
Today’s Topic

• Pretty Printing

Like parsing a typical demo-application

• Parallelism in Functional Programming Languages

A hot research topic

• The Story of Haskell

Behind the scenes of Haskell (and Functional Program-

ming)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 1

Part I: Pretty Printing

Pretty Printing

...like lexical and syntactical analysis another typical app-

lication for demonstrating the elegance of functional pro-

gramming.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 2

What’s it all about?

A pretty printer is...

• a tool (often a library of routines) to convert a tree into

text

Essential goals...

• a minimum number of lines while preserving and illustrating

the structure of the tree by indentation

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 3

“Good” Pretty-Printer

...are distinguished by properly balancing

• Simplicity of usage

• Flexibility of the format

• “Niceness” of output

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 4

Reference

The following presentation is based on...

• Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oe-

ge de Moor (Eds.), The Fun of Programming. Palgrave

MacMillan, 2003.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 5

Distinguishing Feature

...of the “Prettier Printer” proposed by Philip Wadler:

• There is only a single way to concatenate documents,

which is

– associative

– with left-unit and right-unit

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 6

Why “prettier” than “pretty”?

Wadler considers his “Prettier Printer” an improvement of the
pretty printer library proposed by John Hughes, which is widely
recognized as a standard.

• The design of a pretty-printer library. In Johan Jeuring,
Erik Meijers (Hrsg.), Advanced Functional Programming,
LNCS 925, Springer, 1995.

Hughes’ library enjoys the following characteristics:

• Two ways to concatenate documents (horizontal and ver-
tical), one of which

– without unit (horizontal)

– with right-unit (only) (vertical)

• ca. 40% more code, ca. 40% slower as Wadler’s proposal

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 7

A Simple Pretty Printer: The Basis

Characteristic: For each document there is only one possible
layout (e.g., no attempt is made to compress structure onto a
single line).

The basic operators needed are:

(<>) :: Doc -> Doc -> Doc -- ass. concatenation

nil :: Doc -- Right- and left-unit for (<>)

text :: String -> Doc -- Conversion function

line :: Doc -- Line break

nest :: Int -> Doc -> Doc -- Adding indentation

layout :: Doc -> String -- Output

Convention:

• Arguments of text are free of newline characters

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 8

A Simple Implementation

Implement...

• doc as strings (i.e. as String)

with...

• (<>) ...concatenation of strings

• nil ...empty string

• text ...identity on strings

• line ...new line

• nest i ...i blanks indentation (after each line break by means of line)

• layout ...identity on strings

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 9

Example

...converting trees into documents (here: Strings) and their
output as text (here: Strings).

Consider the following type of trees:

data Tree = Node String [Tree]

A concrete value B of type Tree...

Node "aaa" [Node "bbbbb" [Node "cc" [], Node "dd" []],

Node "eee" [],

Node "ffff" [Node "gg" [],

Node "hhh" [],

Node "ii" []

]

]

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 10

And its desired output

aaa[bbbbb[ccc,

dd],

eee,

ffff[gg,

hhh,

ii]]

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 11

Implementation

The below implementation achieves this...

data Tree = Node String [Tree]

showTree :: Tree -> Doc

showTree (Node s ts) = text s <> nest (length s) (showBracket ts)

showBracket :: [Tree] -> Doc

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts)

<> text "]"

showTree :: [Tree] -> Doc

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 12

Another possibly wanted output of B

aaa[

bbbbb[

ccc,

dd

],

eee,

ffff[

gg,

hhh,

ii

]

]

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 13

An implementation producing the latter
output

data Tree = Node String [Tree]

showTree’ :: Tree -> Doc

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ :: [Tree] -> Doc

showBracket’ [] = nil

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

showTree’ :: [Tree] -> Doc

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 14

A Normal Form of Documents

Normal form...

• text alternating with line breaks nested to a given inden-

tation

text s0 <> nest i1 line <> text s1 <> ...

<> nest ik line <> text sk

Note:

• Documents can always be reduced to normal form

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 15

Normal Forms: An Example 1(3)

The document...

text "bbbbb" <> text "[" <>

nest 2 (

line <> text "ccc" <> text "," <>

line <> text "dd"

) <>

line <> text "]"

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 16

Normal Forms: An Example 2(3)

...has the normal form:

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 17

Normal Forms: An Example 3(3)

...and prints as follows:

bbbbb[

ccc,

dd

]

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 18

Why does it work

...because of the properties (laws) the functions enjoy.

More on this next...

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 19

Properties of the Functions – Laws 1(2)

We have:

text (s ++ t) = text s <> text t (text is homomorphism from

text "" = nil string concatenation to

document concatenation)

nest (i+j) x = nest i (nest j x) (nest is homomorphism from

nest 0 x = x addition to composition)

nest i (x <> y) = nest i x <> nest i y (nest distributes through

nest i nil = nil document concatenation)

nest i (text s) = text s (Nesting is absorbed by text)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 20

Properties of the Functions – Laws 2(2)

Meaning

• The above laws are sufficient to establish that documents

can always be transformed into normal form (first four

laws: application left to right; last three laws: application

right to left)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 21

Further Properties – Laws

...on the relationship of documents and their layouts

layout (x <> y) = layout x ++ layout y (layout is homomorphism

layout nil = "" from document

concatenation to

string concatenation)

layout (text s) = s (layout is the inverse

of text)

layout (nest i line) = ’\n’ : copy i ’ ’

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 22

The Implementation of Doc

Intuition

...representing documents as a concatenation of items, where
each item is a text or a line break indented to a given amount.

...as a sum type (the algebra of documents):

data Doc = Nil

| String ’Text’ Doc

| Int ’Line’ Doc

...and the relationship of the constructors to document opera-
tors:

Nil = nil

s ’Text’ x = text s <> x

i ’Line’ x = nest i line <> x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 23

Example

The normal form (considered previously already)...

text "bbbbb[" <>

nest 2 line <> text "ccc," <>

nest 2 line <> text "dd" <>

nest 0 line <> text "]"

...has the representation:

"bbbbb[" ’Text’ (

2 ’Line’ ("ccc," ’Text’ (

2 ’Line’ ("dd," ’Text’ (

0 ’Line’ ("]," ’Text’ Nil)))))

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 24

Derived Implementations 1(2)

...of the document operators:

nil = Nil

text s = s ’Text’ Nil

line = 0 ’Line’ Nil

(s ’Text’ x) <> y = s ’Text’ (x <> y)

(i ’Line’ x) <> y = i ’Line’ (x <> y)

Nil <> y = y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 25

Derived Implementations 2(2)

nest i (s ’Text’ x) = s ’Text’ nest i x

nest i (j ’Line’ x) = (i+j) ’Line’ nest i x

nest i Nil = Nil

layout (s ’Text’ x) = s ++ layout x

layout (i ’Line’ x) = ’\n’ : copy i ’ ’ ++ layout x

layout Nil = ""

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 26

On the Correctness

...of the derived implementations:

• Derivation of (s ’Text’ x) <> y = s ’Text’ (x <> y)

(s ’Text’ x) <> y

= { Definition of Text }

(text s <> x) <> y

= { Associativity of <> }

text s <> (x <> y)

= { Definition of Text }

s ’Text’ (x <> y)

• Remaining equations: Similar reasoning

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 27

Documents with Multiple Layouts

• Up to now... documents are equivalent to a string

• Now... documents are equivalent to a set of strings

where each string correponds to a layout.

All what is needed: A new function

group :: Doc -> Doc

Informally :

...returns an additional element, which is provided in a new line

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 28

Preferred Layouts

• layout is replaced by pretty

pretty :: Int -> Doc -> String

• pretty’s integer-argument specifies the preferred maximum

line length of the output (and hence the nicest layout out

of the set alternatives at hand)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 29

Example

Using...

showTree (Node s ts) = group (text s

<> nest (length s) (showBracket ts))

...the call of pretty 30 yields the output:

aaa[bbbbb[ccc, dd],

eee,

ffff[gg, hhh, ii]]

This ensures

• Output in one line where possible (i.e. length ≤ 30)

• Insertion of sufficiently many line breaks in order to avoid exceeding
the given maximum line length

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 30

Implementation of the new Functions

The following supporting functions are required:

-- Union of two sets of layouts

(<|>) :: Doc -> Doc -> Doc

-- Replacement of each line break (including subsequent

-- indentation) by a single space

flatten :: Doc -> Doc

• Observation ...documents always represent a non-empty
set of layouts

• Requirements

– ...in (x <|> y) all layouts of x and y enjoy the same flat
layout

– ...each first line in x is no shorter than each first line in
y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 31

Properties (Laws) of (<|>)

(x <|> y) <> z = (x <> z) <|> (y <> z)

x <> (y <|> z) = (x <> y) <|> (x <> z)

nest i (x <|> y) = nest i x <|> nest i y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 32

Properties (Laws) of flatten

flatten (x <|> y) = flatten x

flatten (x <> y) = flatten x <> flatten y

flatten nil = nil

flatten (text s) = text s

flatten line = text " " -- most interesting case

flatten (nest i x) = flatten x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 33

Implementation of group

...by means of flatten and (<>)

group x = flatten x <|> x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 34

Normal Form

Using the following settings each document can be reduced to

a normal form of the form

x1 <|> ... <|> xn

where each xi is in the normal form of simple documents

(which was introduced previously).

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 35

Selecting of a “best” Layout

...by defining an ordering relation on lines in dependence of the

given maximum line length

Out of two lines...

• which do not exceed the maximum length, select the longer

one

• of which at least one exceeds the maximum length, select

the shorter one

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 36

The Adapted Implementation of Doc

data Doc = -- The first 3 alternatives as before

Nil

| String ’Text’ Doc

| Int ’Line’ Doc

-- We add a construct representing the

-- union of two documents

| Doc ’Union’ Doc

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 37

Relationship of Constructors and Docu-
ment Operators

Nil = nil

s ’Text’ x = text s <> x

i ’Line’ x = nest i line <> x

x ’Union’ y = x <|> y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 38

Example 1(8)

The document...

group(

group(

group(

group(text "hello" <> line <> text "a")

<> line <> text "b")

<> line <> text "c")

<> line <> text "d")

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 39

Example 2(8)

...has the layouts

hello a b c d hello a b c hello a b hello a hello

d c b a

d c b

d c

d

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 40

Example 3(8)

Task: ...print the above document under the constraint that

the maximum line length is 5

;the right-most layout of the previous slide is requested

Initial considerations:

• ...Factoring out "hello" of all layouts of x and y

"hello" ’Text’ ((" " ’Text’ x) ’Union’ (0 ’Line’ y))

• ...Defining the interplay of (<>) and nest with Union

(x ’Union’ y) <> z = (x <> z) ’Union’ (y <> z)

nest k (x ’Union’ y) = nest k x ’Union’ nest k y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 41

Example 4(8)

Implementing group and flatten

group Nil = Nil

group (i ’Line’ x) = (" " ’Text’ flatten x) ’Union’

(i ’Line’ x)

group (s ’Text’ x) = s ’Text’ group x

group (x ’Union’ y) = group x ’Union’ y

flatten Nil = Nil

flatten (i ’Line’ x) = " " ’Text’ flatten x

flatten (s ’Text’ x) = s ’Text’ flatten x

flatten (x ’Union’ y) = flatten x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 42

Example 5(8)

Considerations on correctness...

Derivation of group (i ’Line’ x) (see line two)

group (i ’Line’ x)

= { Definition of Line }

group (nest i line <> x)

= { Definition of group}

flatten (nest i line <> x) <|> (nest i line s <> x)

= { Definition of flatten }

(text " " <> flatten x) <|> (nest i line <> x)

= { Definition of Text, Union, Line }

(" " ’Text’ flatten x) ’Union’ (i ’Line’ x)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 43

Example 6(8)

Correctness considerations...

Derivation of group (s ’Text’ x) (see line three)

group (s ’Text’ x)

= { Definition Text }

group (text s <> x)

= { Definition group}

flatten (text s <> x) <|> (text s <> x)

= { Definition flatten }

(text s <> flatten x) <|> (text s <> x)

= { <> distributiert ueber <|> }

text s <> (flatten x <|> x)

= { Definition group }

text s <> group x

= { Definition Text }

s ’Text’ group x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 44

Example 7(8)

Selecting the “best” layout...

best w k Nil = Nil

best w k (i ’Line’ x) = i ’Line’ best w i x

best w k (s ’Text’ x) = s ’Text’ best w (k + length s) x

best w k (x ’Union’ y) = better w k (best w k x) (best w k y)

better w k x y = if fits (w-k) x then x else y

Remark:

• best ...converts a “union”-afflicted document into a “union”-free do-
cument

• Argument w ...maximum line length

• Argument k ...already consumed letters (including indentation) on cur-
rent line

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 45

Example 8(8)

Check, if the first document line stays within the maximum

line length...

fits w x | w<0 = False

fits w Nil = True

fits w (s ’Text’ x) = fits (w - length s) x

fits w (i ’Line’ x) = True

Last but not least, the output routine (layout remains unchan-

ged)...

pretty w x = layout (best w 0 x)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 46

A more efficient variant

...by means of a new implementation of documents

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

Remark:

• In distinction to the previous document type we here use capital letters

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 47

Implementing the Document Operators

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 48

Implementing group and flatten

As before, we require:

• ...in (x :<|> y) all layouts of x and y have the same flat

layout

• ...each first line in x is no shorter than each first line in y

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 49

Representation Function

...generating the document from an indentation-afflicted do-

cument

rep z = fold (<>) nil [nest i x | (i,x) <- z]

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 50

Selecting the “best” Layout

Generalizing the function “best”...

be w k z = best w k (rep z) (Hypothesis)

best w k x = be w k [(0,x)]

where...

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y) : z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ’Text’ be w (k+length s) z

be w k ((i,LINE) : z) = i ’Line’ be w i z

be w k ((i.x :<|> y) : z) = better w k (be w k ((i.x) : z))

(be w k (i,y) : z))

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 51

In Preparation of further Applications
1(3)

...first some useful supporting functions

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

spread = folddoc (<+>)

stack = folddoc (</>)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 52

In Preparation of further Applications
2(3)

...further supporting functions

-- Often recurring output pattern

bracket l x r = group (text 1 <>

nest 2 (line <> x) <>

line <> text r)

-- Abbreviation of the alternative tree layout function

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

-- Filling up lines (using words out of the Haskell Standard Lib.)

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 53

In Preparation of further Applications
3(3)

fill, a variant of fillwords

; ...collapses a list of documents to a single document

fill [] = nil

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs)) :<|>

(x </> fill (y : zs)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 54

Application 1(2)

Printing XML-documents (simplified syntax)...

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 55

Application 2(2)

Continuation...

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 56

Example 1

...for a given maximum line length of 30 letters

<p

color="red" font="Times"

size="10"

>

Here is some

 emphasized text.

Here is a

<a

href="http://www.eg.com/"

> link

elsewhere.

</p>

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 57

Example 2

...for a given maximum line length of 60 letters

<p color="red" font="Times" size="10" >

Here is some emphasized text. Here is a

 link elsewhere.

</p>

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 58

Example 3

...after dropping of flatten in fill

<p color="red" font="Times" size="10" >

Here is some

emphasized

 text. Here is a <a

href="http://www.eg.com/"

> link elsewhere.

</p>

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 59

Overview of the Code 1(11)

Source: Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oege de

Moor (Eds.), The Fun of Programming. Palgrave MacMillan, 2003.

-- The pretty printer

infixr 5:<|>

infixr 6:<>

infixr 6 <>

data DOC = NIL

| DOC :<> DOC

| NEST Int DOC

| TEXT String

| LINE

| DOC :<|> DOC

data Doc = Nil

| String ’Text’ Doc

| Int ’Line’ Doc

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 60

Overview of the Code 2(11)

nil = NIL

x <> y = x :<> y

nest i x = NEST i x

text s = TEXT s

line = LINE

group x = flatten x :<|> x

flatten NIL = NIL

flatten (x :<> y) = flatten x:<> flatten y

flatten (NEST i x) = NEST i (flatten x)

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 61

Overview of the Code 3(11)

layout Nil = ""

layout (s ’Text’ x) = s ++ layout x

layout (i ’Line’ x) = ’\n’: copy i ’ ’ ++ layout x

copy i x = [x | _ <- [1..i]]

best w k x = be w k [(0,x)]

be w k [] = Nil

be w k ((i,NIL):z) = be w k z

be w k ((i,x :<> y) : z) = be w k ((i,x) : (i,y) : z)

be w k ((i,NEST j x) : z) = be w k ((i+j),x) : z)

be w k ((i,TEXT s) : z) = s ’Text’ be w (k+length s) z

be w k ((i,LINE) : z) = i ’Line’ be w i z

be w k ((i.x :<|> y) : z) = better w k (be w k ((i.x) : z))

(be w k (i,y) : z))

better w k x y = if fits (w-k) x then x else y

Overview of the Code 4(11)

fits w x | w<0 = False

fits w Nil = True

fits w (s ’Text’ x) = fits (w - length s) x

fits w (i ’Line’ x) = True

pretty w x = layout (best w 0 x)

-- Utility functions

x <+> y = x <> text " " <> y

x </> y = x <> line <> y

folddoc f [] = nil

folddoc f [x] = x

folddoc f (x:xs) = f x (folddoc f xs)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 63

Overview of the Code 5(11)

spread = folddoc (<+>)

stack = folddoc (</>)

bracket l x r = group (text 1 <>

nest 2 (line <> x) <>

line <> text r)

x <+/> y = x <> (text " " :<|> line) <> y

fillwords = folddoc (<+/>) . map text . words

fill [] = nil

fill [x] = x

fill (x:y:zs) = (flatten x <+> fill (flatten y : zs))

:<|> (x </> fill (y : zs)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 64

Overview of the Code 6(11)

-- Tree example

data Tree = Node String [Tree]

showTree (Node s ts) = group (text s <>

nest (length s) (showBracket ts))

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts)

<> text "]"

showTrees [t] = showTree t

showTrees (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 65

Overview of the Code 7(11)

showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ [] = nil

showBracket’ ts = bracket "[" (showTrees’ ts) "]"

showTrees’ [t] = showTree t

showTrees’ (t:ts) = showTree t <> text "," <> line

<> showTrees ts

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 66

Overview of the Code 8(11)

tree = Node "aaa"[Node "bbbb"[Node "ccc"[],

Node "dd"[]

],

Node "eee"[],

Node "ffff"[Node "gg"[],

Node "hhh"[],

Node "ii"[]

]

]

testtree w = putStr(pretty w (showTree tree))

testtree’ w = putStr(pretty w (showTree’ tree))

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 67

Overview of the Code 9(11)

-- XML Example

data XML = Elt String [Att] [XML]

| Txt String

data Att = Att String String

showXML x = folddoc (<>) (showXMLs x)

showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"

showXMLs (Elt n a c) = [text "<" <> showTag n a <> text ">" <>

showFill showXMLs c <>

text "</" <> text n <> text ">"]

showXMLs (Txt s) = map text (words s)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 68

Overview of the Code 10(11)

showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]

quoted s = "\"" ++ s ++ "\""

showTag n a = text n <> showFill showAtts a

showFill f [] = nil

showFill f xs = bracket "" (fill (concat (map f xs))) ""

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 69

Overview of the Code 11(11)

xml = Elt "p"[Att "color" "red",

Att "font" "Times",

Att "size" "10"

] [Txt "Here is some",

Elt "em" [] [Txt "emphasized"],

Txt "text.",

Txt "Here is a",

Elt "a" [Att "href" "http://www.eg.com/"]

[Txt "link"],

Txt "elsewhere."

]

testXML w = putStr (pretty w (showXML xml))

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 70

Further Readings 1(2)

On an imperative Pretty Printer

• Derek Oppen. Pretty-printing. ACM Transactions on Pro-

gramming Languages and Systems, 2(4):465-483, 1980.

...and its functional realization

• Olaf Chitil. Pretty printing with lazy dequeues. In ACM

SIGPLAN Haskell Workshop, 183-201, Florence, Italy,

2001. Universiteit Utrecht UU-CS-2001-23.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 71

Further Readings 2(2)

Overview on the evolution of a Pretty Printer Library and origin

of the development of the Prettier Printers proposed by Phil

Wadler.

• John Hughes. The design of a pretty-printer library. In

Johan Jeuring, Erik Meijers (Eds.), Advanced Functional

Programming, LNCS 925, Springer, 1995.

...a variant implemented in the Glasgow Haskell Compiler

• Simon Peyton Jones. Haskell pretty-printer library.

http://www.haskell.org/libraries/#prettyprinting, 1997.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 72

Part II: Parallelism in Functional Pro-
gramming Languages

Parallelism

• Implicit

• Explicit

• Skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 73

Reference

The following presentation is based on...

• Chapter 21
Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung, Springer, 2006. (In German).

Related and relevant in this context...

• Murray Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation, The MIT Press, 1989.

• Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl,
Simon L. Peyton Jones. Algorithms + Strategy = Par-
allelism. Journal of Functional Programming, 8(1):23-60,
1998.

• Philip W. Trinder, Hans-Wolfgang Loidl, Robert F. Poin-
ton. Parallel and Distributed Haskells. Journal of Functio-
nal Programming, 12(4&5):469-510, 2002.

Parallelism in Imperative Languages

In particular...

• Data-parallel Languages (e.g. High Performance Fortran)

• Libraries (PVM, MPI) / Message Passing Model (C, C++,

Fortran)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 75

Parallelism in Functional Languages

In particular...

• Implicit/Expression parallelism

• Explicit

• Algorithmic skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 76

Implicit Parallelism

...resp. expression parallelism

Consider the functional expression of the form f(e1,...,en):

Note:

• Arguments (and functions) can be evaluated in parallel.

• Advantages: Parallelism for free! No effort for the program-
mer.

• Disadvantages: Results often unsatisfying. E.g. granularity,
load distribution, etc. not taken into account.

Thus:

• Easy to detect parallelism (i.e., for the compiler), but hard
to fully exploit.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 77

Explicit Parallelism

By...

• Introducing meta-statements (e.g. to control the data and

load distribution, communication)

• Advantages: Possibly superior results by explicit hands-on

control of the programmer

• Disadvantages: High programming effort

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 78

Algorithmic Skeletons

Compromise between...

• explicit imperative parallel programming

• implicit functional parallel programming

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 79

In the following

• Massively parallel systems

• Algorithmic skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 80

Massively Parallel Systems

...characterized by

• large number of processors with

– local memory

– communication by message exchange

• MIMD-Parallel Processor Architecture (Multiple Instructi-

on/Multiple Data)

• Here: SPMD-Programming Style (Single Pro-

gram/Multiple Data)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 81

Algorithmic Skeletons

Algorithmic Skeletons...

• represent typical patterns for parallelization (Farm, Map,

Reduce, Branch&Bound, Divide&Conquer,...)

• are easy to instantiate for the programmer

• allow parallel programming at a high level of abstraction

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 82

Realization of Algorithmic Skeletons

...in functional languages

• by special higher-order functions

• with parallel implementation

• embedded in sequential languages

Thus

• Hiding of parallel implementation details in the skeleton

• Elegance and (parallel) efficiency for special application

patterns

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 83

Example: Parallel Map on Distributed
List

Consider the higher-order function map on lists...

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = (f x) : (map f xs)

Observation

• Application of f to a list element does not depend on other
list elements

Apparent

• Dividing the list into sublists followed by parallel application
of map to the sublists (parallelization pattern Farm)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 84

Parallel Map on Distributed Lists

For illustration...

f [a1,...,ak] f [ak+1,...,am] f [am+1,...am]

f [a1,...,ak, ak+1,...,am, am+1,...am]

 [b1,...,bk] [bk+1,...,bm] [bm+1,...bm]

 [b1,...,bk, bk+1,...,bm, bm+1,...bm]

Decomposition

Parallel

Computation

Composition

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 445.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 85

On the Implementation

Implementing the parallel map function requires...

• special data structures, which take into account the aspect
of distribution (ordinary lists are inefficient for this purpose)

Skeletons on distributed data structures

• so-called data-parallel skeletons

Difference

• Data-parallelism: Supposes an a priori distribution of data
on different processors

• Task-parallelism: Processes and data to be distributed are
not known a priori, hence dynamically generated

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 86

Programming of a Parallel Application

...using algorithmic skeletons

• Recognizing problem-inherent parallelism

• Selecting an adequate data distribution (granularity)

• Selecting a suitable skeleton from a library

• Problem-specific instantiation of the skeleton(s)

Remark:

• Some languages (e.g. Eden) support also the implementa-

tion of skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 87

Data Distribution on Processors

...is

• crucial for

– structure of the complete algorithm

– efficiency

Hardness dependent on...

• Independence of all data elements (like in the map-
example): Distribution is easy

• Independence of subsets of data elements

• Complex dependences of data elements: Adequate distri-
bution is challenging

An auxiliary means

• So-called covers (investigated by various authors)

Covers

...describe

• Decomposition and communication pattern of a data

structure

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 89

Example: Simple List Cover

Distributing a list on 3 processors p1, p2, and p3:

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 446.

p
0

ak ak+1 am amam+1a1

p
1

p
2

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 90

Example: List Cover with Overlapping
Elements

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.

Springer, 2006, S. 446.

p
i−1

p
i

p
i+1

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 91

General Cover Structure

Cover = {

Type S a -- Whole object

C b -- Cover

U c -- Local sub-objects

split :: S a -> C (U a) -- Decomposing the original object

glue :: C (U a) -> S a -- Composing the original object

}

It is required:

glue . split = id

Note: No (valid) Haskell

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 92

Realization in a Programming Langua-
ge

...implementing covers requires support for

• the specification of covers

• the programming of algorithmic skeletons on covers

• the provision of often used skeletons in libraries

...is

• current hot research topic in functional programming

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 93

Further Reading

• Hans-Werner Loidl et al. Comparing Parallel Functional

Languages: Programming and Performance. Higher-Order

and Symbolic Computation, 16(3):203-251, 2003.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 94

Part III: The Story of Haskell

16 Years of Haskell: A Retrospective on the occasion of its

15th Anniversary

by

Simon Peyton Jones

Wearing the Hair Shirt: A Retrospective on Haskell

http://research.microsoft.com/users/simonpj/papers/haskell-retrospective/

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 95

Haskell at HOPL III

Most recently...

• Paul Hudak, John Hughes, Simon Peyton Jones, Philip

Wadler. A History of Haskell: Being Lazy with Class. In

Proceedings of the Third ACM SIGPLAN 2007 Conference

on History of Programming Languages (HOPL III), (San

Diego, California, June 09 - 10, 2007), 12-1 - 12-55.

Check out the ACM Digital Library (www.acm.org/dl) for this

article!

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 96

Last but not least

Final (oral) examination...

• In principle, any time (except of the period from July

3rd to July 25th. Just make an appointment by email

(knoop@complang.tuwien.ac.at) or phone (58801-18510).

• Topics: Assignments plus lecture materials.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 97

