Today’s Topic

e Pretty Printing
Like parsing a typical demo-application

e Parallelism in Functional Programming Languages
A hot research topic

e The Story of Haskell
Behind the scenes of Haskell (and Functional Program-
ming)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 1

Part I: Pretty Printing

Pretty Printing
...like lexical and syntactical analysis another typical app-
lication for demonstrating the elegance of functional pro-
gramming.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 2

What’s it all about?

A pretty printer is...

e a tool (often a library of routines) to convert a tree into
text

Essential goals...

e a2 minimum number of lines while preserving and illustrating
the structure of the tree by indentation

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 3

“Good” Pretty-Printer

...are distinguished by properly balancing
e Simplicity of usage
e Flexibility of the format

e “Niceness” of output

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 4

Reference

The following presentation is based on...

e Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oe-
ge de Moor (Eds.), The Fun of Programming. Palgrave
MacMiillan, 2003.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 5

Distinguishing Feature
...of the “Prettier Printer” proposed by Philip Wadler:

e There is only a single way to concatenate documents,
which is
— associative

— with left-unit and right-unit

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 6

Why “prettier’ than ‘“pretty”?

Wadler considers his “Prettier Printer” an improvement of the
pretty printer library proposed by John Hughes, which is widely
recognized as a standard.

e The design of a pretty-printer library. In Johan Jeuring,
Erik Meijers (Hrsg.), Advanced Functional Programming,
LNCS 925, Springer, 1995.

Hughes’ library enjoys the following characteristics:

e Two ways to concatenate documents (horizontal and ver-
tical), one of which
— without unit (horizontal)

— with right-unit (only) (vertical)

e ca. 40% more code, ca. 40% slower as Wadler's proposal

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 7

A Simple Pretty Printer: The Basis

Characteristic: For each document there is only one possible
layout (e.g., no attempt is made to compress structure onto a
single line).

The basic operators needed are:

(<>) :: Doc -> Doc -> Doc -- ass. concatenation
nil :: Doc -- Right- and left-unit for (<>)
text :: String -> Doc —-- Conversion function
line :: Doc -- Line break
nest :: Int -> Doc -> Doc -- Adding indentation
layout :: Doc -> String —-= Output
Convention:

e Arguments of text are free of newline characters

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 8

A Simple Implementation

Implement...

e doc as strings (i.e. as String)

with...
e (<>) ...concatenation of strings
e nil ...empty string
e text ...identity on strings
e line ...new line
e nest i ...7 blanks indentation (after each line break by means of line)

e layout ...identity on strings

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 9

Example

...converting trees into documents (here: Strings) and their
output as text (here: Strings).

Consider the following type of trees:

data Tree = Node String [Tree]

A concrete value B of type Tree...

Node "aaa" [Node "bbbbb" [Node "cc" [], Node "dd" [1],
Node "eee" [1,
Node "ffff" [Node "gg" [1,
Node "hhh" [],
Node "ii" []
]

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 10

And its desired output

aaa[bbbbb[ccc,
dd],
eee,
ffff[gg,
hhh,
iill

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 11

Implementation

The below implementation achieves this...

data Tree = Node String [Tree]

showTree :: Tree -> Doc
showTree (Node s ts) = text s <> nest (length s) (showBracket ts)

showBracket :: [Tree] -> Doc

showBracket [] = nil

showBracket ts = text "[" <> nest 1 (showTrees ts)
<> text "]"

showTree :: [Tree]l -> Doc

showTree t
showTree t <> text "," <> line
<> showTrees ts

showTrees [t]
showTrees (t:ts)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 12

Another possibly wanted output of B

aaal
bbbbb [
ccc,
dd
1,
eee,
fEff [
gg,
hhh,

ii

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 13

An implementation producing the latter
output

data Tree = Node String [Treel

showTree’ :: Tree -> Doc
showTree’ (Node s ts) = text s <> showBracket’ ts

showBracket’ :: [Tree] -> Doc

showBracket’ [] = nil

showBracket’ ts = bracket "[" (showTrees’ ts) "]"
showTree’ :: [Tree]l -> Doc

showTree t
showTree t <> text "," <> line
<> showTrees ts

showTrees’ [t]
showTrees’ (t:ts)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 14

A Normal Form of Documents

Normal form...

e text alternating with line breaks nested to a given inden-
tation

text sO <> nest il line <> text sl <>
<> nest ik line <> text sk

Note:

e Documents can always be reduced to normal form

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 15

Normal Forms: An Example 1(3)

The document...

text "bbbbb" <> text "[" <>

nest 2 (
line <> text "ccc" <> text "," <>
line <> text "dd"

) <>

line <> text "]"

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 16

Normal Forms: An Example 2(3)

..has the normal form:

Normal Forms: An Example 3(3)

...and prints as follows:

text "bbbbb[" <> bbbbb [
nest 2 line <> text "ccc," <> ccc,
nest 2 line <> text "dd" <> dd
nest 0 line <> text "]"]
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 17 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 18
Properties of the Functions — Laws 1(2)
We have:
text (s ++ t) = text s <> text t (text is homomorphism from
Why does it work text "" = nil string concatenation to
document concatenation)
...because of the properties (laws) the functions enjoy.
nest (i+j) x = nest i (nest j x) (nest is homomorphism from
More on this next... nest 0 x =X addition to composition)
nest i (x <> y) = nest i x <> nest i y (nest distributes through
nest i nil = nil document concatenation)
nest i (text s) = text s (Nesting is absorbed by text)
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 19 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 20

Further Properties — Laws
Properties of the Functions — Laws 2(2) ...on the relationship of documents and their layouts
layout (x <> y) = layout x ++ layout y (layout is homomorphism
Meaning layout nil = "n from document
concatenation to
e The above laws are sufficient to establish that documents . .
. . string concatenation)
can always be transformed into normal form (first four
laws: application left to right; last three laws: application]]
] layout (text s) =s (layout is the inverse
right to left)
of text)
layout (nest i line) = ’\n’ : copy i ’ ’
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 21 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 22
The Implementation of Doc Example
Intuition The normal form (considered previously already)...
...representing documents as a concatenation of items, where "bbbbb[" <>
each item is a text or a line break indented to a given amount. text
nest 2 line <> text "ccc," <>
...as a sum type (the algebra of documents): nest 2 line <> text "dd" <>
data Doc = Nil nest 0 line <> text "]"
| String ’Text’ Doc
| Int ’Line’ Doc ...has the representation:
...and the relationship of the constructors to document opera- "bbbbb [" ’Text’ (
tors: 2 ’Line’ ("ccc," ’Text’ (
Nil = nil 2 ’Line’ ("dd," ’Text’ (
s ’Text’ x = text s <> x 0 ’Line’ ("]," ’Text’ Nil)))))
i ’Line’ x = nest i line <> x
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 24
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 23

Derived Implementations 1(2)

...of the document operators:

nil = Nil
s ’Text’ Nil
0 ’Line’ Nil

text s

line

(s "Text’ x) <>y

s ’Text’ (x <> y)

Derived Implementations 2(2)

nest i (s ’Text’ x) s ’Text’ nest i x

nest i (j ’Line’ x)
nest i Nil = Nil

(i+j) ’Line’ nest i x

layout (s ’Text’ x) s ++ layout x

layout (i ’Line’ x) = ’\n’ : copy i ’ ’ ++ layout x
(i ’Line’ x) <>y = 1i ’Line’ (x <> y) layout Nil = un
Nil <>y =y
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 25 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 26
On the Correctness . .
Documents with Multiple Layouts
..of the derived implementations:
e Up to now... documents are equivalent to a string
e Derivation of (s ’Text’ x) <>y = s ’Text’ (x <> y)
e Now... documents are equivalent to a set of strings
(s "Text’ x) <>y
= { Definition of Text } where each string correponds to a layout.
(text s <> x) <>y
= { Associativity of <> } All what is needed: A new function
text s <> (x <> y) group :: Doc —> Doc
= { Definition of Text }
s ’Text’ (x <> y) Informally :
L . Lreturns an additional element, which is provided in a new line
e Remaining equations: Similar reasoning
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 27 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 28

Preferred Layouts

e layout is replaced by pretty
pretty :: Int -> Doc -> String

e pretty’'s integer-argument specifies the preferred maximum
line length of the output (and hence the nicest layout out
of the set alternatives at hand)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 29

Example

Using...
showTree (Node s ts) = group (text s
<> nest (length s) (showBracket ts))

...the call of pretty 30 yields the output:

aaa[bbbbb[ccc, dd],
eee,
ffff[gg, hhh, iil]
This ensures
e Output in one line where possible (i.e. length < 30)

e Insertion of sufficiently many line breaks in order to avoid exceeding
the given maximum line length

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 30

Implementation of the new Functions

The following supporting functions are required:

-— Union of two sets of layouts

<1>) :: Doc -> Doc -> Doc

-- Replacement of each line break (including subsequent
-- indentation) by a single space

flatten :: Doc —> Doc

e Observation ...documents always represent a non-empty
set of layouts

e Requirements

— ...in (x <|> y) all layouts of x and y enjoy the same flat
layout

— ...each first line in x is no shorter than each first line in
y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 31

Properties (Laws) of (<[>)

(x <>y <>z
x <> (y <I> 2)

(x <> 2) <> (y <> 2)
(x <> y) <> (x <> 2)

nest i (x <[> y) = nest 1 x <|> nest i y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 32

Properties (Laws) of flatten

flatten (x <|> y) = flatten x Implementation of group
flatten (x <> y) = flatten x <> flatten y ...by means of flatten and (<>)
flatten nil = nil

flatten (text s) = text s group x = flatten x <[> x

flatten line = text " " -- most interesting case

flatten (nest i x) = flatten x

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 33 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 34

Selecting of a “best” Layout

Normal Form ...by defining an ordering relation on lines in dependence of the

iven maximum line length
Using the following settings each document can be reduced to d d

a normal form of the form Out of two lines...

x1 <|> ... <|> xn e which do not exceed the maximum length, select the longer

L . one
where each xi is in the normal form of simple documents

(which was introduced previously). e of which at least one exceeds the maximum length, select
the shorter one

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 35 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 36

The Adapted Implementation of Doc

data Doc = -- The first 3 alternatives as before
Nil
| String ’Text’ Doc
| Int ’Line’ Doc
-- We add a construct representing the
-- union of two documents

| Doc ’Union’ Doc

Relationship of Constructors and Docu-

ment Operators

Nil

s ’Text’ x

nil
text s <> x

i ’Line’ x = nest i line <> x

X ’Union’ y = x <[>y

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 37 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 38
Example 1(8)
Example 2(8)
The document...
...has the layouts
group (
group(hello a b c d hello a b ¢ hello a b hello a hello
group (d c b a
group(text "hello" <> line <> text "a") d c b
<> line <> text "b") d c
<> line <> text "c") d
<> line <> text "d")
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 39 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 40

Example 3(8)

Task: ...print the above document under the constraint that
the maximum line length is 5
~the right-most layout of the previous slide is requested

Initial considerations:

e ...Factoring out "hello" of all layouts of x and y

"hello" ’Text’ ((" " ’Text’ x) ’Union’ (0 ’Line’ y))

e ...Defining the interplay of (<>) and nest with Union

(x ’Union’ y) <> z = (x <> 2) ’Union’ (y <> 2)
nest k (x ’Union’ y) = nest k x ’Union’ nest k y

Example 4(8)

Implementing group and flatten

group Nil = Nil

group (i ’Line’ x) = (" " ’Text’ flatten x) ’Union’
(i ’Line

group (s ’Text’ x) = s ’Text’ group x

group (x ’Union’ y) = group x ’Union’ y

flatten Nil = Nil

flatten (i ’Line’ x) = " " ’Text’ flatten x

flatten (s ’Text’ x) = s ’Text’ flatten x

flatten (x ’Union’ y) = flatten x

7X)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 41 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 42
Example 5(8) Example 6(8)
Considerations on correctness... Correctness considerations...
L . Derivation of group (s ’Text’ x) (see line three
Derivation of group (i ’Line’ x) (see line two) grotp ()
group (s ’Text’ x)
4) 1 J
group (i ’Line’ x) = { Definition Text }
= { Definition of Line } group (text s <> x)
group (nest i line <> x) = { Definition group}
= { Definition of group} flatten (text s <> x) <[> (text s <> x)
flatten (nest i line <> x) <|> (nest i line s <> x) = { Definition flatten }
s (text s <> flatten x) <|> (text s <> x)
= { Definition of flatten } . . .
= { <> distributiert ueber <|> }
n n 3 3
(text <> flatten x) <|> (nest i line <> x) text s <> (flatten x <|> x)
= { Definition of Text, Union, Line } = { Definition group }
(" " ’Text’ flatten x) ’Union’ (i ’Line’ x) text s <> group x
= { Definition Text }
s ’Text’ group x
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 43
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 44

Example 7(8)

Selecting the “best” layout..

best w k Nil = Nil

best w k (1 ’Line’ x) = i ’Line’ best w i x

best w k (s ’Text’ x) = s ’Text’ best w (k + length s) x
best w k (x ’Union’ y) = better w k (best w k x) (best w k y)

better w k x y if fits (w-k) x then x else y

Remark:

e best ...converts a “union”-afflicted document into a “union” -free do-
cument

e Argument w ...maximum line length

e Argument k ...already consumed letters (including indentation) on cur-
rent line

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 45

Example 8(8)

Check, if the first document line stays within the maximum
line length...

fits w x | w<O = False
fits w Nil = True
fits w (s ’Text’ x) = fits (w - length s) x
fits w (i ’Line’ x) = True

Last but not least, the output routine (layout remains unchan-
ged)...

pretty w x = layout (best w O x)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 46

A more efficient variant

...by means of a new implementation of documents

data DOC = NIL
| DOC :<> DOC
| NEST Int DOC
| TEXT String
| LINE

| DOC :<|> DOC

Remark:

e In distinction to the previous document type we here use capital letters

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) a7

Implementing the Document Operators

nil = NIL

x <>y =x <>y
nest i x = NEST i x
text s = TEXT s
line = LINE

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 48

Implementing group and flatten

As before, we require:

e ...in (x :<|> y) all layouts of x and y have the same flat
layout

e ...each first line in x is no shorter than each first line in y

group x

flatten NIL =

flatten (x :<> y)
flatten (NEST i x)

flatten x :<|> x

NIL
flatten x:<> flatten y
NEST i (flatten x)

Representation Function

...generating the document from an indentation-afflicted do-

cument

rep z = fold (<>) nil [nest i x | (i,x) <- z]

flatten (TEXT s) = TEXT s

flatten LINE = TEXT " "

flatten (x :<|> y) = flatten x
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 49 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 50

H (1} 12/

Selecting the “best” Layout In Preparation of further Applications
Generalizing the function “best”... 1(3)

be w k z = best w k (rep z) (Hypothesis) ...first some useful supporting functions

best w k x = be w k [(O,X)] x <+> y =x <> text " " <> y

x </>y = x <> line <> y

where...

be w k [] = Nil folddoc f [] = nil

be w k ((i,NIL):z) =be wkz folddoc f [x] = x

be wk ((i,x :<>y) :2) =bewk ((1,x) : (1,y) : 2) folddoc f (x:xs) = f x (folddoc f xs)

be w k ((i,NEST j x) : z) = be w k ((i+]),x) : 2)

be w k¥ ((i,TEXT s) : z) = s ’Text’ be w (kt+length s) z

be w k ((i,LINE) : z) =i ’Line’ be w i z spread = folddoc (<+>)

be wk ((i.x : <[> y) : z) = better w k (be w k ((i.x) : 2)) stack = folddoc (</>)

(be w k (i,y) : z))
- - Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 52

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 51

12n(3F)>reparation of further Applications

_further supporting functions In Preparation of further Applications

-- Often recurring output pattern
bracket 1 x r = group (text 1 < £ill, a variant of fillwords
nest 2 (line <> x) <>

~» ...collapses a list of documents to a single document
line <> text 1)

£i11l [] = nil
-- Abbreviation of the alternative tree layout function £i1l1 [x] = x
showBracket’ ts = bracket "[" (showTrees’ ts) "]" £ill (x:y:zs) = (flatten x <+> fill (flatten y : zs)) :<|>

(x </> £ill (y : zs)
-- Filling up lines (using words out of the Haskell Standard Lib.)

X <+/>y = x <> (text " " :<[|> line) <>y
fillwords = folddoc (<+/>) . map text . words
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 53 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 54

Application 1(2)

Printing XML-documents (simplified syntax)... Application 2(2)

data XML = E1t String [Att] [XML]
| Txt String Continuation...
data Att = Att String String quoted s = U\"" 44 g 44 M\
= <>
showXML x folddoc (<>) (showXMLs x) showTag n a = text n <> showFill showAtts a
showXMLs (Elt n a []) = [text "<" <> showTag n a <> text "/>"
showXMLs (Elt n a ¢c) = [text "<" <> showTag n a <> text ">" <> showFill £ [] = nil
showFill showXMLs c <> showFill f xs = bracket "" (fill (concat (map f xs))) ""
text "</" <> text n <> text ">"]
showXMLs (Txt s) = map text (words s)
showAtts (Att n v) = [text n <> text "=" <> text (quoted v)]
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 56

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 55

Example 1

...for a given maximum line length of 30 letters

<p
color="red" font="Times"
size="10"

Here is some
 emphasized text.
Here is a
<a
href="http://wuw.eg.com/"

> link
elsewhere.

</p>

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 57

Example 2

..for a given maximum line length of 60 letters

<p color="red" font="Times" size="10" >
Here is some emphasized text. Here is a
 link elsewhere.
</p>

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 58

Example 3

...after dropping of flatten in fill

<p color="red" font="Times" size="10" >
Here is some
emphasized
 text. Here is a <a
href="http://wuw.eg.com/"
> link elsewhere.
</p>

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 59

Overview of the Code 1(11)

Source: Philip Wadler. A Prettier Printer. In Jeremy Gibbons, Oege de
Moor (Eds.), The Fun of Programming. Palgrave MacMillan, 2003.

-- The pretty printer
infixr 5:<|>

infixr 6:<>

infixr 6 <>

data DOC = NIL
| DOC :<> DOC
| NEST Int DOC
| TEXT String
| LINE
| DOC :<|> DOC
data Doc Nil

| String ’Text’ Doc
| Int ’Line’ Doc

Advanced functional Proarammina (SS 2007) / Part 8 (Thu. 06/21/07) 60

Overview of the Code 2(11)

Overview of the Code 3(11)

nil = NIL layout Nil = "
x <>y =x :<>y layout (s ’Text’ x) = s ++ layout x
nest i x = NEST i x layout (i ’Line’ x) ’\n’: copy i ’ ’ ++ layout x
text s = TEXT s
line = LINE copy i x [x | _ <= [1..i]]
group x = flatten x :<|> x best w k x be w k [(0,%)]
flatten NIL = NIL be w k [] il
flatten (x :<> y) = flatten x:<> flatten y be w k ((1,NIL):z) be w k z
flatten (NEST i x) = NEST i (flatten x) be w k ((i,x :<>y) : z) be w k ((i,x) : (i,y) : 2)
flatten (TEXT s) = TEXT s be w k ((i,NEST j x) : 2z) = be w k ((i+j),x) : 2)
flatten LINE = TEXT " " be w k ((},TEXT s) : z) = ? ’Text’ be w Fk+length s) z
flatten (x :<|> y) - flatten x be w k ((?,LINE) : z) = i ’Line’ be w i z
be w k ((i.x :<|> y) : z) = better w k (be w k ((i.x) : 2))
(be w k (i,y) : z))
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 61
better w k x y if fits (w-k) x then x else y
Overview of the Code 4(11) Overview of the Code 5(11)
fits w x | w<O0 = False spread = folddoc (<+>)
fits w Nil = True stack = folddoc (</>)
fits w (s ’Text’ x) = fits (w - length s) x
fits w (i ’Line’ x) = True bracket 1 x r = group (text 1 <>
nest 2 (line <> x) <>
pretty w x = layout (best w 0 x) line <> text r)
X <+/>y = x <> (text " " :<|> line) <>y
-- Utility functions
X <+> y =x <> text " " <>y fillwords = folddoc (<+/>) . map text . words
X</>y = x <> line <> y
£fi1l [] = nil
folddoc £ [] = nil £i11 [x] = x
folddoc f [x] = x fill (x:y:zs) = (flatten x <+> fill (flatten y : zs))
folddoc f (x:xs) = f x (folddoc f xs) <> (x </> £fill (y : zs)
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 63 Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 64

Overview of the Code 6(11)

-— Tree example
data Tree = Node String [Treel

showTree (Node s ts) = group (text s <>
nest (length s) (showBracket ts))

showBracket [] = nil
showBracket ts = text "[" <> nest 1 (showTrees ts)
<> text "I"
showTrees [t] = showTree t
showTrees (t:ts) = showTree t <> text "," <> line
<> showTrees ts
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 65

Overview of the

showTree’ (Node s ts)

showBracket’ [] =
showBracket’ ts =

showTrees’ [t] =

showTrees’ (t:ts) =

Code 7(11)

text s <> showBracket’ ts

nil
bracket "[" (showTrees’ ts) "]"

showTree t
showTree t <> text "," <> line
<> showTrees ts

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 66

Overview of the Code 8(11)

tree = Node "aaa"[Node "bbbb"[Node "ccc"[],

Node "dd"[]

1,

Node "eee"[],

Node "ffff"[Node "gg"[],
Node "hhh"[],
Node "ii"[]

]

]

testtree w putStr(pretty w (showTree tree))

testtree’ w putStr(pretty w (showTree’ tree))

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 67

Overview of the
-- XML Example

data XML =

data Att =
showXML x =
showXMLs (Elt n a []) =

showXMLs (Elt n a ¢c) =

showXMLs (Txt s) =

Code 9(11)

Elt String [Att] [XML]
Txt String

Att String String
folddoc (<>) (showXMLs x)

[text "<" <> showTag n a <> text "/>"
[text "<" <> showTag n a <> text ">" <>
showFill showXMLs c <>
text "</" <> text n <> text ">"]
map text (words s)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 68

Overview of the Code 10(11)

showAtts (Att n v) [text n <> text "=" <> text (quoted v)]
quoted S = "\"" 44 g 4+ "\""

text n <> showFill showAtts a

showTag n a

showFill f [] = nil
showFill f xs = bracket "" (£fill (concat (map f xs))) ""
Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 69

Overview of the Code 11(11)

xml = E1t "p"[Att "color" "red",

Att "font" "Times",

Att "size" "10"

] [Txt "Here is some",
Elt "em" [] [Txt "emphasized"],
Txt "text.",
Txt "Here is a",
Elt "a" [Att "href" "http://www.eg.com/"]

[Txt "link"],

Txt "elsewhere."

testXML w = putStr (pretty w (showXML xml))

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 70

Further Readings 1(2)

On an imperative Pretty Printer

e Derek Oppen. Pretty-printing. ACM Transactions on Pro-
gramming Languages and Systems, 2(4):465-483, 1980.

...and its functional realization

e Olaf Chitil. Pretty printing with lazy dequeues. In ACM
SIGPLAN Haskell Workshop, 183-201, Florence, Italy,
2001. Universiteit Utrecht UU-CS-2001-23.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 71

Further Readings 2(2)

Overview on the evolution of a Pretty Printer Library and origin
of the development of the Prettier Printers proposed by Phil
Wadler.

e John Hughes. The design of a pretty-printer library. In
Johan Jeuring, Erik Meijers (Eds.), Advanced Functional
Programming, LNCS 925, Springer, 1995.

...a variant implemented in the Glasgow Haskell Compiler

e Simon Peyton Jones. Haskell pretty-printer library.
http://www.haskell.org/libraries/#prettyprinting, 1997.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 72

Part II: Parallelism in Functional Pro-
gramming Languages

Parallelism
e Implicit
e Explicit

e Skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 73

Reference

The following presentation is based on...

e Chapter 21
Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung, Springer, 2006. (In German).

Related and relevant in this context...

e Murray Cole. Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation, The MIT Press, 1989.

e Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl,
Simon L. Peyton Jones. Algorithms + Strategy = Par-
allelism. Journal of Functional Programming, 8(1):23-60,
1998.

e Philip W. Trinder, Hans-Wolfgang Loidl, Robert F. Poin-
ton. Parallel and Distributed Haskells. Journal of Functio-
nal Programming, 12(4&5):469-510, 2002.

Parallelism in Imperative Languages

In particular...
e Data-parallel Languages (e.g. High Performance Fortran)

e Libraries (PVM, MPI) / Message Passing Model (C, C++,
Fortran)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 75

Parallelism in Functional Languages

In particular...
e Implicit/Expression parallelism
e EXxplicit

e Algorithmic skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 76

Implicit Parallelism
...resp. expression parallelism

Consider the functional expression of the form f(el,...,en):

Note:
e Arguments (and functions) can be evaluated in parallel.

e Advantages: Parallelism for free! No effort for the program-
mer.

e Disadvantages: Results often unsatisfying. E.g. granularity,
load distribution, etc. not taken into account.

Thus:

e Easy to detect parallelism (i.e., for the compiler), but hard
to fully exploit.

Explicit Parallelism
By...

e Introducing meta-statements (e.g. to control the data and
load distribution, communication)

e Advantages: Possibly superior results by explicit hands-on
control of the programmer

e Disadvantages: High programming effort

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 78

Algorithmic Skeletons
Compromise between...
e explicit imperative parallel programming

e implicit functional parallel programming

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 79

In the following

e Massively parallel systems

e Algorithmic skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 80

Massively Parallel Systems

...Characterized by

e large number of processors with
— local memory
— communication by message exchange

e MIMD-Parallel Processor Architecture (Multiple Instructi-
on/Multiple Data)

e Here: SPMD-Programming Style (Single Pro-
gram/Multiple Data)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 81

Algorithmic Skeletons

Algorithmic Skeletons...

e represent typical patterns for parallelization (Farm, Map,
Reduce, Branch&Bound, Divide& Conquer,...)

e are easy to instantiate for the programmer

e allow parallel programming at a high level of abstraction

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 82

Realization of Algorithmic Skeletons

...in functional languages
e by special higher-order functions
e with parallel implementation

e embedded in sequential languages

Thus
e Hiding of parallel implementation details in the skeleton

e Elegance and (parallel) efficiency for special application
patterns

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 83

Example: Parallel Map on Distributed
List
Consider the higher-order function map on lists...

map :: (a -> b) -> [a] -> [b]

map _ [1 =[]

map f (x:xs) = (f x) : (map f xs)
Observation

e Application of f to a list element does not depend on other
list elements

Apparent

e Dividing the list into sublists followed by parallel application
of map to the sublists (parallelization pattern Farm)

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 84

Parallel Map on Distributed Lists

For illustration...

f[al,...,ak, a&k+1,...,am, am+1,...am]

/ Deconposw

f [al,...,ak] f [ak+1,....am] f [am+1,...am]

Parallel
Computation

[b,....bk] [bk+1,...,.bm] [bm+1,...bm]

\ Compositi or/

[bL,....bk, bk+L1,....om, bm+1,...om]

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.
Springer, 2006, S. 445.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 85

On the Implementation

Implementing the parallel map function requires...

e special data structures, which take into account the aspect
of distribution (ordinary lists are inefficient for this purpose)

Skeletons on distributed data structures

e so-called data-parallel skeletons

Difference

e Data-parallelism:. Supposes an a priori distribution of data
on different processors

e Task-parallelism: Processes and data to be distributed are
not known a priori, hence dynamically generated

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 86

Programming of a Parallel Application
...using algorithmic skeletons
e Recognizing problem-inherent parallelism

Selecting an adequate data distribution (granularity)

Selecting a suitable skeleton from a library

Problem-specific instantiation of the skeleton(s)

Remark:

e Some languages (e.g. Eden) support also the implementa-
tion of skeletons

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 87

Data Distribution on Processors
..is

e crucial for
— structure of the complete algorithm
— efficiency

Hardness dependent on...

e Independence of all data elements (like in the map-
example): Distribution is easy

e Independence of subsets of data elements

e Complex dependences of data elements: Adequate distri-
bution is challenging

An auxiliary means

e So-called covers (investigated by various authors)

Covers

...describe

e Decomposition and communication pattern of a data
structure

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 89

Example: Simple List Cover

Distributing a list on 3 processors p1, pp, and p3:

Peter Pepper, Petra Hofstedt. Funktionale Programmierung.
Springer, 2006, S. 446.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 90

Example: List Cover with Overlapping
Elements

Peter Pepper, Petra Hofstedt. Funktionale Programmierung
Springer, 2006, 5. 446.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 91

General Cover Structure

Cover = {
Type S a -- Whole object
Cb -- Cover
Uc -— Local sub-objects
split :: S a ->C (U a) -- Decomposing the original object
glue :: C (Ua) ->S a —-- Composing the original object
b

It is required:

glue . split = id

Note: No (valid) Haskell

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 92

Realization in a Programming Langua-
ge

...implementing covers requires support for
e the specification of covers
e the programming of algorithmic skeletons on covers

e the provision of often used skeletons in libraries

..is

e current hot research topic in functional programming

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 93

Further Reading

e Hans-Werner Loidl et al. Comparing Parallel Functional
Languages: Programming and Performance. Higher-Order
and Symbolic Computation, 16(3):203-251, 2003.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 94

Part III: The Story of Haskell

16 Years of Haskell: A Retrospective on the occasion of its
15th Anniversary

by
Simon Peyton Jones
Wearing the Hair Shirt: A Retrospective on Haskell

http://research.microsoft.com/users/simonpj/papers/haskell-retrospective/

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 95

Haskell at HOPL III

Most recently...

e Paul Hudak, John Hughes, Simon Peyton Jones, Philip
Wadler. A History of Haskell: Being Lazy with Class. In
Proceedings of the Third ACM SIGPLAN 2007 Conference
on History of Programming Languages (HOPL III), (San
Diego, California, June 09 - 10, 2007), 12-1 - 12-55.

Check out the ACM Digital Library (www.acm.org/dl) for this
article!

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 96

Last but not least

Final (oral) examination...

e In principle, any time (except of the period from July
3rd to July 25th. Just make an appointment by email
(knoop@complang.tuwien.ac.at) or phone (58801-18510).

e Topics: Assignments plus lecture materials.

Advanced functional Programming (SS 2007) / Part 8 (Thu, 06/21/07) 97

