
Assignment 6

Advanced functional Programming

Topic: Parsing – Lexical and Syntactical Analysis

Issued on: 06/14/2007, due date: 06/25/2007

For this assignment a Haskell script named AssFFP5.hs shall be writ-
ten offering functions which solve the problems described below. This file
AssFFP6.hs shall be stored in your home directory, as usual on the top
most level. Comment your programs meaningfully. Use constants and au-
xiliary functions, where appropriate.

Consider the programming language Repeat, whose programs are cha-
racterized by the following grammar:

Prog ::= begin Stmt end

Stmt ::= AssStmt | IfStmt | RepeatStmt | CompStmt

AssStmt ::= Idf := AExpr

IfStmt ::= if Bexpr then Stmt else Stmt fi

RepeatStmt ::= repeat Stmt until Bexpr taeper

CompStmt ::= Stmt ; Stmt

We assume that Idf denotes an arbitrary identifier and that each identifier
is a non-empty sequence of lower case and upper case letters and digits
starting with a letter. The set of arithmetic and Boolean expressions is
given by the following grammar for expressions.

Expr ::= AExpr | Bexpr

AExpr ::= Term | AExpr Aop Term

Term ::= Factor | Term Mop Factor

Factor ::= Opd | (AExpr)

Opd ::= Numeral | Idf

Aop ::= + | -

Mop ::= * | /

Bexpr ::= (Aexpr Relop Aexpr)

Relop ::= = | /= | > | <

We assume that Numeral denotes an unsigned decimal number (i.e., a
natural number).

• Implement either a monadic parser or a combinator parser p. If p is
applied to a Repeat-program, p yields the corresponding sequence

of tokens. Possible tokens are (where AssOp is used to denote the
assignment operator :=):

data Token = Id | ZuwOp | Num |

OeffKlammer | SchliessKlammer |

Plus | Minus | Mal | Durch |

Gleich | Ungleich | Groesser | Kleiner |

BeginSymb | EndSymb |

IfSymb | ThenSymb | ElseSymb | FiSymb |

RepeatSymb | UntilSymb | TeaperSymb |

Err

deriving Show

Take care to implement in particular a function main1 :: String ->

[Token] allowing to test the functioning of your parser. The token
Err shall be used, if the input string contains a substring, which does
not correspond to one of the tokens above. The remainder of the
input string shall then be discarded; err is then the last token in the
result list of the function main.

• Implement a parser, which reads a Repeat-program, and yields a list
of syntax trees as the result. Each syntax tree occuring in the result
shall correspond to one statement of the Repeat-program.

data STree = Seq [Tree]

data Tree = AssStmt Idf AExpr |

IfStmt BExpr Tree Tree |

RepeatStmt Tree BExpr

data AExpr = Term | Ce AExpr Aop Term

data Term = Factor | Ct Term Mop Factor

data Factor = Opd | AExpr

data Opd = Zahl | Idf

data Aop = Plus | Minus

data Mop = Mal | Durch

type Idf = String

type Numeral = Int

data BExpr = Cb Aexpr RelOp Aexpr

data RelOp = Equal | Unequal

Take care to implement in particular a function main2 :: String

-> STree allowing to test the functioning of your program. Add re-
quired Show-directives. You can assume that your program will only
be tested with syntactically correct Repeat-programs.

Note: In case of any remaining name clashes rename identifiers in order
resolve these clashes.

