
Why Functional Programming Matters

In the following a position statement by John Hughes, publis-

hed in:

• Computer Journal 32(2), 98-107, 1989

• Research Topics in Functional Programming. D. Turner (Hrsg.), Ad-
dison Wesley, 1990

• http://www.cs.chalmers.se/∼rjmh/Papers/whyfp.html

“...an attempt to demonstrate to the “real world” that func-

tional programming is vitally important, and also to help func-

tional programmers exploit its advantages to the full by making

it clear what those advantages are.”

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 1

Typical Reasoning 1(4)

...functional programming owes its name to the facts that

• programs are composed of only functions

– the “main program” is itself a function

– it accepts its inputs as arguments and delivers its output

as result

– it is defined in terms of other functions, which themsel-

ves are defined by other functions (eventually by primi-

tive functions)

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 2

Typical Reasoning 2(4)

Benefits and characteristics of functional programming. A
common summary:

Functional programs are...

• free of assignments and side-effects

• function calls have no effect except of computing their result

• functional programs are thus free of a major source of bugs

• the evaluation order of expressions is irrelevant, expressions can be
evaluated any time

• programmers are free from specifying the control flow explicitly

• expressions can be replaced by their value and vice versa, programs
are referentially transparent

• functional programs are thus easier to cope with mathematically
(e.g. for proving their correctness)

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 3

Typical Reasoning 3(4)

...the “default”-list of benefits and characteristica of functional

programming yields

• essentially an “is-not”-characterization

– “It says a lot about what functional programming is

not (it has no assignments, no side effects, no flow of

control) but not much about what it is.”

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 4

Typical Reasoning 4(4)

No hard facts providing evidence for “real” benefits?

Yes, there are. Often heard e.g.:

• Functional programs are

– a magnitude of order smaller than conventional pro-

grams

– functional programmers are thus much more productive

But why? Justifyable by the benefits from the default cata-

logue? By dropping features? Hardly. Not convincing.

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 5

Conclusion

• The default catalogue is not satisfying

• We need a positive characterization of the principal nature

of

– functional programming and its strengths and

– what makes up a “good” functional program

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 6

Towards a Positive Characterization...
1(2)

Analogue: Structural vs. non-structural programming

Structural programs are

• free of goto-statements (“goto considered harmful”)

• blocks are free of multiple entries and exits

• easier to cope with mathematically than unstructured pro-

grams

Essentially an “is-not”-characterization, too...

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 7

Towards... 2(2)

Conceptually more important...

Structural programs are

• are designed modularly in distinction to non-structured programs

• Structural programming is more efficient/productive for this reason

– Small modules are easier and faster to write and to maintain

– Re-use becomes simpler

– Modules can be tested independently

Note: Dropping goto-statements is not an essential source of productivity
gain.

• Absence of gotos supports “programming in the small”

• Modularity supports “programming in the large”

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 8

Thesis

• The expressive power of a language, which supports modu-
lar design, depends much on the power of the concepts and
primitives allowing to combine solutions of subproblems to
the solution of the overall problem. (Keyword: glue). (Ex-
ample: making of a chair)

• Functional programming provides two new, especially po-
werful means (“glues”) for this purpose:

1. Higher order functions (functionals)

2. lazy evaluation

Modularization and re-use offer thus even conceptually

(and not just technically (lexical scoping, separate com-
pilation, etc.)) new opportunities and become much easier
to apply

• Modularization (smaller, simpler, more general) is the gui-
deline, which should be used by functional programmers
for guidance

I Glueing Functions Together...

Syntax in the flavour of Miranda (TM):

• Lists

listof X ::= nil | cons X (listof X)

• Abbreviations

[] short for nil

[1] short for cons 1 nil

[1,2,3] short for cons 1 (cons 2 (cons 3 nil)))

• Adding the elements of a list

sum nil = 0

sum (cons num list) = num + sum list

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 10

Observation

+---+

sum nil = | 0 |

+---+

+---+

sum (cons num list) = num | + | sum list

+---+

...the computation of a sum can be decomposed into modules by pro-

perly combining a general pattern of recursion and a set of more specific

operations (see frames above).

sum = reduce add 0

where

add x y = x+y

...revealing the definition of reduce almost immediately:

(reduce f x) nil = x

(reduce f x) (cons a l) = f a ((reduce f x) l)

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 11

Immediate Benefits

Without any further programming effort we obtain...

• Computing the product of the elements of a list

product = reduce multiply 1

where multiply x y = x*y

• Test, if an element of a list equals “true”

anytrue = reduce or false

• Test, if all elements of a list equal “true”

alltrue = reduce and true

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 12

Intuition

The call reduce f a can be understood such that in a list of
elements all occurrences of

• cons are replaced by f and of

• nil by a

Example:

reduce add 0:

cons 1 (cons 2 (cons 3 nil))

--> add 1 (add 2 (add 3 0)) = 6

reduce multiply 1:

cons 1 (cons 2 (cons 3 nil))

--> multiply 1 (multiply 2 (multiply 3 1)) = 6

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 13

More Applications 1(4)

• Observation

reduce cons nil copies a list of elements

• This allows: append a b = reduce cons b a

Example:

append [1,2] [3,4] = reduce cons [3,4] [1,2]

= (reduce cons [3,4]) (cons 1 (cons 2 nil))

= cons 1 (cons 2 [3,4])

-- replacement of cons by cons and

-- of nil by [3,4]

= [1,2,3,4]

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 14

More Applications 2(4)

• Copying each element of a list

doubleall = reduce doubleandcons nil

where doubleandcons num list = cons (2*num) list

• Further step of modularization

doubleandcons = fandcons double

where double n = 2*n

fandcons f el list = cons (f el) list

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 15

More Applications 3(4)

• After another step of modularization

fandcons f = cons . f

where “.” denotes the composition of functions:

(f . g) h = f (g h)

Illustration:

fandcons f el = (cons . f) el

= cons (f el)

This yields as desired:

fandcons f el list = cons (f el) list

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 16

More Applications 4(4)

• Eventually, we thus obtain:

doubleall = reduce (cons . double) nil

• Another step of modularization leads us to map

doubleall = map double

where map f = reduce (cons . f) nil

After this preparing steps it is just as well possible:

• To add the elements of a matrix:

summatrix = sum . map sum

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 17

Intermediate Conclusion 1

By decomposion (modularization) of a simple function (sum in

the example) as combination of

• a higher order function and

• some simple specific functions as arguments

we obtained a program frame (reduce), which allows us to

implement many functions on lists without any further pro-

gramming effort.

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 18

Generalizations to more complex data
structures 1(2)

Trees

treeof X ::= node X (listof (treeof X))

Example:

node 1 1

(cons (node 2 nil) / \

(cons (node 3 2 3

(cons (node 4 nil) nil)) |

nil)) 4

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 19

Generalizations... 2(2)

Analogously to reduce on lists we introduce a functional redtree

on trees:

redtree f g a (node label subtrees) =

f label (redtree’ f g a subtrees)

where

redtree’ f g a (cons subtree rest) =

g (redtree f g a subtree) (redtree’ f g a rest)

redtree’ f g a nil = a

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 20

Applications 1(3)

• To add the labels of the leaves of a tree

sumtree = redtree add add 0

Illustrated by means of an example:

add 1

(add (add 2 0)

(add (add 3

(add (add 4 0) 0))

0))

= 10

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 21

Applications 2(3)

• Generating a list of all labels occurring in a tree

labels = redtree cons append nil

Illustrated by means of an example:

cons 1

(append (cons 2 nil)

(append (cons 3

(append (cons 4 nil) nil))

nil))

= [1,2,3,4]

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 22

Applications 3(3)

• A function maptree on trees complementing the function

map on lists

maptree f = redtree (node . f) cons nil

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 23

Intermediate Conclusion 2 1(2)

• The expressiveness of the preceding examples is a conse-

quence of combining

– a higher order function and

– a specific specializing function

• Once the higher order function is implemented, lots of fur-

ther functions can be implemented almost without any ef-

fort

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 24

Intermediate Conclusion 2 2(2)

• Lesson learnt: Whenever a new data type is introduced,

implement first a higher order function allowing to process

(e.g., visiting each component of a structured data value

such as nodes in a graph or tree) values of this type.

• Benefits: Manipulating elements of this data type becomes

easy and knowledge about this data type is “localized”.

• Look&feel: Whenever new data structures demand new

control structures, then these control structures can easily

be added following the methodology used above (to some

extent this resembles the concepts known from conventio-

nal extensible languages)

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 25

II Glueing Programs Together

If f and g are programs, then also

g . f

is a program. Applied to the input input, it yields the output

g (f input)

• Possible convential implementation (glue): communication

via files

• Possible problems

– Temporary files are often too large

– f might not terminate

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 26

More about lazy evaluation as a glue...

...next lecture!

This will be held (because of the Easter Holiday from April 2

- 14, 2007) on...

• Thu, April 19, 2007, lecture time: 4.15 p.m. to 5.45 p.m.,

lecture room on the ground floor of the building Argenti-

nierstr. 8

First assignment...

• Please check out the homepage of the course for details.

Advanced Functional Programming (SS 2007) / Part 1 (Thu, 03/22/07) 27

