
Reminder

Thesis

• The expressive power of a language, which supports modular design,
depends much on the power of the concepts and primitives allowing
to combine solutions of subproblems to the solution of the overall
problem. (Keyword: glue). (Example: making of a chair)

• Functional programming provides two new, especially powerful means
(“glues”) for this purpose:

1. Higher order functions (functionals)

2. Lazy evaluation

Modularization and re-use offer thus even conceptually (and not just
technically (lexical scoping, separate compilation, etc.)) new opportu-
nities and become much easier to apply

• Modularization (smaller, simpler, more general) is the guideline, which
should be used by functional programmers for guidance

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 1



Reminder (Cont’d)

We did talk about...

• Higher-order functions as glue for glueing functions to-

gether

We did not yet talk about...

• Lazy evaluation as glue for glueing programs together

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 2



I Glueing Functions Together

See part I of this lecture.

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 3



II Glueing Programs Together

If f and g are programs, then also

g . f

is a program. Applied to the input input, it yields the output

g (f input)

A possible conventional implementation (glue): communicati-

on via files

Possible problems of such an implementation:

• Temporary files are often too large

• f might not terminate

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 4



Functional Glue

Lazy evaluation offers a more elegant remedy.

As a glue, it allows:

• Decomposition of a problem into a

– generator and a

– selector

component.

Intuition:

• The generator component “runs as little as possible” until

it is terminated by the selector component.

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 5



Example 1: Computing Square Roots

Computing Square Roots (according to Newton-Raphson)

Given: N Sought: squareRoot(N)

Iteration formula:

a(n+1) = (a(n) + N/a(n)) / 2

Justification: If converging to some limit a, we have:

a = (a + N/a) / 2

=> 2a = a + N/a

a = N/a

a*a = N

a = squareRoot(N)

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 6



Compare this...

...with a typical imperative (Fortran-) program:

C N is called ZN here so that it has the right type

X = A0

Y = A0 + 2.*EPS

C The value of Y does not matter so long as ABS(X-Y).GT.EPS

100 IF (ABS(X-Y).LE.EPS) GOTO 200

Y = X

X = (X + ZN/X) / 2.

GOTO 100

200 CONTINUE

C The square root of ZN is now in X

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 7



The Functional Version 1(4)

Computing the next approximation

next N x = (x + N/x) / 2

Denoting this function f, we are interested in computing the

sequence of approximations:

[a0, f a0, f(f a0), f(f(f a0)), ...]

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 8



The Functional Version 2(4)

The function repeat computes this (possibly infinite) sequence

of approximations. It is the generator component in this ex-

ample:

repeat f a = cons a (repeat f (f a))

Applying repeat to the arguments next N and a0 yields the

desired sequence of approximations:

repeat (next N) a0

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 9



The Functional Version 3(4)

Note: The evaluation of

repeat (next N) a0

does not terminate!

Remedy: ...computing squareroot N up to a given tolerance eps

> 0. Instrumental is: the selector component.

Implementation:

within eps (cons a (cons b rest))

= b, if abs(a-b) <= eps

= within eps (cons b rest), otherwise

Still to do: Combining the components/modules:

sqrt a0 eps N = within eps (repeat (next N) a0)

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 10



The Functional Version 4(4)

Summing up:

• repeat... generator component:

[a0, f a0, f(f a0), f(f(f a0)), ...]

...potentially infinite, no limit on the length

• within... selector component:

fi a0 with abs(fi a0 - fi+1 a0) <= eps

...lazy evaluation ensures that the selector function

is applied eventually ⇒ termination!

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 11



Evidence of Modularity: Variants

Consider another stop criterion:

• ...instead of awaiting the difference of successive appro-
ximations to approach zero (<= eps), await their ratio to
approach one (<= 1+eps)

Implementation:

relative eps (cons a (cons b rest))

= b, if abs(a-b) <= eps * abs b

= relative eps (cons b rest), otherwise

Still to do: (re-) composition of the components/modules:

relativesqrt a0 eps N = relative eps (repeat (next N) a0)

Note: The generator, i.e., the “module” computing the sequence of appro-

ximations can be reused unchanged.

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 12



Example 2: Numerical Integration

Numerical Integration

Given: A real valued function f of one real argument; two end-

points a und b of an interval

Sought: The area under f between a and b

Naive Implementation:

...supposed that the function f is roughly linear between a und b.

easyintegrate f a b = (f a + f b) * (b-a) / 2

...sufficiently precise at most for very small intervals.

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 13



Refinements 1(4)

Idea

• Halve the interval, compute the areas for both subintervals
according to the previous formula, and add the two results

• Continue the previous step repeatedly

The function integrate implements this strategy:

integrate f a b = cons (easyintegrate f a b)

map addpair (zip (integrate f a mid)

(integrate f mid b)))

where mid = (a+b)/2

Reminder:

zip (cons a s) (cons b t) = cons (pair a b) (zip s t)

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 14



Refinements 2(4)

• integrate is sound but inefficient (redundant computations

of f a, f b, and f mid

The following version of integrate is free of this deficiency

integrate f a b = integ f a b (f a) (f b)

integ f a b fa fb = cons ((fa+fb)*(b-a)/2)

(map addpair (zip (integ f a m fa fm)

(integ f m b fm fb)))

where m = (a+b)/2

fm = f m

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 15



Refinements 3(4)

Note: The evaluation of

integrate f a b

does not terminate!

Remedy: ...computing integrate f a b up to some

limit eps > 0.

Implementation:

Variant A: within eps (integrate f a b)

Variant B: relative eps (integrate f a b)

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 16



Refinements 4(4)

Summing up...

• Generator component:

integrate

...potentially infinite, no limit on the length

• Selector component:

within, relative

...lazy evaluation ensures that the selector function

is applied eventually ⇒ Terminierung!

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 17



Example 3: Numerical Differentiation

Numerical Differentiation

Given: A real valued function f of one real argument; a point

x

Sought: The slope of f at point x

Naive Implementation:

...supposed that the function f between x and x+h does not “curve much”

easydiff f x h = (f(x+h) - f x) / h

...sufficiently precise at most for very small values of h.

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 18



Refinements 1(2)

Generate a sequence of approximations getting successively

“better”

differentiate h0 f x = map (easydiff f x) (repeat halve h0)

halve x = x/2

Selecting a sufficiently precise approximation

within esp (differentiate h0 f x)

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 19



Conclusion 1(4)

The composition pattern, which in fact is common to all three

examples becomes apparent again. It consists of

• generator (not limited itself!) and

• selector (ensuring termination thanks to lazy evaluation!)

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 20



Conclusion 2(4)

Thesis

• ...modularity is the key to programming in the large

Observation

• ...just modules do not suffice

• ...the benefit of decomposing a problem into modular sub-

problems depends much on the capabilities for the combi-

nation of modules (glue!)

• ...the availability of proper glue is substantial!

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 21



Conclusion 3(4)

Fact

• Functional programming offers two new kinds of glue

– Higher-order functions

– Lazy evaluation

• Higher-order functions and lazy evaluation allow substanti-

ally new exciting modular decompositions of problems (by

offering elegant composition means) as here given evidence

by an array of impressive examples

• In essence, it it the superior glue, which makes functional

programs to be written so concisely and elegantly

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 22



Conclusion 4(4)

Guideline

• Functional programmers should strive for adequate modu-

larization and generalization

– Especially, if a portion of a program looks ugly or ap-

pears to be too complex

• Functional programmers should expect that higher-order

functions and lazy evaluation are the tools for doing this

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 23



Lazy vs. Eager Evaluation

Reconsidering...

• In view of the previous arguments...

– The benefits of lazy evaluation as glue is so evident that

lazy evaluation is too important to make it a second-

class citizen.

– Lazy evaluation is possibly the most powerful glue func-

tional programming has to offer.

– Access to such a powerful means should not frivolously

be dropped.

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 24



Worthwhile too...

...the examination of the following papers:

• Paul Hudak. Conception, Evolution, and Application of
Functional Programming Languages. ACM Computing
Surveys, Vol. 21, No. 3, 359-411, 1989.

• Phil Wadler. The Essence of Functional Programming. In
Conference Record of the 19th Annual Symposium on Prin-
ciples of Programming Languages (POPL’92), 1-14, 1992.

• Simon Peyton Jones. Wearing the Hair Shirt – A Retro-
spective on Haskell. Invited Keynote Presentation at the
30th Annual Symposium on Principles of Programming
Languages (POPL’03), 2003.
Slides: http://research.microsoft.com/Users/simonpj/

papers/haskell-retrospective/index.html

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 25



Last but not least...

Next lecture...

• Thu, April 26, 2007, lecture time: 4.15 p.m. to 5.45 p.m.,

lecture room on the ground floor of the building Argenti-

nierstr. 8

Second assignment...

• Please check out the homepage of the course for details.

Advanced Functional Programming (SS 2007) / Part 2 (Thu, 04/19/07) 26


