Well-definedness & Correctness Issues

e Streams and functions on streams
...well-defined?

e Correctness of programs, proof of program properties
...recursion vs. induction, proofs by induction

First...

e Mathematical background
...CPOs, fixed points, fixed point theorems

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 1

Streams, Fixed Points, and Equation
Systems

e Streams

— onetwo = 1 : 2 : onetwo
~ [1,2,1,2,1,2,...

— onestwos = 1 : onestwos : 2
~ [1,1,1,1,1,1,...

e Equation systems

— x = E[x]

More on this in the following...

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 3

Sets and Relations 2(2)

A relation R on M is called a...

e quasi-order iff R is reflexive and transitive

e partial order iff R is reflexive, transitive, and anti-symmetric
For the sake of completeness we recall...

e equivalence relation iff R is reflexive, transitive, and symmetric

...i.e., a partial order is an anti-symmetric quasi-order, an equivalence re-
lation a symmetric quasi-order.

Note: We here use terms like “partial order” as a short hand
for the more accurate term “partially ordered set”.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 5

References

The following presentation is based on...

e Hanne Riis Nielson, Flemming Nielson. Semantics with Ap-
plications — A Formal Introduction. Wiley, 1992.
http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html

Chapter 11 and 14

Paul Hudak. The Haskell School of Expression — Learning
Functional Programming through Multimedia. Cambridge
University Press, 2000.

Chapter 8 and 17
Simon Thompson. Haskell — The Craft of Functional Pro-
gramming. Addison-Wesley, 2nd edition, 1999.

Chapter 10

Peter Pepper, Petra Hofstedt. Funktionale Programmie-
rung. Springer-Verlag, Heidelberg, Germany, 2006. (In Ger-
man)

Sets and Relations 1(2)

Let M be a set and R a relation on M, i.e. RC M x M.
Then R is called...

o reflexive ift Ym e M. mRm
e transitive iff Vm,n,p € M. mRn AN nRp = mRp
e anti-symmetric iff Vm,ne M. mRn N nRm = m=mn

Related further notions... (though less important for us in the following)
o symmetric iff Vm,n € M. mRn <= nRm

e total iff Vm,ne M. mRn V nRm

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 4

Bounds, least and greatest Elements
Let (Q,C) be a quasi-order, let ¢ € Q and Q' C Q.
Then g is called...

e upper (lower) bound of @', in signs: Q' C q (¢ C Q'), if for
all ¢ €@ holds: ¢ Cq (¢ E¢)

e least upper (greatest lower) bound of @', if q is an up-
per (lower) bound of Q' and for every other upper (lower)
bound g of Q' holds: ¢ C G (GC q)

e greatest (least) element of Q, if holds: QCq (¢ C Q)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 6

Uniqueness of Bounds

e Given a partial order, least upper and greatest lower bounds
are uniquely determined, if they exist.

e Given existence (and thus uniqueness), the least upper
(greatest lower) bound of a set P/ C P of the basic set
of a partial order (P,C) is denoted by LIP’ (I"P"). These
elements are also called supremum and infimum of P'.

e Analogously this holds for least and greatest elements. Gi-
ven existence, these elements are usually denoted by 1 and
T.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 7

Lattices and Complete Lattices

Let (P,C) be a partial order.

Then (P,C) is called...

e Lattice, if each finite subset P’ of P contains a least upper
and a greatest lower bound in P

e complete lattice, if each subset P’ of P contains a least
upper and a greatest lower bound in P

...(complete) lattices are special partial orders.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 8

Complete Partial Orders

...a slightly weaker, in computer science, however, often suffi-
cient and thus more adequate notion:

Let (P,C) be a partial order.

Then (P,C) is called...

e complete, or shorter a CPO (complete partial order), if
each ascending chain C C P has a least upper bound in P.

We have:

e A CPO (C,C) (more accurate would be: ‘“chain-complete partially or-
dered set (CCPO)") has always a least element. This element is uni-
quely determined as supremum of the empty chain and usually denoted
by L: L=4 LI10.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 9

Finite Chains, finite Elements
A partial order (P,C) is called

e chain-finite (German: kettenendlich) iff P is free of infinite
chains

An element p € P is called
o finite iff the set Q=4 {q € P|q C p} is free of infinite chains

o finite relative to r € P iff the set Q=4 {qg € P|r EqLCp}is
free of infinite chains

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 11

(Standard) CPO Constructions 2(4)

Product construction...

Let (P1,C1),(P2,E2),...,(Pn,En) be CPOs. Then...

e the non-strict (direct) product (X P;,C) with
— (XP,E)=(P1 x P2 X ... X Pn,C) with V(p1,p2,.--,pn),
(q1,92,---,an) € XP;. (p1,p2,---,pn) C (41,92, -,qn) =
Vie{l,....,n}.p; Ci g
e and the strict (direct) product (smash product) with
- (®@P,0)=(PL®P>®...® Py,C), where C is defined as
above under the additional constraint:
(p1,p2--p)=L=3ie{l,...,n}. p=1;
are CPOs, too.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 13

Chains

Let (P,C) be a partial order.

A subset C C P is called...

e chain of P, if the elements of C are totally ordered. For
C={coCc1CeaE ...} ({fco T er DexT...}) we also
speak more precisely of an ascending (descending) chain
of P.

A chain C is called...

e finite, if C is finite; infinite otherwise.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 10

(Standard) CPO Constructions 1(4)

Flat CPOs...
Let (C,C) be a CPO. Then (C,C) is called...

e flat, if for all c,d € C holds: cCd&c=1 V c¢c=d

G & &G G & G C

\L

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 12

(Standard) CPO Constructions 3(4)

Sum construction...

Let (P,C1),(P2,E2),..., (P, Cn) CPOs. Then...

e the direct sum (@ P;,C) with...

— (®P;,C)= (PUP, U... U P,,C) disjoint union of B;, i €
{1,....,n}and Vp,q e ®P;. pCg=3ie{1,...,n}. p,q €
P; N pLC;q and the identification of the least elements
of (Pi7 EL), i€ {17...,71}, i.e. L:de,,j, i€ {1,...,”}

is a CPO.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 14

(Standard) CPO Constructions 4(4)

Function space...

Let (C,E¢) and (D,Ep) be two CPOs and [C — D]=g4
{f : C — D | f continuous} the set of continuous functions
from C to D.

Then...

e the continuous function space ([C — D],C) is a CPO where

—VfgelC—D] fCg+=Vcel f(c)Cpyglo)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 15

Functions on CPOs / Properties

Let (C,C¢) and (D,Cp) be two CPOs and let f:C — D be a
function from C to D.

Then f is called...

e monotone iff Ve, € C. cCo ¢ = f(c) Cp f(c)
(Preservation of the ordering of elements)

e continuous iff VC' C C. f(UsC") =p Upf(c))
(Preservation of least upper bounds)

Let (C,C) be a CPO and let f: C — C be a function on C.
Then f is called...

e inflationary (increasing) iff Ve € C. ¢ C f(c)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 16

Functions on CPOs / Results

Using the notations introduced before...

Lemma
f is monotone iff YO/ C C. f(UcC") Tp Upf(ch)

Corollary
A continuous function is always monotone, i.e. f continuous
= f monotone.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 17

Least and greatest Fixed Points 2(2)

Let d,cq € C. Then ¢4 is called...

e conditional (German: bedingter) least fixed point of f wrt
d iff ¢4 is the least fixed point of C with d C ¢y, i.e. for all
other fixed points z of f with d C « holds: ¢; C =.

Notations:
The least resp. greatest fixed point of a function f is usually
denoted by uf resp. vf.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 19

Proof of the Fixed Point Theorem 1(4)

We have to prove: uf...
1. exists
2. is a fixed point

3. is the least fixed point

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 21

Least and greatest Fixed Points 1(2)

Let (C,C) be a CPO, f:C — C be a function on C and let ¢
be an element of C, i.e., ce C.

Then c is called...
o fixed point of f iff f(c) =c
A fixed point ¢ of f is called...
e least fixed point of f iff Vvde C. f(d)=d=cCd

e greatest fixed point of f iff Vde C. f(d)=d=dCc

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 18

Fixed Point Theorem

Theorem (Knaster/Tarski, Kleene)
Let (C,C) be a CPO and let f : C — C be a continuous
function on C.

Then f has a least fixed point upf, which equals the
least upper bound of the chain (so-called Kleene-Chain)

{L, F(L), f2(L),.. .}, ie.
pf =L f/(L) =L, £(L), (L), ..}

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 20

Proof of the Fixed Point Theorem 2(4)

1. Existence
e It holds fO L=_1 and L Cc forall ce C.

e By means of (complete) induction we can show: f*1 C
fmc for all ce C.

e Thus we have f*1 C f™1 for all n,m with n < m. Hence,
{f"L | n> 0} is a (non-finite) chain of C.

e The existence of |_|iE]N0fi(L) is thus an immediate con-
sequence of the CPO properties of (C,C).

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 22

Proof of the Fixed Point Theorem 3(4)

2. Fixed point property

FU e, £1(0)
(f continuous) = L, f(S"L)
= |—|v‘,e]]\llfnL
(K chain = UK=10UK) = U, /L U L
(fPL=1) = |_|1.E]NOf"’L
= |_|iEINOfl(J_)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 23

Proof of the Fixed Point Theorem 4(4)

3. Least fixed point

— Let ¢ be an arbitrarily chosen fixed point of f. Then we
have L C ¢, and hence also f"L C f"c for all n > 0.

— Thus, we have f™1 C ¢ because of our choice of ¢ as
fixed point of f.

— Thus, we have, too, that ¢ is an upper bound of
{f(L) | i € No}.

— Since I_IiEINOfi(J_) is the least upper bound pf this chain
by definition, we obtain as desired I_IiE]NOJ”(L) Cec.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 24

Conditional Fixed Points

Theorem (Conditional Fixed Points)
Let (C,C) be a CPO, let f:C — C be a continuous, inflatio-
nary function on C, and let d € C.

Then f has a unique conditional fixed point pufy. This
fixed point equals the least upper bound of the chain

{d, f(d), f2(d),...}, d.h.
pfa=Uien, F1(d) =L{d, £(d), f2(a), ...}

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 25

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points
e.g. are...

e Finiteness of domain and range of f

e f is of the form f(c)=c U g(c) for monotone g on some
chain-complete domain

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 27

Completion of Ideals

Theorem (Completion of Ideals)
Let (P,C) be a partial order and let Ip be the set of all ideals
of P. Then we have:

e (Ip,C) isa CPO.

Induced “completion” ...

e Identifying each element p € P with its corresponding ideal
I,,:df{q | ¢ C p} yields an embedding of P into Ip with
pC g & IpClg

Corollary (Extensability of Functions)

Let (P,Cp) be a partial order and let (C,C¢) be a CPO. Then
we have: All monotone functions f : P — C can be extended
to a uniquely determined continuous function f : Ip— C.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 29

Finite Fixed Points

Theorem (Finite Fixed Points)
Let (C,C) be a CPO and let f : C — C be a continuous
function on C.

Then we have: If two elements in a row occurring in the
Kleene-chain of f are equal, e.g. fi(L)=fit1(L), then we
have: uf = fi(L).

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 26

Cones und Ideals

Let (P,C) be a partial order and @ be a subset of P, i.e.,
QCP.

Then Q is called...

e directed set (German: gerichtet (gerichtete Menge)), if
each finite subset R C @ has a supremum Q, i.e. dq €
Q. q=UR

e cone (German: Kegel), if Q is downward closed, i.e. Vq €
QVpeP.pCg=peq

e ideal (German: Ideal), if Q is a directed cone, i.e. if Q is
downward closed and each finite subset has a supremum

in Q.

Note: If Q is a directed set, then, we have because of § C Q also LIp=1 € @
and thus Q # 0.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 28

Conclusion
The previous result implies...
e Streams constitute a CPO

e Recursive equations and functions on streams are well-
defined

e The application of a function to the finite prefixes of a
stream yields the chain of approximations of the application
of the function to the stream itself; it is thus correct

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 30

Correctness of Programs/Proof of Pro-
gram Properties

Induction vs. recursion

e ...a list is either empty or a pair consisting of an element
and another list

e ...a tree is either empty or consists of a node and a set of
other trees

Note:

e Definition of data structures
...follow often an inductive definition pattern

e Functions on data structures
...follow often a recursive definition pattern

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 31

Inductive Proving / Proof Principles
Complete, generalized, structural induction

As a reminder: The principles of...
e complete induction
(A1) A (VneN.A(n) = A(n+1))) = VneN.A(n)
e generalized induction
(VneIN. (Vm <n.A(m)) = A(n)) = VneIN. A(n)

e structural induction

(Vs € S.Vs' € Comp(s). A(s")) = A(s)) = VscS A(s)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 32

Example: Generalized Induction
Direct computation of the Fibonacci numbers...

Let Fj,, n € IN, denote the n-th F-number, which is defined as
follows:

Fo=0; F;=1; foreachn>2, Fpb=F, >+ F,_1

Using these notations we can prove:

Theorem
5 (159
VneIN. F, = 2 75 2
Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 33

Proof of the Theorem 1(5)
Proof of the theorem ...by means of generalized induction.

Using the induction hypothesis that for all £k < n with n € IN
some natural number the equality

(45" - ()’
2 2
V5
holds, we can prove the premise underlying the implication of

the principle of generalized induction for all natural numbers n
by investigating the following cases.

Fk:

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 35

Proof of the Theorem 3(5)

Case 2: n = 1. Also in this case, we obtain by a straightforward
calculation as desired:

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 37

Observation

Since

(F)ien = 0,1,1,2,3,5,8, 13,21, 34,...
(fib)jenw = 1,1,2,3,5,8,13,21, 34,...

we conclude:

Corollary Vn € N. fib(n) = F41

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 34

Proof of the Theorem 2(5)

Case 1: n = 0. In this case we obtain by a simple calculation
as desired:

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 36

Proof of the Theorem 4(5)

Case 3: n > 2. Applying the induction hypothesis (IH) for n —2 and n — 1
we obtain the desired equality:

F,
(Def. of F) = Fyo+ Fuy
n—2 _ n—2 n—1 _ n—1
(IH (two times)) = (%ﬁ) \/_g(lT\/g) + (1+2f5) \/_5(%)
~ {(12\@)”72 + (14?/5)”71] _ {(1 2\/5)”72+ (1 2%5)"’1}
- V5
0] (o)
() () () ()
(*) — 2 2 \/g 2 2
Gy

Proof of the Theorem 5(5)

...where the equality marked by (x) holds because of the following two
sequences of equalities, whose validity can be established by means of the
binomial formulae:

14+v5\° 142545 6+2/5_ 3++5 1+5
2 - 4 =4 T 2 M

Similarly we can show:

1-v5\°> 1-26+45 6-2V5 3-v65__ 1-\5
< 2 >_ 4 -4 T 2 7 2

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 39

Inductive Proofs on (finite) Lists

Proof pattern... Let P be a property on lists...

1. Induction start: ...prove that P holds for the empty list,
i.e. prove P([]).

2. Induction step: ...prove under the assumption of the validity
of P(xs) (induction hypothesis) the validity of
P(z : xs).

More generally

e ...not only for lists
inductive proof along the structure (structural induc-
tion)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 40

Induction on finite Lists / Example 1(2)

Proposition

Vs, ys. length (zs ++ys) = length zs + length ys

Proof ...over the inductive structure of zs

Induction start

length([] ++ys)
length ys

= 0 + length ys
length [] + length ys

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 41

Equality of Functions 1(2)

listSum :: Num a => [a] -> a

a
listSum [1 =0

listSum (x:xs) = x + listSum xs

Proposition

Vaxs. listSum s = foldr (4+) 0 zs

Proof ...over the inductive structure of zs
Induction start

listSum []
= 0
= foldr (+) 0[]

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 43

Properties of map and fold 1(2)

Some more examples of inductively provable properties...

map (\x -> x) = \x -> x

map (f.g) =map f . map g

map f.tail = tail . map f

map f . reverse = reverse . map f
map f . concat = concat . map (map f)
map f (xs++ys) = map f xs ++ map f ys

Supposed £ is strict, we can additionally prove:

f . head = head . map f

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 45

Induction on finite Lists / Example 2(2)

Induction step

length((x : xs) +-+ys)
= length (z : (zs +4ys))
= 1 + length (zs +4ys)
= 1 4 (length s 4+ length ys) (Induction hypothesis)
= (1 + length xzs) + length ys
= length (z :xs) + length ys

a
Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 42
Equality of Functions 2(2)
Induction step
listSum (x : xs)
= x + listSum xs
= z + foldr (+) 0 zs (Induction hypothesis)
= foldr (4+) 0 (z : xzs)
[m]
Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 44

Properties of map and fold 2(2)

We can also show inductively...
foldr op e xs = foldl op e xs

...where op is an associative operator with e ’op’ x = x ’op’
e for all x and finite xs

foldr op e xs = foldl (flip op) e (reverse xs)

...for all finite xs
foldr opl e xs = foldl op2 e xs
if

x ’opl’ (y ’op2’ z) = (x ’opl’ y) ’op2’ z and
x ’opl’ e = e ’op2’ x

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 46

Properties of List Concatenation

...for all xs, ys and zs hold:

(xs++ys) ++ zs = xs ++ (ys++zs) (Associativity of ++)

xs++[] = [J++xs ([1 neutral element of ++)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) a7

Properties of take and drop

...for all m, n with m,n > 0 and finite xs holds:

take n xs ++ drop n xs = Xs

take m . take n = take (min m n)

drop m . drop n = drop (m+n)

take m . drop n = drop n . take (m+n)

...for n > m holds additionally

drop m . take n = take (n-m) . drop m

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 48

Properties of reverse

...for all finite xs hold:

reverse (reverse xs) = xs
head (reverse xs) = last xs
last (reverse xs) = head xs

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 49

Intuition

Successively approximating lists

e finite situation ...[1,2,3,4]

bottom

1 : bottom

1 : 2 : bottom
1:2: 3 : bottom
1:2:3: 4 : bottom
1:2:3:4:0

e infinite situation ...[1,2,3,4,..

bottom
1 : bottom
1 : 2 : bottom

[

2 : 3 : bottom
:2:3: 4 : bottom
2 :3:4:5: bottom

CoRe

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 51

Remark

...each Haskell data type has a special value 1.

Polymorphic Concrete
bot :: a bot :: Integer
bot = bot

1 represents...
e faulty or non-terminating computations

e can be considered the “least” approximation of (ordinary)
elements of the corresponding data type

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 53

Finite Lists vs. Streams
Properties of finite lists

e Can...

e.g. take n xs ++ drop n xs = Xxs

e ...but need not be transferable to streams
e.g. reverse (reverse xs)) = xs

...new proof strategies are required.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 50
We say...

e bottom ...totally undefined list

e1 :2:3:4:5: .. : bottom ...partial list
Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 52

Inductive Proofs over Streams
Proof pattern... Let P be a property of streams

1. Induction start: ...prove that P holds for the least defined
list, i.e. prove P(L) (instead of P([])).

2. Induction step: ...prove under the assumption of the validity
of P(zxs) (induction hypothesis) the validity of
P(z : xs).

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 54

Induction over Streams / Example 1(2)

Proposition

Vstreams xs. take n xs + 4+ drop n s = xs

Proof ...over the inductive structure of zs

Induction start

take n L + 4 drop n L
= 1 +4+dropn L
= 1

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 55

Induction over Streams / Example 2(2)

Induction step

take n (z :xs) + 4+ drop n (z: xs)
z : (take (n—1) zs 4+ + drop (n—1) xs
= z : xs (induction hypothesis)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 56

Further Readings

e L. C. Paulson. Logic and Computation — Interactive Proof
with Cambridge LCF. Cambridge University Press, 1987.

e Simon Thompson. Proof for Functional Programming. In
K. Hammond, G. Michaelson (Hrsg.), Research Directions
in Parallel Functional Programming, Springer, 1999.

e Hanne and Flemming Nielson, Springer-Verlag, Heidelberg,
Germany, 2007 (forthcoming).

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 57

Next lecture...

e Thu, May 31, 2007, lecture time: 4.15 p.m. to 5.45 p.m.,
lecture room on the ground floor of the building Argenti-
nierstr. 8

Fifth assignment (as well as previous assignments)...

e Please check out the homepage of the course for details.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 58

