Well-definedness & Correctness Issues

- Streams and functions on streams ...well-defined?
- Correctness of programs, proof of program properties ...recursion vs. induction, proofs by induction

First...

- Mathematical background
 - ...CPOs, fixed points, fixed point theorems

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

References

The following presentation is based on...

- Hanne Riis Nielson, Flemming Nielson. Semantics with Applications A Formal Introduction. Wiley, 1992. http://www.daimi.au.dk/~bra8130/Wiley.book/wiley.html
- Chapter 11 and 14
 Paul Hudak. The Haskell School of Expression Learning Functional Programming through Multimedia. Cambridge University Press, 2000.
- Chapter 8 and 17 Simon Thompson. Haskell – The Craft of Functional Programming. Addison-Wesley, 2nd edition, 1999.
- Chapter 10
 Peter Pepper, Petra Hofstedt. Funktionale Programmierung. Springer-Verlag, Heidelberg, Germany, 2006. (In German)

Streams, Fixed Points, and Equation Systems

• Streams

```
- onetwo = 1 : 2 : onetwo \rightarrow [1,2,1,2,1,2,...
- onestwos = 1 : onestwos : 2 \rightarrow [1,1,1,1,1,1,...
```

• Equation systems

-x = E[x]

More on this in the following...

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Sets and Relations 1(2)

Let M be a set and R a relation on M, i.e. $R \subseteq M \times M$.

Then R is called...

- reflexive iff $\forall m \in M. \ m \ R \ m$
- $\bullet \ \textit{transitive} \ \textit{iff} \ \forall \, m,n,p \in M. \ m \, R \, n \ \land \ n \, R \, p \ \Rightarrow \ m \, R \, p$
- anti-symmetric iff $\forall m, n \in M$. $m R n \land n R m \Rightarrow m = n$

Related further notions... (though less important for us in the following)

- $\bullet \ \ \textit{symmetric} \ \ \textit{iff} \ \forall \, m,n \in M. \ m \, R \, n \ \Longleftrightarrow \ n \, R \, m$
- total iff $\forall m, n \in M. \ mRn \lor nRm$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

4

Sets and Relations 2(2)

A relation R on M is called a...

- ullet quasi-order iff R is reflexive and transitive
- $\bullet\,$ partial order iff R is reflexive, transitive, and anti-symmetric

For the sake of completeness we recall...

 \bullet $\ensuremath{\textit{equivalence relation}}$ iff R is reflexive, transitive, and symmetric

 \ldots i.e., a partial order is an anti-symmetric quasi-order, an equivalence relation a symmetric quasi-order.

Note: We here use terms like "partial order" as a short hand for the more accurate term "partially ordered set".

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Bounds, least and greatest Elements

Let (Q, \sqsubseteq) be a quasi-order, let $q \in Q$ and $Q' \subseteq Q$.

Then q is called...

- upper (lower) bound of Q', in signs: $Q' \sqsubseteq q \ (q \sqsubseteq Q')$, if for all $q' \in Q'$ holds: $q' \sqsubseteq q \ (q \sqsubseteq q')$
- least upper (greatest lower) bound of Q', if q is an upper (lower) bound of Q' and for every other upper (lower) bound \hat{q} of Q' holds: $q \sqsubseteq \hat{q}$ ($\hat{q} \sqsubseteq q$)
- greatest (least) element of Q, if holds: $Q \sqsubseteq q \ (q \sqsubseteq Q)$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

6

Uniqueness of Bounds

- Given a partial order, least upper and greatest lower bounds are uniquely determined, if they exist.
- Given existence (and thus uniqueness), the least upper (greatest lower) bound of a set $P'\subseteq P$ of the basic set of a partial order (P,\sqsubseteq) is denoted by $\bigsqcup P'$ ($\bigcap P'$). These elements are also called *supremum* and *infimum* of P'.
- \bullet Analogously this holds for least and greatest elements. Given existence, these elements are usually denoted by \bot and $\top.$

Lattices and Complete Lattices

Let (P,\sqsubseteq) be a partial order.

Then (P, \sqsubseteq) is called...

- \bullet Lattice, if each finite subset P' of P contains a least upper and a greatest lower bound in P
- ullet complete lattice, if each subset P' of P contains a least upper and a greatest lower bound in P

...(complete) lattices are special partial orders.

Complete Partial Orders

...a slightly weaker, in computer science, however, often sufficient and thus more adequate notion:

Let (P, \square) be a partial order.

Then (P, \sqsubseteq) is called...

• complete, or shorter a CPO (complete partial order), if each ascending chain $C \subseteq P$ has a least upper bound in P.

We have:

• A CPO (C,\sqsubseteq) (more accurate would be: "chain-complete partially ordered set (CCPO)") has always a least element. This element is uniquely determined as supremum of the empty chain and usually denoted by $\bot:\bot=_{d'} \bigsqcup \emptyset$.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Chains

Let (P,\sqsubseteq) be a partial order.

A subset $C \subseteq P$ is called...

• chain of P, if the elements of C are totally ordered. For $C = \{c_0 \sqsubseteq c_1 \sqsubseteq c_2 \sqsubseteq \ldots\}$ ($\{c_0 \sqsupseteq c_1 \sqsupseteq c_2 \sqsupseteq \ldots\}$) we also speak more precisely of an ascending (descending) chain of P.

A chain C is called...

ullet finite, if C is finite; infinite otherwise.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

10

Finite Chains, finite Elements

A partial order (P, \square) is called

 \bullet $\mathit{chain-finite}$ (German: kettenendlich) iff P is free of infinite chains

An element $p \in P$ is called

- finite iff the set $Q=_{df}\{q\in P\,|\, q\sqsubseteq p\}$ is free of infinite chains
- finite relative to $r \in P$ iff the set $Q=_{df} \{q \in P \,|\, r \sqsubseteq q \sqsubseteq p\}$ is free of infinite chains

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

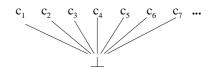
11

(Standard) CPO Constructions 1(4)

Flat CPOs...

Let (C, \sqsubseteq) be a CPO. Then (C, \sqsubseteq) is called...

• flat, if for all $c, d \in C$ holds: $c \sqsubseteq d \Leftrightarrow c = \bot \lor c = d$



Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

12

(Standard) CPO Constructions 2(4)

Product construction...

Let $(P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2), \dots, (P_n, \sqsubseteq_n)$ be CPOs. Then...

- the non-strict (direct) product (XP_i,\sqsubseteq) with
 - $\begin{array}{l} -\ (\times P_i,\sqsubseteq) = (P_1 \times P_2 \times \ldots \times P_n,\sqsubseteq) \ \text{with} \ \forall (p_1,p_2,\ldots,p_n), \\ (q_1,q_2,\ldots,q_n) \in \times P_i. \ (p_1,p_2,\ldots,p_n) \sqsubseteq (q_1,q_2,\ldots,q_n) \Rightarrow \\ \forall i \in \{1,\ldots,n\}. \ p_i \sqsubseteq_i q_i \end{array}$
- and the strict (direct) product (smash product) with
 - (⊗ P_i , \sqsubseteq) = ($P_1 \otimes P_2 \otimes ... \otimes P_n$, \sqsubseteq), where \sqsubseteq is defined as above under the additional constraint:

 $(p_1,p_2,\dots,p_n)=\bot\Rightarrow\exists\,i\in\{1,\dots,n\}.\ p_i=\bot_i$ are CPOs, too.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

13

(Standard) CPO Constructions 3(4)

Sum construction...

Let $(P_1, \sqsubseteq_1), (P_2, \sqsubseteq_2), \dots, (P_n, \sqsubseteq_n)$ CPOs. Then...

- the *direct sum* $(\bigoplus P_i, \sqsubseteq)$ with...
 - $$\begin{split} &- (\bigoplus P_i,\sqsubseteq) = (P_1\dot{\cup}P_2\dot{\cup}\ldots\dot{\cup}P_n,\sqsubseteq) \text{ disjoint union of } P_i,\, i \in \{1,\ldots,n\} \text{ and } \forall p,q \in \bigoplus P_i.\,\, p \sqsubseteq q \Rightarrow \exists\, i \in \{1,\ldots,n\}.\,\, p,q \in P_i\,\, \wedge\,\, p \sqsubseteq_i \, q \text{ and the identification of the least elements of } (P_i,\sqsubseteq_i),\,\, i \in \{1,\ldots,n\},\,\, \text{i.e.} \quad \bot =_{d\!f} \bot_i,\,\, i \in \{1,\ldots,n\} \end{split}$$
 is a CPO.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

14

(Standard) CPO Constructions 4(4)

Function space...

Let (C,\sqsubseteq_C) and (D,\sqsubseteq_D) be two CPOs and $[C\to D]=_{df}$ $\{f:C\to D\mid f \text{ continuous}\}$ the set of continuous functions from C to D.

Then...

• the continuous function space ($[C \to D], \sqsubseteq$) is a CPO where $- \ \forall \, f,g \in [C \to D]. \ f \sqsubseteq g \Longleftrightarrow \forall \, c \in C. \ f(c) \sqsubseteq_D g(c)$

Functions on CPOs / Properties

Let (C,\sqsubseteq_C) and (D,\sqsubseteq_D) be two CPOs and let $f:C\to D$ be a function from C to D.

Then f is called...

- monotone iff $\forall c, c' \in C$. $c \sqsubseteq_C c' \Rightarrow f(c) \sqsubseteq_D f(c')$ (Preservation of the ordering of elements)
- continuous iff $\forall C' \subseteq C$. $f(\bigsqcup_C C') = \bigcup_D f(C')$ (Preservation of least upper bounds)

Let (C,\sqsubseteq) be a CPO and let $f:C\to C$ be a function on C. Then f is called...

• inflationary (increasing) iff $\forall c \in C. \ c \sqsubseteq f(c)$

Advanced functional Programming (SS 2007) / Part 5 (Thu. 05/24/07)

16

Functions on CPOs / Results

Using the notations introduced before...

Lemma

f is monotone iff $\forall C' \subseteq C$. $f(\bigsqcup_C C') \supseteq_D \bigsqcup_D f(C')$

Corollary

A continuous function is always monotone, i.e. f continuous $\Rightarrow f$ monotone.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

11

Least and greatest Fixed Points 1(2)

Let (C,\sqsubseteq) be a CPO, $f:C\to C$ be a function on C and let c be an element of C, i.e., $c\in C$.

Then c is called...

• fixed point of f iff f(c) = c

A fixed point c of f is called...

- least fixed point of f iff $\forall d \in C$. $f(d) = d \Rightarrow c \sqsubseteq d$
- greatest fixed point of f iff $\forall d \in C$. $f(d) = d \Rightarrow d \sqsubseteq c$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

18

Least and greatest Fixed Points 2(2)

Let $d, c_d \in C$. Then c_d is called...

• conditional (German: bedingter) least fixed point of f wrt d iff c_d is the least fixed point of C with $d \sqsubseteq c_d$, i.e. for all other fixed points x of f with $d \sqsubseteq x$ holds: $c_d \sqsubseteq x$.

Notations:

The least resp. greatest fixed point of a function f is usually denoted by μf resp. νf .

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

19

Fixed Point Theorem

Theorem (Knaster/Tarski, Kleene)

Let (C,\sqsubseteq) be a CPO and let $f:C\to C$ be a continuous function on C.

Then f has a least fixed point μf , which equals the least upper bound of the chain (so-called *Kleene*-Chain) $\{\bot, f(\bot), f^2(\bot), \ldots\}$, i.e.

$$\mu f = \bigsqcup_{i \in \mathbb{IN}_0} f^i(\bot) = \bigsqcup \{\bot, f(\bot), f^2(\bot), \ldots \}$$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

20

Proof of the Fixed Point Theorem 1(4)

We have to prove: $\mu f \dots$

- 1. exists
- 2. is a fixed point
- 3. is the least fixed point

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

21

Proof of the Fixed Point Theorem 2(4)

- 1. Existence
 - It holds $f^0 \perp = \perp$ and $\perp \sqsubseteq c$ for all $c \in C$.
 - By means of (complete) induction we can show: $f^n\bot\sqsubseteq f^nc$ for all $c\in C$.
 - $\bullet \ \ \text{Thus we have} \ f^n\bot\sqsubseteq f^m\bot \ \text{for all} \ n,m \ \text{with} \ n\le m. \ \text{Hence,} \\ \{f^n\bot\mid n\ge 0\} \ \text{is a (non-finite) chain of} \ C.$
 - $\bullet \ \ \text{The existence of $\sqcup_{i\in {\rm I\!N}_0} f^i(\bot)$ is thus an immediate consequence of the CPO properties of (C,\sqsubseteq).}$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

22

Proof of the Fixed Point Theorem 3(4)

2. Fixed point property

$$\begin{array}{rcl} & & & & f(\bigsqcup_{i\in \mathbb{IN}_0} f^i(\bot))\\ & & (f \text{ continuous}) & = & \bigsqcup_{i\in \mathbb{IN}_0} f(f^n \bot)\\ & & = & \bigsqcup_{i\in \mathbb{IN}_1} f^n \bot\\ & (K \text{ chain} \Rightarrow \bigsqcup K = \bot \sqcup \bigsqcup K) & = & \bigsqcup_{i\in \mathbb{IN}_1} f^n \bot \ \sqcup \ \bot\\ & & (f^0 \bot = \bot) & = & \bigsqcup_{i\in \mathbb{IN}_0} f^i \bot\\ & = & \bigsqcup_{i\in \mathbb{IN}_0} f^i(\bot) \end{array}$$

Proof of the Fixed Point Theorem 4(4)

- 3. Least fixed point
 - Let c be an arbitrarily chosen fixed point of f. Then we have $\bot \sqsubseteq c$, and hence also $f^n\bot \sqsubseteq f^nc$ for all $n\ge 0$.
 - Thus, we have $f^n\bot\sqsubseteq c$ because of our choice of c as fixed point of f.
 - Thus, we have, too, that c is an upper bound of $\{f^i(\bot)\mid i\in \mathbb{N}_0\}.$
 - Since $\bigsqcup_{i\in\mathbb{IN}_0}f^i(\bot)$ is the least upper bound of this chain by definition, we obtain as desired $\bigsqcup_{i\in\mathbb{IN}_0}f^i(\bot)\sqsubseteq c$.

Conditional Fixed Points

Theorem (Conditional Fixed Points)

Let (C,\sqsubseteq) be a CPO, let $f:C\to C$ be a continuous, inflationary function on C, and let $d\in C$.

Then f has a unique conditional fixed point μf_d . This fixed point equals the least upper bound of the chain $\{d,f(d),f^2(d),\ldots\}$, d.h.

$$\mu f_d \!=\! \bigsqcup_{i \in \mathbb{IN}_0} f^i(d) \!=\! \bigsqcup \{d, f(d), f^2(d), \ldots \}$$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Finite Fixed Points

Theorem (Finite Fixed Points)

Let (C,\sqsubseteq) be a CPO and let $f:C\to C$ be a continuous function on C.

Then we have: If two elements in a row occurring in the Kleene-chain of f are equal, e.g. $f^i(\bot)=f^{i+1}(\bot)$, then we have: $\mu f=f^i(\bot)$.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

26

Existence of Finite Fixed Points

Sufficient conditions for the existence of finite fixed points e.g. are... $% \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}$

- \bullet Finiteness of domain and range of f
- \bullet f is of the form $f(c) = c \sqcup g(c)$ for monotone g on some chain-complete domain

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

27

Cones und Ideals

Let (P,\sqsubseteq) be a partial order and Q be a subset of P, i.e., $Q\subseteq P.$

Then Q is called...

- directed set (German: gerichtet (gerichtete Menge)), if each finite subset $R\subseteq Q$ has a supremum Q, i.e. $\exists\,q\in Q.\ q= \bigsqcup R$
- cone (German: Kegel), if Q is downward closed, i.e. $\forall\,q\in Q\,\,\forall\,p\in P.\,\,p\sqsubseteq q\Rightarrow p\in Q$
- ullet ideal (German: Ideal), if Q is a directed cone, i.e. if Q is downward closed and each finite subset has a supremum in Q.

Note: If Q is a directed set, then, we have because of $\emptyset\subseteq Q$ also $\bigsqcup\emptyset=\bot\in Q$ and thus $Q\neq\emptyset$.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

20

Completion of Ideals

Theorem (Completion of Ideals)

Let (P,\sqsubseteq) be a partial order and let I_P be the set of all ideals of P. Then we have:

 \bullet (I_P,\subseteq) is a CPO.

Induced "completion" ...

• Identifying each element $p \in P$ with its corresponding ideal $I_P =_{df} \{q \mid q \sqsubseteq p\}$ yields an embedding of P into I_P with $p \sqsubseteq q \Leftrightarrow I_P \subseteq I_Q$

Corollary (Extensability of Functions)

Let (P,\sqsubseteq_P) be a partial order and let (C,\sqsubseteq_C) be a CPO. Then we have: All monotone functions $f:P\to C$ can be extended to a uniquely determined continuous function $\hat{f}:I_P\to C$.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Conclusion

The previous result implies...

- Streams constitute a CPO
- Recursive equations and functions on streams are well-defined
- The application of a function to the finite prefixes of a stream yields the chain of approximations of the application of the function to the stream itself; it is thus correct

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

30

Correctness of Programs/Proof of Program Properties

Induction vs. recursion

- ...a list is either empty or a pair consisting of an element and another list
- ...a tree is either empty or consists of a node and a set of other trees

Note:

- Definition of data structures
 ...follow often an inductive definition pattern
- Functions on data structures
 - ...follow often a recursive definition pattern

Inductive Proving / Proof Principles

Complete, generalized, structural induction

As a reminder: The principles of...

• complete induction

$$(A(1) \land (\forall n \in \mathbb{N}. A(n) \Rightarrow A(n+1))) \Rightarrow \forall n \in \mathbb{N}. A(n)$$

generalized induction

$$(\forall n \in \mathbb{N}. (\forall m < n. A(m)) \Rightarrow A(n)) \Rightarrow \forall n \in \mathbb{N}. A(n)$$

• structural induction

$$(\forall s \in S. \forall s' \in Comp(s). A(s')) \Rightarrow A(s)) \Rightarrow \forall s \in S. A(s)$$

Example: Generalized Induction

Direct computation of the Fibonacci numbers...

Let F_n , $n \in \mathbb{N}$, denote the n-th F-number, which is defined as follows:

$$F_0 = 0$$
; $F_1 = 1$; for each $n \ge 2$, $F_n = F_{n-2} + F_{n-1}$

Using these notations we can prove:

Theorem

$$\forall\,n\in\mathbb{I\!N}.\,\,F_n=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Observation

Since

$$(F_i)_{i \in \mathbb{IN}} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

$$(fib_i)_{i\in\mathbb{IN}} = 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

we conclude:

Corollary $\forall n \in \mathbb{N}. \ fib(n) = F_{n+1}$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

34

Proof of the Theorem 1(5)

Proof of the theorem ...by means of generalized induction.

Using the induction hypothesis that for all k < n with $n \in {\rm I\! N}$ some natural number the equality

$$F_k = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k}{\sqrt{5}}$$

holds, we can prove the premise underlying the implication of the principle of generalized induction for all natural numbers n by investigating the following cases.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

35

Proof of the Theorem 2(5)

<u>Case 1:</u> n = 0. In this case we obtain by a simple calculation as desired:

$$F_0 = 0 = \frac{1 - 1}{\sqrt{5}} = \frac{\left(\frac{1 + \sqrt{5}}{2}\right)^0 - \left(\frac{1 - \sqrt{5}}{2}\right)^0}{\sqrt{5}}$$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

36

40

Proof of the Theorem 3(5)

<u>Case 2</u>: n = 1. Also in this case, we obtain by a straightforward calculation as desired:

$$F_1 = 1 = \frac{\sqrt{5}}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^1 - \left(\frac{1-\sqrt{5}}{2}\right)^1}{\sqrt{5}}$$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

37

Proof of the Theorem 4(5)

<u>Case 3:</u> $n \ge 2$. Applying the induction hypothesis (IH) for n-2 and n-1 we obtain the desired equality:

$$\begin{array}{rcl} \text{(Def. of } F_n) & = & \frac{F_n}{F_{n-2} + F_{n-1}} \\ \text{(IH (two times))} & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}} \\ & = & \frac{\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} + \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\right] - \left[\left(\frac{1-\sqrt{5}}{2}\right)^{n-2} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}} \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} \left[1 + \frac{1+\sqrt{5}}{2}\right] - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left[1 + \frac{1-\sqrt{5}}{2}\right]}{\sqrt{5}} \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} \left(\frac{1+\sqrt{5}}{2}\right)^2 - \left(\frac{1-\sqrt{5}}{2}\right)^{n-2} \left(\frac{1-\sqrt{5}}{2}\right)^2}{\sqrt{5}} \\ & = & \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}} \end{array}$$

Proof of the Theorem 5(5)

...where the equality marked by (*) holds because of the following two sequences of equalities, whose validity can be established by means of the binomial formulae:

$$\left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+2\sqrt{5}+5}{4} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2} = 1 + \frac{1+\sqrt{5}}{2}$$

Similarly we can show

$$\left(\frac{1-\sqrt{5}}{2}\right)^2 = \frac{1-2\sqrt{5}+5}{4} = \frac{6-2\sqrt{5}}{4} = \frac{3-\sqrt{5}}{2} = 1 + \frac{1-\sqrt{5}}{2}$$

P(x:xs).

More generally

Proof pattern...

i.e. prove P([]).

• ...not only for lists inductive proof along the structure (structural induc-

Inductive Proofs on (finite) Lists

Let P be a property on lists...

1. Induction start: ...prove that P holds for the empty list,

2. *Induction step*: ...prove under the assumption of the validity of P(xs) (*induction hypothesis*) the validity of

Induction on finite Lists / Example 1(2)

Proposition

 $\forall xs, ys. \ length \ (xs + +ys) = length \ xs + length \ ys$

Proof ...over the inductive structure of xs

Induction start

length([]++ys)= length ys= 0 + length ys= length [] + length ys

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Induction on finite Lists / Example 2(2)

Induction step

```
length((x:xs) + +ys)
= length (x:(xs + +ys))
= 1 + length (xs + +ys)
= 1 + (length xs + length ys)  (Induction hypothesis)
= (1 + length xs) + length ys
= length (x:xs) + length ys
```

Advanced functional Programming (SS 2007) / Part 5 (Thu. 05/24/07)

_

Equality of Functions 1(2)

```
listSum :: Num a => [a] -> a
listSum [] = 0
listSum (x:xs) = x + listSum xs
```

Proposition

```
\forall xs. \ listSum \ xs = foldr \ (+) \ 0 \ xs
```

Proof ... over the inductive structure of xs

Induction start

 $\begin{array}{rcl} & \mathit{listSum} \ [] \\ = & 0 \\ = & \mathit{foldr} \ (+) \ 0 \ [] \end{array}$

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

43

Equality of Functions 2(2)

Induction step

```
listSum (x:xs)
= x + listSum xs

= x + foldr (+) 0 xs (Induction hypothesis)

= foldr (+) 0 (x:xs)
```

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

44

Properties of map and fold 1(2)

Some more examples of inductively provable properties...

```
map (\x -> x) = \x -> x
map (f.g) = map f . map g
map f.tail = tail . map f
map f . reverse = reverse . map f
map f . concat = concat . map (map f)
map f (xs++ys) = map f xs ++ map f ys
```

Supposed ${\bf f}$ is strict, we can additionally prove:

f . head = head . map f

...for all xs, ys and zs hold:

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Properties of List Concatenation

xs++[] = []++xs ([] neutral element of ++)

(xs++ys) ++ zs = xs ++ (ys++zs) (Associativity of ++)

Properties of map and fold 2(2)

We can also show inductively...

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Properties of take and drop

```
...for all m, n with m,n \geq 0 and finite xs holds:
```

```
take n xs ++ drop n xs = xs  \mbox{take } m \mbox{ . take } n = \mbox{take } (\mbox{min } m \mbox{ n}) \\ \mbox{drop } m \mbox{ . drop } n = \mbox{drop } (\mbox{m+n}) \\ \mbox{take } m \mbox{ . drop } n = \mbox{drop } n \mbox{ . take } (\mbox{m+n}) \\ \mbox{...for } n \geq m \mbox{ holds additionally} \\ \mbox{drop } m \mbox{ . take } n = \mbox{take } (n-m) \mbox{ . drop } m \\ \mbox{}
```

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

Properties of reverse

...for all finite xs hold:

```
reverse (reverse xs) = xs
head (reverse xs) = last xs
last (reverse xs) = head xs
```

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

• can... e.g. t

Properties of finite lists

e.g. take n xs ++ drop n xs = xs

Finite Lists vs. Streams

 \bullet ...but need not be transferable to streams

e.g. reverse (reverse xs)) = xs

...new proof strategies are required.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

EΩ

Intuition

Successively approximating lists

• finite situation ...[1,2,3,4]

bottom
1 : bottom
1 : 2 : bottom
1 : 2 : 3 : bottom
1 : 2 : 3 : 4 : bottom
1 : 2 : 3 : 4 : []

• infinite situation ...[1,2,3,4,...

bottom
1 : bottom
1 : 2 : bottom
1 : 2 : 3 : bottom
1 : 2 : 3 : 4 : bottom
1 : 2 : 3 : 4 : bottom
...

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

We say...

- bottom ...totally undefined list
- 1 : 2 : 3 : 4 : 5 : .. : bottom ...partial list

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

52

Remark

...each Haskell data type has a special value \perp .

Polymorphic Concrete
bot :: a bot :: Integer
bot = bot

⊥ represents...

- faulty or non-terminating computations
- can be considered the "least" approximation of (ordinary) elements of the corresponding data type

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

53

Inductive Proofs over Streams

Proof pattern... Let P be a property of streams

- 1. Induction start: ...prove that P holds for the least defined list, i.e. prove $P(\bot)$ (instead of P([])).
- 2. Induction step: ...prove under the assumption of the validity of P(xs) (induction hypothesis) the validity of P(x:xs).

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

54

Induction over Streams / Example 1(2)

Proposition

 \forall streams $xs. \ take \ n \ xs \ ++ \ drop \ n \ xs \ = \ xs$

Proof ...over the inductive structure of \boldsymbol{xs}

Induction start

$$\begin{array}{l} \textit{take } n \perp + + \textit{drop } n \perp \\ = \perp + + \textit{drop } n \perp \\ = \perp \end{array}$$

Induction over Streams / Example 2(2)

Induction step

$$take \ n \ (x:xs) \ + + drop \ n \ (x:xs)$$

$$= x : (take \ (n-1) \ xs \ + + drop \ (n-1) \ xs$$

$$= x : xs \quad (induction \ hypothesis)$$

Further Readings

- L. C. Paulson. Logic and Computation Interactive Proof with Cambridge LCF. Cambridge University Press, 1987.
- Simon Thompson. *Proof for Functional Programming.* In K. Hammond, G. Michaelson (Hrsg.), *Research Directions in Parallel Functional Programming*, Springer, 1999.
- Hanne and Flemming Nielson, Springer-Verlag, Heidelberg, Germany, 2007 (forthcoming).

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07) 57

Next lecture...

• Thu, May 31, 2007, lecture time: 4.15 p.m. to 5.45 p.m., lecture room on the ground floor of the building Argentinierstr 8

 $\label{previous assignment} \mbox{Fifth assignment (as well as previous assignments)}...$

• Please check out the homepage of the course for details.

Advanced functional Programming (SS 2007) / Part 5 (Thu, 05/24/07)

58