the power of the concepts and
primitives allowing to combine solutions of subproblems to
the solution of the overall problem. (Keyword: glue). (Ex-
ample: making of a chair)

e Functional programming provides two new, especially po-
werful means ("glues") for this purpose:
1. Higher-order functions (functionals)
2. Lazy evaluation

Modularization and re-use offer thus even conceptually
(and not just technically (lexical scoping, separate com-
pilation, etc.)) new opportunities and become much easier
to apply

In the Following

e I Glueing Functions Together
~» The clou: Higher-order functions

e II Glueing Programs Together
~» The clou: Lazy evaluation
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e Modularization (smaller, simpler, more general) is the gui-
deline, which should be used by functional programmers
for guidance
I Glueing Functions Together... Observation
Syntax in the flavour of Miranda (TM): +-——+
sum nil =1 0|
e Lists bt
listof X ::= nil | cons X (listof X) Foo
sum (cons num list) = num | + | sum list
+———+

e Abbreviations

] short for nil
[1] short for cons 1 nil
[1,2,3] short for cons 1 (cons 2 (cons 3 nil)))

e Adding the elements of a list

sum nil =0
sum (cons num list)

num + sum list
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...the computation of a sum can be decomposed into modules by pro-
perly combining a general pattern of recursion and a set of more specific
operations (see frames above).

sum = reduce add O
where
add x y = x+ty

..revealing the definition of reduce almost immediately:

(reduce f x) nil = x
(reduce f x) (cons a 1) = £ a ((reduce f x) 1)
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Immediate Benefits

Without any further programming effort we obtain...

e Computing the product of the elements of a list

product = reduce multiply 1
where multiply x y = x*y

e Test, if some element of a list equals “true”

anytrue = reduce or false

e Test, if all elements of a list equal “true”

alltrue = reduce and true
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Intuition

The call reduce £ a can be understood such that in a list of
elements all occurrences of

e cons are replaced by £ and of

e nil by a

Example:

reduce add O:
cons 1 (cons 2 (cons 3 nil))
--> add 1 (add 2 (add 3 0)) =6

reduce multiply 1:
cons 1 (cons 2 (cons 3 nil))
--> multiply 1 (multiply 2 (multiply 3 1)) = 6
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More Applications 1(4)

e Observation
reduce cons nil copies a list of elements

e This allows: append a b = reduce cons b a

Example:

append [1,2] [3,4] reduce cons [3,4] [1,2]

cons 1 (coms 2 [3,4])
-— replacement of cons by cons and
-- of nil by [3,4]

[1,2,3,4]

(reduce cons [3,4]) (cons 1 (cons 2 nil))
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More Applications 2(4)

e Copying each element of a list

doubleall = reduce doubleandcons nil

where doubleandcons num list = cons (2*num) list

e Further step of modularization

doubleandcons = fandcons double
where double n = 2%*n

fandcons f el list = cons (f el) list
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More Applications 3(4)

e After another step of modularization
fandcons £ = cons . £

where “."" denotes the composition of functions:
(f . g h=1£f (gh

Illustration:

(cons . f) el
cons (f el)

fandcons f el

This yields as desired:

fandcons f el list = cons (f el) list
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More Applications 4(4)

e Eventually, we thus obtain:
doubleall = reduce (cons . double) nil

e Another step of modularization leads us to map

doubleall = map double
where map f = reduce (cons . f ) nil

After this preparing steps it is just as well possible:

e To add the elements of a matrix:
summatrix = sum . map sum
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Intermediate Conclusion 1

By decomposion (modularization) of a simple function (sum in
the example) as combination of

e a higher-order function and
e some simple specific functions as arguments

we obtained a program frame (reduce), which allows us to
implement many functions on lists without any further pro-
gramming effort.
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Generalizations to more complex data
structures 1(2)

Trees
treeof X ::= node X (listof (treeof X))
Example:
node 1 1
(cons (node 2 nil) / \
(cons (node 3 2 3
(cons (node 4 nil) nil))
nil)) 4
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Generalizations... 2(2)

Analogously to reduce on lists we introduce a functional redtree
on trees:

redtree f g a (node label subtrees) =
f label (redtree’ f g a subtrees)
where
redtree’ f g a (cons subtree rest) =
g (redtree f g a subtree) (redtree’ f g a rest)

redtree’ f g a nil = a
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Applications 1(3)

e ToO add the labels of the leaves of a tree
sumtree = redtree add add O

Illustrated by means of an example:

add 1
(add (add 2 0)
(add (add 3
(add (add 4 0) 0))
0))
= 10
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Applications 2(3)

e Generating a list of all labels occurring in a tree

labels = redtree cons append nil

Illustrated by means of an example:

cons 1
(append (cons 2 nil)
(append (cons 3
(append (cons 4 nil) nil))
nil))
= [1,2,3,4]
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Applications 3(3)

e A function maptree on trees complementing the function
map oOn lists

maptree f = redtree (node . f) cons nil
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Intermediate Conclusion 2 1(2)

e The expressiveness of the preceding examples is a conse-
quence of combining

— a higher-order function and
— a specific specializing function
e Once the higher order function is implemented, lots of fur-

ther functions can be implemented almost without any ef-
fort
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Intermediate Conclusion 2 2(2)

e [ esson learnt: Whenever a new data type is introduced,
implement first a higher-order function allowing to process
(e.g., visiting each component of a structured data value
such as nodes in a graph or tree) values of this type.

e Benefits: Manipulating elements of this data type becomes
easy and knowledge about this data type is “localized”.

o [ ook&feel: Whenever new data structures demand new
control structures, then these control structures can easily
be added following the methodology used above (to some
extent this resembles the concepts known from conventio-
nal extensible languages)
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II Glueing Programs Together

If £ and g are programs, then also
g . f
is a program. Applied to the input input, it yields the output

g (f input)

e Possible convential implementation (glue):
communication via files

e Possible problems
— Temporary files are often too large

— £ might not terminate
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Functional Glue

Lazy evaluation offers a more elegant remedy.
As a glue, it allows:
e Decomposition of a problem into a
— generator and a

— selector

component.
Intuition:

e The generator component “runs as little as possible” until
it is terminated by the selector component.
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Example 1: Computing Square Roots

Computing Square Roots (according to Newton-Raphson)
Given: N Sought: squareRoot(N)
Iteration formula:

a(n+1) = (a(n) + N/a(m)) / 2

Justification: If converging to some limit a, we have:

a=(a+Na /2
=> 2a = a + N/a

a = N/a

axa = N

a = squareRoot (N)
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Compare this...

...with a typical imperative (Fortran-) program:

C N is called ZN here so that it has the right type
X = A0
Y = A0 + 2.%EPS
C The value of Y does not matter so long as ABS(X-Y).GT.EPS
100 IF (ABS(X-Y).LE.EPS) GOTO 200
Y=X
X=X+ 2N/X) / 2.
GOTO 100
200 CONTINUE
C The square root of ZN is now in X

~» essentially monolithic, not divisible.
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The Functional Version 1(4)

Computing the next approximation

next N x = (x + N/x) / 2
Denoting this function £, we are interested in computing the
sequence of approximations:

[a0, f a0, f(f a0), f(£f(f a0)), ...]
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The Functional Version 2(4)

The function repeat computes this (possibly infinite) sequence
of approximations. It is the generator component in this ex-
ample:

repeat f a = cons a (repeat f (f a))

Applying repeat to the arguments next N and a0 yields the
desired sequence of approximations:

repeat (next N) a0
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The Functional Version 3(4)

Note: The evaluation of
repeat (next N) a0

does not terminate!

Remedy: ...computing squareroot N up to a given tolerance eps
> 0. Instrumental is: the selector component.

Implementation:

within eps (cons a (cons b rest))
= b, if abs(a-b) <= eps
within eps (cons b rest), otherwise

Still to do: Combining the components/modules:

sqrt a0 eps N = within eps (repeat (next N) a0)

~» We are done.

The Functional Version 4(4)
Summing up:

e repeat... generator component:
[a0, f a0, f(f a0), £f(£(f a0)), ...]
...potentially infinite, no limit on the length

e within... selector component:
f! a0 with abs(f! a0 - £i1+1 a0) <= eps
...lazy evaluation ensures that the selector function
is applied eventually = termination!

Note: Intuitively, lazy evaluation ensures that both programs
(generator and selector) run in strict synchronization.
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Towards the Re-Use of Modules

Next, we want to want to ;rovide evidence that
e generator
e Selector

can indeed be considered modules, which can easily be re-used.

We are going to start with the re-use of the module generator...
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Evidence of Modularity: Variants

Consider another criterion for termination:

e ...instead of awaiting the difference of successive appro-
ximations to approach zero (<= eps), await their ratio to
approach one (<= 1+eps)

Implementation:

relative eps (cons a (cons b rest))
= Db, if abs(a-b) <= eps * abs b
= relative eps (cons b rest), otherwise

Still to do: (re-) composition of the components/modules:

relativesqrt a0 eps N = relative eps (repeat (mext N) a0)

~» We are done.
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Note the Re-Use

...of the module generator in the previous example:

e The generator, i.e., the “module” computing the sequence
of approximations has been re-used unchanged.

Next, we want to re-use the module selector...
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Example 2: Numerical Integration

Numerical Integration

Given: A real valued function £ of one real argument; two end-
points a und b of an interval

Sought: The area under f between a and b

Naive Implementation:
...supposed that the function f is roughly linear between a und b.
easyintegrate f a b = (f a + £ b) * (b-a) / 2

...sufficiently precise at most for very small intervals.
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Refinements 1(4)

Idea

e Halve the interval, compute the areas for both subintervals
according to the previous formula, and add the two results

e Continue the previous step repeatedly

The function integrate implements this strategy:

integrate f a b = cons (easyintegrate f a b)
map addpair (zip (integrate f a mid)
(integrate f mid b)))
where mid = (at+b)/2

Reminder:

zip (cons a s) (cons b t) = cons (pair a b) (zip s t)
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Refinements 2(4)

e integrate is sound but inefficient (redundant computations
of £ a, £ b, and £ mid

The following version of integrate is free of this deficiency

integrate f a b = integ f a b (f a) (f b)
integ £ a b fa fb = cons ((fat+fb)*(b-a)/2)
(map addpair (zip (integ f a m fa fm)
(integ f m b fm fb)))
where m = (a+b)/2

fm=£fm
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Refinements 3(4)

Apparently, the evaluation of
integrate f a b

does not terminate!

Remedy: ...computing integrate f a b up to some
limit eps > 0.

Implementation:

Variant A: within eps (integrate f a b)
Variant B: relative eps (integrate f a b)
Advanced Functional Programming (SS 2008) / Part 1 (Thu, 03/11/08) 41

Refinements 4(4)

Summing up...

e Generator component:
integrate
...potentially infinite, no limit on the length

e Selector component:
within, relative
...lazy evaluation ensures that the selector function
is applied eventually = termination!
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Note the Re-Use

...of the module selector in the previous example:

e The selector, i.e., the “module” picking the solution from
the stream of approximate solutions has been re-used un-
changed.

Again, lazy evaluation was the key to synchronize the generator
and selector module!
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Example 3: Numerical Differentiation

Numerical Differentiation

Given: A real valued function £ of one real argument; a point

X

Sought: The slope of f at point x

Naive Implementation:
...supposed that the function £ between x and x+h does not ‘“curve much”
easydiff f x h = (f (x+th) - £ x) / h

...sufficiently precise at most for very small values of h.
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Refinements 1(2)

Generate a sequence of approximations getting successively
“better”

differentiate hO f x = map (easydiff f x) (repeat halve hO)
halve x = x/2

Selecting a sufficiently precise approximation

within esp (differentiate hO f x)

~» Assignment
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Conclusion 1(4)

The composition pattern, which in fact is common to all three
examples becomes apparent again. It consists of

e generator (not limited itself!) and

e selector (ensuring termination thanks to lazy evaluation!)
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Conclusion 2(4)

Thesis
e ...modularity is the key to programming in the large
Observation

e ...just modules (i.e., the capability of decomposing a pro-
blem) do not suffice

e ...the benefit of decomposing a problem into modular sub-
problems depends much on the capabilities for the combi-
nation of modules (glue!)

e ...the availability of proper glue is substantial!
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Conclusion 3(4)
Fact

e Functional programming offers two new kinds of glue
— Higher-order functions
— Lazy evaluation

e Higher-order functions and lazy evaluation allow substanti-
ally new exciting modular decompositions of problems (by

offering elegant composition means) as here given evidence
by an array of impressive examples

e In essence, it it the superior glue, which makes functional
programs to be written so concisely and elegantly

Advanced Functional Programming (SS 2008) / Part 1 (Thu, 03/11/08) 48




Conclusion 4(4)

Guideline

e Functional programmers should strive for adequate modu-
larization and generalization
— Especially, if a portion of a program looks ugly or ap-

pears to be too complex

e Functional programmers should expect that
— higher-order functions and
— lazy evaluation

are the tools for doing this
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Lazy vs. Eager Evaluation

The final conclusion of John Hughes...

e In view of the previous arguments...

— The benefits of lazy evaluation as a glue is so evi-
dent that lazy evaluation is too important to make it a
second-class citizen.

— Lazy evaluation is possibly the most powerful glue func-
tional programming has to offer.

— Access to such a powerful means should not airily be
dropped.
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Worthwhile too...

...the examination of the following papers:

e Paul Hudak. Conception, Evolution, and Application of
Functional Programming Languages. ACM Computing
Surveys, Vol. 21, No. 3, 359-411, 1989.

e Phil Wadler. The Essence of Functional Programming. In
Conference Record of the 19th Annual Symposium on Prin-
ciples of Programming Languages (POPL'92), 1-14, 1992.

e Simon Peyton Jones. Wearing the Hair Shirt — A Retro-
spective on Haskell. Invited Keynote Presentation at the
30th Annual Symposium on Principles of Programming
Languages (POPL'03), 2003.

Slides: http://research.microsoft.com/Users/simonpj/
papers/haskell-retrospective/index.html
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Next lecture...

e Thu, March 13, 2008, lecture time: 4.15 p.m. to 5.45 p.m.,
lecture room on the ground floor of the building Argenti-
nierstr. 8
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