
Program Analysis as Model Checking of

Abstract Interpretations

David Schmidt Bernhard Steffen

Kansas State University � (USA) Universität Dortmund�� (D)

Abstract. This paper presents a collection of techniques, a methodology,
in which abstract interpretation, flow analysis, and model checking are
employed in the representation, abstraction, and analysis of programs.
The methodology shows the areas of intersection of the different tech-
niques as well as the opportunites that exist when one technique is used
in support of another. The methodology is presented as a three-step pro-
cess: First, from a (small-step) operational semantics definition and a
program, one constructs a program model, which is a state-transition sys-
tem that encodes the program’s executions. Second, abstraction upon
the program model is performed, reducing the detail of information in
the model’s nodes and arcs. Finally, the program model is analyzed for
properties of its states and paths.

1 Motivation

Recent research suggests that the connections between iterative data-flow analysis
and model checking are intimate. The most striking application is the use of a
model checker to calculate iterative bit-vector-based data-flow analyses [44, 47–
49]; this application depends on the encoding of the bit-vector’s bits as boolean
propositions which are decided by model checking.

But the application of a model checker as the engine for flow analysis is
wider than bit-vector problems on sequential programs. Recent work by Steffen
and his colleagues has adapted the basic construction to an efficient treatment
of parallel programs [29], and work by Dwyer and others [19–21] shows how
problems formally solved with data-flow analysis techniques are more simply
expressed and solved by model-checking techniques. And there are numerous
examples of program validation done with flow analysis that in the present day
would be termed model checking [5, 6, 33, 34, 39, 40].
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To understand the connections between flow analysis and model checking, a
third component, abstraction, more precisely, abstract interpretation, must be
used. Abstract interpretation provides the foundation upon which safe program
representations rest, and understanding why model checking is a proper compu-
tational tool for flow analysis depends upon an understanding of the underlying
abstraction techniques.

The purpose of this paper is to introduce a collection of techniques, perhaps
a methodology, in which abstraction, flow analysis, and model checking are em-
ployed in the representation, abstraction, and analysis of programs. The method-
ology is meant to show the areas of intersection of the different techniques as well
as the opportunites that exist when one technique is used in support of another.

The methodology is based on a three-step process: First, from a (small-step)
operational semantics definition and a program, one constructs a program model,
which is a state-transition system that encodes one (or many, or all) of the pro-
gram’s executions. Second, one might abstract upon the program model, reducing
the detail of information in the model’s nodes and arcs. Finally, one analyses the
model for properties of its paths, e.g., live variables information, redundancy
information, safety properties, etc. The methods used within the three stages in-
clude abstract interpretation, flow analysis, and model checking. In some places
the tools are interchangeable; in others, one tool clearly plays a singular role.

The paper is structured as follows: reviews of iterative data flow analysis
and model checking are undertaken first. Next, the abstract interpretation of
operational semantics definitions is reviewed, and it is shown how to construct
program models. Following this, abstraction on program models is presented.
Correctness issues are reviewed, and finally, the extraction of program properties
within the framework is examined. The paper concludes with a brief look at
extensions to the basic technique.

2 Iterative Flow Analysis

Entities of Observation

Data-flow information can be considered an “entity of observation”; the set of
such entities is typically structured as a complete lattice, where the ordering on
the elements, �, models the precision of information where ‘smaller’ means more
precise, and the lattice operations � and � construct least upper bounds and
greatest lower bounds of arbitrary subsets. In this paper we typically assume a
lattice structure for sets of entities of observation.

Program Models

A traditional iterative data-flow analysis works from a program’s control-flow
graph, which is one instance of a program model:

A program model P is a 5-tuple (S,A,→, s, E), where

1. S is a set of nodes or program states.



Source program: while even x do x:=x div2 od; y:=2

Program model is: (S,A,→),
where S = {p1, p2, p3, p4}

A = {even x,¬even x, x := x div2, y := 2}
→ is defined below:
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evenx ¬evenx

y := 2
x := xdiv2

p4

p3p2

p1

Fig. 1. An example program model for data-flow analysis.

2. A is a set of actions, modelling elementary statements
3. →⊆ S ×A× S is a set of labelled transitions, i.e., modeling the flow of con-

trol.
4. s and E are the start state and the set of end states respectively.

We will write p
a−→q instead of (p, a, q) ∈ →, say that p is the source of the arrow

and q is the target, and call p an a -predecessor of q and q an a -successor of p.
The set of all a -predecessors and a -successors will be abbreviated by Preda and
Succa, respectively. Similarly, for subsets A ⊆ A, we call p an A -predecessor of
q and q an A -successor of p, if A contains an action a for which these properties
hold, and we abbreviate the set of all A -predecessors and A -successors by PredA

and SuccA, respectively.

Remark: A program model represents an execution of a program or a family of
executions of a program. A classic example of a program model is a control-flow
graph, which encodes all possible executions of a program; Figure 1 presents a
control-flow graph represented as a program model.

A standard issue is that a program model might have an infinite state set,
e.g., consider the program model that results from executing a program that
loops while counting upwards by ones. For static analysis, we work with program
models that have finite state sets, and we will assume that adequate abstrac-
tion techniques like widening [14] can be employed, when necessary, to ensure
finiteness, and we will not explore such techniques any further.



Iterative Data Flow Analyses

Given a program model, one can define upon it an iterative data-flow analysis
by defining a lattice of entities of observation, and for each transition in the
program model, a transfer function. One uses the lattice and functions to define
a set of equations, one per program point (or state) in the model. Solution of the
equations yields the desired data-flow information. We classify data-flow analyses
as being either forwards or backwards1and as being either �- or �-based.

In simple terms (see [25, 28] for a formal definition), one defines a backwards-�
data-flow analysis of a program model by means of

– a set of entities of observation, D, partially ordered as a complete lattice.
– for each A ∈ A, a transfer function, fA : D → D, that is monotonic on D:

for d, d′ ∈ D, d � d′ implies fA(d) � fA(d′).2

– for each program state, p ∈ S, a flow equation,

valp =
⊔

{fA(valq) | (p,A, q) ∈→}

The adequate solution to the set of flow equations can be determined by a least
fixed-point computation.

Similarly, one can define a backwards-�-flow analysis by replacing the previous
occurrence of � by � and computing the greatest-fixed-point solution of the
equations. Finally, one can define a forwards analysis by swapping the occurrences
of valp and valq in the flow equation scheme.

One example of a backwards-� data-flow analysis is live-variables analysis on
a control-flow graph, which is formalized by

– D = 2
V ar

, where V ar is the collection of the program’s variables;
– fA(s) = UsedInA ∪ (notModifiedInA ∩ s), where UsedInA defines those vari-

ables referenced in action A, and notModifiedInA defines those variables that
are not modified (assigned to) in A.

The flow equations follow from the above information. Figure 2 shows the live
variables analysis for the program model in Figure 1.

3 Model Checking

Model checking is employed to validate properties of finite-state program models.
This scope is sufficient for the purposes of this paper, but interested readers
are referred to [4] for techniques covering infinite state models that explicitly
model interprocedural structure. The considered properties are logical predicates
1 We do not consider bi-directional algorithms here, which can, in fact, usually be

decomposed into uni-directional components [30].
2 It is common to demand that each fA be distributive: for D′ ⊆ D, fA(

⊔
D′) =⊔

{fA(d) | d ∈ D′}. Distributivity ensures that the fixed-point computation one per-
forms on a set of flow equations calculates the same result as one obtains from a
meet-over-all-paths analysis [27].



valp1 = f{evenx}(valp2) ∪ f{¬evenx}(valp3) where f{evenx}(s) = {x} ∪ ({x, y} ∩ s)
valp2 = f{x:=xdiv2}(valp1) f{¬evenx}(s) = {x} ∪ ({x, y} ∩ s)
valp3 = f{y:=2}(valp4) f{x:=xdiv2}(s) = {x} ∪ ({y} ∩ s)
valp4 = initialization-information f{y:=2}(s) = {x} ∩ s

For initialization-information= {y}, the analysis computes:

valp1 = {x} valp2 = {x} valp3 = {} valp4 = {y}

Fig. 2. Flow equations and solution for live-variables analysis

that typically discuss dependencies between occurrences of specific actions within
paths in the model, e.g., “all paths starting from the current program point
eventually include an a action” or “there exists a path including an a action
infinitely often.”

The Syntax

As a logic for specifying static analysis algorithms, we will consider a variant of
the temporal logic CTL [7] that includes a parameterized version of the “Hence-
forth” operator, the key for specifying qualified safety properties. This logic is
particularly suited for expressing properties of states within a given (program)
model.

The logic’s syntax is parameterized on a denumerable set B of atomic propo-
sitions3 on states and a complete lattice of actions A . Let β range over B and
A ⊆ A:

Φ ::= β | Φ ∧ Φ | ¬Φ | [A ]Φ | [A ] Φ | AGA Φ | AGA Φ |

We write p |= Φ to denote that proposition Φ holds true at state p, and we say
that p satisfies Φ.

The Semantics

Satisfaction is defined with respect to a given program model P containing p
according to the following intuition: p |= β is assumed to be decidable, p |= Φ1∧Φ2

if p satisfies both Φ1 and Φ2. p |= ¬Φ if p does not satisfy Φ, and p |= [A ]Φ if
every one of p’s A-successor states satisfies Φ. Note that this implies p satisfies
[A ]ff exactly when p has no A -successors. Analogously, p satisfies [A ]Φ if
every A -predecessor satisfies Φ. Thus in analogy, a program state p satisfies
[A ]ff exactly when p has no A -predecessors. Finally, p |= AGA Φ if Φ holds in
every state reachable from p via A-transitions, and it satisfies AGA Φ, if exactly
the same property holds for the inverted flow of control in the program model.
3 In this paper we simply consider three atomic propositions, tt, start, and end, which

characterize the set of all states, the start state and the set of end states, respectively.
In general, any set of decidable characterizations of sets of states could be taken.



Remark: The difference between the standard Henceforth operator AG Φ and
the parameterized version AGA Φ is with respect to reachability: For p |= AG Φ
to hold, all states reachable from all transitions from p must satisfy Φ, whereas for
p |= AGA Φ, only those states reached from p by traversing transitions labelled
by an action from A must satisfy Φ.
The formal semantic definition of the logic derived from the modal µ-calculus
can be found in [47].

In the following we will write [ . ] or [ . ] instead of [A ] or [A ]. Moreover, as
usual, we can define the following duals to the operators of our language and the
implication operator ⇒ by:

ff = ¬tt EFAΦ = ¬AGA¬Φ
Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2) EFAΦ = ¬AGA¬Φ
〈A 〉 Φ = ¬[A ] (¬Φ) Φ ⇒ Ψ = ¬Φ ∨ Ψ

〈A 〉 Φ = ¬[A ] (¬Φ)

The Application

A crucial connection between iterative data-flow analysis and model checking was
demonstrated by Steffen [47, 48], who noted the similarities between computing
the results of a set of data-flow equations and computing the set of states that
satisfied a modal mu-calculus specification. For example, the equation scheme
that computes live variables,

Livep =
⋃

{UsedIna ∪ (notModifiedIna ∩ s) | source(a) = p}

can be transliterated into the following formula of our logic that expressess
whether a variable, x, is live at a program point:

isLivex = EF{a | a�= modx}〈usex 〉 tt

This formulation is based on abstractions of the actions that annotate the arcs
of a program model: Assignment statements, v := e, are abstracted to actions of
the form, modv and useu, for those variables, u, used in e; tests, e, are abstracted
to actions useu, for those variables, u, used in e.

When one model checks the assertions, p |= isLivex, for all variables x, one
in effect computes the bit-vector solution for the flow equation Livep. A stan-
dard iterative model checker would do this, e.g., for the variable x of Figure 1
by initially ‘marking’ all the states of the program model satisfying 〈usex 〉 tt
with ‘true’, and, subsequently, stepwisely spreading this information to all states
having a {a | a �= modx}-successor being marked ‘true’ until a fixed point is
reached, i.e., no further state can be marked ‘true’ according to the described
rules. For the considered example program the fixed point is reached already by
the initialization procedure.

Technically, formulae of the logic considered here would be first translated into
modal equational systems [10], a compact representation of the modal µ-calculus,



which have the appropriate granularity to directly steer the fixpoint computation
process. isLivex would be translated into the following min-equation4

MIN: isLivex = 〈usex 〉 tt ∨ 〈 {a | a �=modx} 〉 isLivex

The fixpoint computation needs one bit for each such equation. In particular,
as expected, one bit (per program variable) is sufficient for checking liveness of
variables.

Why Safety Properties

In this paper, we will explore the connection between flow analysis and model
checking while focussing on the preservation of safety properties, i.e. properties
which are guaranteed to hold for all reachable states. In other words these prop-
erties are characterized by holding everywhere along all program executions, and
therefore correspond to the properties which can be specified using the parame-
terized Henceforth operator AGx.

isLivex is not a safety property, as it quantifies existentially over the execu-
tion paths 5 as well as over the states of a given execution.6 However, this causes
no real harm, as one is not interested in the fact whether a variable is live, but
in the complement, as the detection of dead variables is a key for dead-code
elimination, and this property is indeed a safety property. And indeed, as pro-
gram transformations must be correct for all possible program executions, it is
clear that they must be based upon information which is horizontally universally
valid. In contrast, there seem to be relevant problems, like e.g. down safety [30],
i.e., the property that a certain expression will be executed in every continu-
ation of the program, which seem to ask for existential vertical quantification.
Surprisingly, also these properties typically can be better formulated as a (pa-
rameterized) safety property than as a liveness property. This is due to the fact
that the program executions we are interested in are typically terminating pro-
gram executions. E.g., for down safety, we do not require the expression to be
executed on paths ‘starving’ in a loop,7 but only on those which reach the end
point of the program.8 This property can readily be expressed with a single pa-
rameterized Henceforth operator, if we assume that the end point of the program
is characterized by the atomic proposition end:

AG{a | a�= usex}(¬end ∧ 〈modx 〉ff )

4 The distinction between min-equations and max-equations allows us to specify
whether a minimal or a maximal fixpoint constituts the desired solution.

5 This is apparent from the ‘E’ of the ‘EF ’ operator, which means this ‘horizontal’
existential quantification.

6 This is apparent from the ‘F ’ of the ‘EF ’ operator, which means this ‘vertical’ exis-
tential.

7 Note that in control flow graphs, there is nothing to force a computation to leave a
loop.

8 In some sense this can be regarded as a ‘partial correctness’ view to the problem.



Store = Identifier → Val
Val = Nat

c ::= v := e | skip | c1; c2 | if e then c1 else c2 fi | while e do c od

v := e, σ
v:=e−→[x �→ v]σ, where [e]σ ⇒ v

skip, σ
skip−→σ

c1, σ
c−→σ′

c1; c2, σ
c−→c2, σ

′
c1, σ

c−→c′1, σ
′

c1; c2, σ
c−→c′1; c2, σ

′

The operational semantics of while is not given by a separate rule but deduced according
to the following identity:

while e do c od ≡ if e then c; while e do c od else skip fi

[e]σ ⇒ true

if e then c1 else c2 fi, σ
e−→c1, σ

[e]σ ⇒ false

if e then c1 else c2 fi, σ
¬e−→c2, σ

Note: [e]σ ⇒ v is defined by a relation, not given here.

Fig. 3. Small-step semantics for imperative language

Technically, we will present a simulation-based criterion for guaranteeing safety,
which bridges the gap between the operational semantics of a program model on
different levels of abstraction.

4 Operational Semantics and Abstractions

Our definition of program model includes not only control-flow graphs but also
execution traces, their abstract interpretations, behaviour trees, and other kinds
of abstract transition systems. Indeed, a program’s control-flow graph can be
simply regarded as a program model arising from an abstract interpretation of
the program’s semantics, where the program’s store is abstracted to nil.

Small-Step Structural Operational Semantics

We assume that a programming language comes with a small-step structural
operational semantics. An example of such a semantics appears in Figure 3. It is
convenient to label each transition with the primitive command/expression that
generates the transition.

Figure 4 displays part of the operational semantics of the program in Figure 1
generated from the small-step semantics rules. We call the derivation in the figure
a concrete computation. Note that the concrete computation is also a program
model.



Let p1 denote while even x do x := x div2 od; y := 2

p2 denote x := x div2; while even x do x := x div2 od; y := 2

p3 denote y := 2

Let σm,n denote the store [x �→ m][y �→ n]

�

�

�

�

p1, σ6,1

p2, σ6,1

evenx

x := xdiv2

p1, σ3,1

¬evenx

p3, σ3,1

y := 2

σ3,2

Fig. 4. Concrete computation

Standard Models

Given a programming language with a small step-semantics, the standard pro-
gram model looks as follows:

– program states are the configurations appearing between transition steps
(e.g., program point, store pairs, (p, σ))

– actions are the elementary statements and expressions of the language.
– transitions are defined by the small steps and are labeled with the corre-

sponding primitive command/expression.
– the start state is the initial configuration, and the end states are those states

having no successor.

As we will see, these standard models fully comprise the computations associated
with a small-step semantics. In fact, a concrete computation and the correspond-
ing standard program model are mutual simulations of each other in the formal
sense established in Section 5. Thus they are semantically fully interchangeable
for the purposes considered here, and are therefore a convenient abstract program
representation.



Abstract Interpretation

For static analysis purposes, we wish to generate a finite program model that
comprises all relevant concrete operational semantics executions. To do this, we
employ the abstract interpretation methodology of Cousot and Cousot [14–16]:
We replace the concrete domains, Val and Store, by abstract domains, AbsVal
and AbsStore, and we compute a program’s operational semantics with the new
domains to arrive at the corresponding program model. For ease of exposition,
we require that the abstract domains be complete lattices. With the appropriate
notion of abstraction of operations, the abstract domains will generate abstract
program models that simulate the corresponding concrete computation models
(cf. Section 5).

Galois Connections

To prove the simulation property, one must relate the abstract to concrete data
domains by means of Galois connections9 [14]. If we think of an abstract data
domain, AbsVal, as the “entities of observation,” then we must establish which
subset of Val is denoted by an “entity” a ∈ AbsVal. We do so with a monotone
mapping, a concretization function, γ : AbsVal → 2

V al

. Of course, there should
be an inverse correspondence, a monotone α : 2

V al → AbsVal, the abstraction
function; in particular, α({c}) identifies the element in AbsVal that “represents”
c ∈ Val. We desire that (α, γ) form a Galois connection, because this implies
α({c}) = � {a |c ∈ γ(a)}. It is well known that one adjoint of a Galois connection
uniquely determines the other.

A useful intuition is that γ defines a binary “simulation” relation: for c ∈ Val,
a ∈ AbsVal, c safe a iff c ∈ γ(a). That is, c is simulated or safely approximated
by a. Further, it is possible to begin with the binary relation, safe , and define a
Galois connection from it: If safe is is both U-closed, i.e., c safe a1 and a1 � a2

imply c safe a2, and G-closed, i.e., c′ safe � A, where A = {a′ | c′ safe a′}, then
one obtains a Galois connection [43].

Because of these equivalences, we define a Galois connection by any one of a
γ, α, or UG-closed relation in the sequel.

Control Flow Graphs

Here is the abstraction for control-flow graphs:

AbsVal = {nil} γ : AbsV alue → 2
V al

AbsStore = Identifier → AbsVal = {nil} γ(nil) = Val
γ : AbsStore → 2

Store

γ(nil) = Store

9 Recall that a Galois connection is a pair of monotone functions, (f : P → Q,g:Q → P ),
for complete lattices P and Q, such that f ◦g 
 idQ and idP 
 g ◦f . The intuition is
that f(p) identifies p’s most precise representative within Q (and similarly for g(q)).



Let p1 denote while even x do x := x div2 od; y := 2

p2 denote x := x div2; while even x do x := x div2 od; y := 2

p3 denote y := 2
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� p1, nil

p3, nilp2, nil

evenx ¬evenx

nil

y := 2x := div2

Fig. 5. Control-flow tree generated as an abstract computation

Figure 5 shows the standard program model generated from the control-flow
abstraction of the program in Figure 4; it is of course an isomorphic representation
of the usual control-flow graph. (Notice that the state, (p1, nil), repeats in the
model; hence, the arc from (p2, nil) to (p1, nil) can be written as a backwards
arc.)

The next abstraction analyses a program’s execution with respect to even-odd
properties:

AbsVal = {⊥, e, o,�} (usual partial ordering)
AbsStore = Identifier → AbsVal (usual partial ordering)

γ : AbsVal → 2
V al

γ : AbsStore → 2
Store

γ(⊥) = {} γ(s) = {s′ | for all i, s′(i) ∈ γ(s(i))}
γ(e) = {n ∈ V alue | n modulo 2 = 0}
γ(o) = {n ∈ V alue | n modulo 2 = 1}
γ(�) = Val

Abstract Operations

Once the concrete data domains are correctly abstracted by abstract data do-
mains, one must abstract the operations that use the data domains and also the
small-step semantics rules that use the operations. Assuming that an operation,
fC : Val → Val is a function, we say that fC is safely approximated by function
fA : AbsVal → AbsVal iff

for all a ∈ AbsV alue, {fC(m) | m ∈ γ(a)} ⊆ γ(fA(a))

Returning to binary simulation relations, the above definition of safe approx-
imation is equivalent to this formulation: c safe a implies fC(c) safe fA(a).



In the case of even-odd analysis, the abstraction of the successor operation,
succ(n) = n + 1, is naturally approximated by this function:

succ(o) ⇒ e succ(�) ⇒ �
succ(e) ⇒ o succ(⊥) ⇒ ⊥

Sometimes, imprecision can arise due to abstraction; consider the abstract version
of division by 2, which produces an answer of � when an even- or odd-valued
number is divided by 2:

div2(⊥) ⇒ ⊥ div2(a) ⇒ �, for all a ∈ {e, o,�}

Abstract Operational Semantics

One uses the proved-safe abstract operations to define a small-step semantics for
generating abstract program models. The intuition is that one instantiates the
rule schemes to use the abstract operations rather than the concrete ones. Then,
one uses the instantiated rules to generate a program model. But a standard
problem is deciding the tests of conditional commands. (For example, how does
the even-odd analysis decide the test of the conditional command in this example:
x := x div2; if even x then c1 else c2 fi?) A solution is to rewrite the rules for
the conditional as follows:

[e]σ ⇒ v, true � v

if e then c1 else c2 fi, σ
e−→c1, σ

[e]σ ⇒ v, false � v

if e then c1 else c2 fi, σ
¬e−→c2, σ

This format assumes that the concrete Boolean domain is abstracted to a lattice,
{⊥, true, false,�}. If one wishes to retain the format of the original small-step
rule schemes (and not perform abstraction on Boolean), then one must utilize
relational definitions of abstract operations.10 But this topic will not be developed
further in this paper.

When we use abstract semantics rule schemes like the two above, the program
models contain nondeterministic branching (as would be the case in the example
program, x := x div2; if even x then c1 else c2 fi), because the outcome of the
test expression of a conditional command might not be uniquely true or false.

Figure 6 shows two abstract program models generated from the even-odd
abstraction for the program in Figure 4. The first program model shows the result
of analyzing a program where x starts as odd-valued; the second model results
when x starts as even-valued. The examples show that more precise information
about program paths can be elicited than what one obtains from a control-flow
graph. Such models might be used if temporal properties of the program’s paths
must be validated, or if the inputs to a program are restricted to a particular
range (e.g., input x is restricted to be odd-valued), or if better quality code can be
10 For example, a relational definition of div2 would be: div2(v) ⇒ e and also div2(v) ⇒

o, for all v ∈ {o, e,�}. Also, div2(⊥) = ⊥. Similarly, a relational definition of the
predicate, even, would be even(o) ⇒ false, even(e) ⇒ true, even(�) ⇒ false,
even(�) ⇒ true, even(⊥) ⇒ ⊥.



Let p1 denote while even x do x := x div2 od; y := 2

p2 denote x := x div2; while even x do x := x div2 od; y := 2

p3 denote y := 2

Let σa,b denote the store [x �→ a][y �→ b]
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p1, σo,�

p3, σo,�

p3, σo,e

¬evenx

y := 2

p1, σe,�

p2, σe,�

p1, σ�,�

evenx

x := xdiv2

p3, σ�,�

σ�,e

y := 2

evenx ¬evenx

p2, σ�,�

x := xdiv2

Fig. 6. Two abstract computations for even-odd analysis

generated when, say, the inputs to a command are even-valued. (If we analyze the
example program where both x and y are initialized to �, the resulting program
model is isomorphic to the control-flow graph.)

Of course, we have the obligation of proving that the abstract program model is
a safe approximation or simulation of the concrete model. Thus far, the safety
properties enforced by Galois connections are “local” in that they relate concrete
values to abstract values and concrete program states to abstract states. But there
is still the burden of relating the paths in concrete program models (executions)
to the paths in an abstract program model, that is, we must define precisely
which set of concrete program models are approximated by an abstract program
model. This must be established by a “global” safety property, to be defined in
Section 5.



5 Simulations

One step of the “globalization” of the abstraction of a program model is the
abstraction of the actions that label the arcs of the model. In the following, we
will first introduce abstraction on actions by means of the prominent Use-Mod
abstraction, and afterwards we will consider the correctness of such abstractions
relative to the proofs of correctness of the abstractions on data domains and
operations.

Abstraction of Actions

The development in the previous sections of abstraction of data domains and
operations is standard. But we can abstract on source program syntax as well,
more precisely, we can abstract on the actions that label the arrows of a program
model

One example of abstraction of actions is the replacement of a command or
expression by its Use-Mod information. For example, the Use-Mod abstraction
of the command, x:=x + y, would be {modx, usex, usey}, and the abstraction of
the expression, even x, would be {usex}.

Here is a formalization of Use-Mod abstraction; because Use-values are fun-
damentally covariant and Mod-values are fundamentally contravariant, we must
take care in formulating the lattice, UseMod:

Mod = {isExpr} ∪ {modx | x ∈ Identifier}
Use = {usex | x ∈ Identifier}
UseMod = {⊥,�} ∪

∑
i∈Mod 2

Use

The Use set is ordered by superset inclusion, and UseMod is ordered as a disjoint
union: For (i1, S1), (i2, S2) ∈ UseMod, (i1, S1) � (i2, S2) iff i1 = i2 and S2 ⊆ S1,
and also ⊥ � v and v � �, for all v ∈ UseMod. (In the examples, we will continue
to write (modx, S) as {modx} ∪ S and (isExpr, S) as S.)

Next, we can define precisely how to map a single expression or assignment
to its Use-Mod approximation:

α0 : Command ∪ Expression → UseMod
α0(x := e) = (modx, {usev | v appears in e})
α0(e) = (isExpr, {usev | v appears in e})

We define the lower adjoint, α, of a Galois connection in the expected way:
α(S) =

⊔
{α0(s) | s ∈ S}. The mate to α must be this γ:

γ : UseMod → 2
Command∪Expression

γ(isExpr, S) = {e | v ∈ S implies v ∈ e}
γ(modx, S) = {x := e | v ∈ S implies v ∈ e}
γ(⊥) = {}, γ(�) = Command ∪ Expression
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Fig. 7. Program model with actions abstracted to mod-use information

Model Construction and Abstraction of Actions

We intend to apply the UseMod domain to a live-variables analysis, and we do
so in a surprising fashion: we first generate a program model where we do not
abstract the set of actions, and we then replace actions, A, on the model’s arcs
by α(A). As an example, Figure 7 shows the replacement of the actions in the
control-flow graph in Figure 5 by their abstractions: As we will justify in the next
section, the revised program model is a safe simulation of all concrete executions
of the program, hence it is possible to check safety properties on the model.
In particular, one can validate that variable x is definitely dead at a program
point, p, by performing the model check, p |= ¬isLivex. This is the way that we
formulate models for implementing bit-vector analyses.

Why did we take this approach of generating a program model first before ab-
stracting its actions to Use-Mod information? After all, the standard abstraction
methodology suggests that we apply the Use-Mod abstraction to the small-step
semantics rule schemes first and generate a new set of small-step rule schemes
that generate transitions based on Use-Mod “syntax.” But the Use-Mod abstrac-
tion discards so much syntactic structure that the resulting abstract rule schemes
generate safe program models of worthless precision.

In such a situation, the way around the problem is to perform the above trick
of abstracting the actions on an earlier existing, known-safe, program model. The
result is a safe program model for the set of concrete computations modelled safely
by the earlier existing model. In the above example, the Use-Mod abstraction
gains precision by attaching itself to the control-flow-graph program model, which
has a more precise branching structure than that obtained by using the small-step
rule schemes based on Use-Mod syntax to generate a program model.

Having noted the above, we note there do exist examples in the literature
where abstraction on syntax generates small-step rule schemes that can be used
to generate useful program models. The best known example is the “Kleene-star
abstraction” technique of Codish, Falaschi, and Marriott [12, 11], where the size



of an unfolded Prolog program is controlled by joining together goal clauses that
use the same predicate symbol. A Prolog program is therefore abstracted into
a syntax of regular expressions. Schmidt [42] uses a similar regular expression
language to abstract the syntax of pi-calculus configurations. Approximations
of program syntax by sets of context-free grammar rules have been done for
functional programs by Giannotti and Latella [23] and for pi-calculus programs
by Venet [52, 53].

Abstract Actions as Abstract Operations

In the above narrative, we did not place formal restrictions on the form of Galois
connection that relates concrete actions to abstract actions. But in practice, the
concrete actions represent commands—transfer functions—that update program
state. When we write a transition, c1

Ac−→c2, with a concrete semantics, and when
we write the abstracted transition, a1

Ac−→a2, in the abstract semantics, we assume
that the “local simulation” described in the previous section is preserved by the
abstraction of actions—c1 safe a1 implies c2 safe a2. This property is so desirable,
we spend some time to study it.

Consider a concrete domain, Dc and the abstract domain, Da, connected by
a Galois connection (α, γ). (Standard instantiations of these domains are 2

Store

and AbsStore of the previous section, but as the abstraction process may well be
iterated, other instantiations are possible as well.)

The Galois connection induces a binary simulation relation, safe ⊆ Dc ×Da

on the two domains (that is, for all v ∈ Dc, u ∈ Da, v safe u iff v � γ(u), where
γ : Da → Dc is the upper adjoint of the Galois connection).

Next, assume that every action possesses a transfer function: For each action,
Ac ∈ Ac, let [[ Ac ]]c : Dc → Dc be its transfer function, and similarly, for each
abstracted action, Aa ∈ Aa, let [[ Aa ]]a : Da → Da be its transfer function.
(Thus, for this story to be sensible, abstract actions must have transfer functions
as well.)

The desired preservation property for action abstraction reads as follows:

for all Ac ∈ Ac, and for all Aa ∈ Aa, such that Aa abstracts Ac,
for all v ∈ Dc, u ∈ Da, v safe u implies [[ Ac ]]c(v) safe [[ Aa ]]a(u)

(By “Aa abstracts Ac,” we mean of course that Ac ∈ γA(Aa) or equivalently,
αA(Ac) � Aa, using the Galois connection, (αA, γC), between the two action
sets.)

If one decodes the consequent of the implication into the Galois connection
between Dc and Da, one obtains this inclusion at the concrete level Dc:

⊔
{[[ Ac ]]c(v) | v � γ(u)} � γ([[ Aa ]]a(u))

which is equivalent to the following inclusion on the functional level, which we
will use in the next section:

α ◦ [[ Ac ]]c � [[ Aa ]]a ◦ α



From here on, we demand the following of the abstraction of concrete actions
to abstract actions: if Aa abstracts Ac, then α ◦ [[ Ac ]]c � [[ Aa ]]a ◦α. That is, the
abstraction of actions preserves simulation on program states.

Remark Depending on the abstraction of program state, the preservation prop-
erty just defined can be achieved trivially. Consider again the live-variables exam-
ple in Figure 7, where both the “concrete” and “abstract” store sets are merely
{nil}. (In the Figure, we do not care about the value of store, because it is the in-
formation on the arcs of the program model that matter.) The semantic transfer
functions for both “concrete” and “abstract actions” are trivial.

We can make the live-variables example more interesting by letting concrete
and abstract program stores tell us which expressions will-be-usede for all expres-
sions e. Assignments of the form x := t operate on these entities backwards in
the following fashion:

[[ x := t ]]c(S) = {e|e is a subexpression of t or ( e∈S and [e]σ = [e]σ[[t]σ/x] ) }
whereas the operation of the corresponding Use-Mod abstraction, which we as-
sume here to be straightforwardly extended to expressions, is defined by

[[ α0(x := t) ]]a(S) = {e | usee∈α0(x := t) or ( e ∈ S and mode �∈α0(x := t) ) }

As long as we do not change the graph structure of the underlying program model,
it is easy to verify that the Use-Mod abstraction computes a safe approximation
of the concrete will-be-usede information in the following sense: Whenever the
abstract analysis tells us that an expression will be used in future then this holds
also of the concrete analysis. (There are obviously situations where the reverse
implication fails.)

The following section addresses the problem of changing graph structure, e.g.
the collapsing of nodes, which is essential for fighting the state explosion problem.

Simulation Relations

The previous sections formalized in what sense a concrete value/operation/action
is safely simulated or approximated by an abstract value/operation/action; these
simulations are “local,” and it is time to extend simulation to program models,
giving us a “global simulation” property that holds between program models,
so that we can say precisely when a program model built with abstract oper-
ations and transitions safely describes a concrete program execution, which is
represented by a concrete program model. Let, therefore

– Pc = (Sc,Ac,→c, sc, Ec) and Pa = (Sa,Aa,→a, sa, Ea) be two program
models,

– Dc and Da be complete lattices constituting the concrete respectively ab-
stract domains

– [[ . ]]c : Ac → (Dc → Dc) and [[ . ]]a : Aa → (Da → Da) meaning functions,
associating monotone/distributive transfer functions with their argument ac-
tions,



– (α, γ) be a pair of adjoints for Dc and Da,

Under these circumstances, we wish to formalize that Pc is safely approximated
by Pa. The intuition is that every execution path in Pc is imitated by one in Pa.
Since the arrows in the paths are labelled with actions, we must also verify that
the corresponding labels on the corresponding arrows are compatible according
to the abstraction function.

In this setting, the notion of safe approximation is essentially the property of
simulation from concurrency theory. We formalize these intuitions precisely by
means of a simulation relation, Rα:

Pa α -simulates Pc, iff there exists a binary relation Rα ∈ Sc × Sa satisfying
that

– (sc, sa) ∈ Rα

– for each pair (s, t) ∈ Rα, and all Ac ∈ Ac that:
s

Ac−→cs
′ guarantees a transition t

Aa−→at′ with
• (s′, t′) ∈ Rα and
• α ◦ [[ Ac ]]c � [[ Aa ]]a ◦ α

It should be noted that the union of all simulation relations, �α, is again a
simulation relation. Indeed, the largest possible simulation satisfying the above
relation is exactly this union and is also the greatest-fixed point of the functional
defined by the recursive definition [1, 16, 36, 35]. Thus a program model Pa glob-
ally simulates a program model Pc, iff (sc, sa) ∈ �α, which we will in future write
like sc�αsa.

As promised in the previous section, we use the preservation of program state
property, α ◦ [[ Ac ]]c � [[ Aa ]]a ◦ α, to assert that concrete actions, Ac, are safely
abstracted by abstract actions, Aa.

Our use of simulation to relate program models is a continuation of the ma-
chinery used in the earlier sections: Recall that a simulation relation, safe , can
be used in safety proofs if it is G-closed, and safe defines a Galois connection if it
is UG-closed. Although we do not prove it here, an α-simulation, �α, is U-closed,
when one orders the set of abstract program models so that sa1 � sa2 when every
path in sa1 exists in sa2. If we refine the ordering to take into account the partial
orderings on the information on the nodes and arcs, we can prove that �α is
UG-closed. So, Galois connection notions carry forward to the top level of our
levels of abstraction.

Guaranteeing Global Safety

As mentioned already, the primary notion of correctness (safety) is based on
a transformational view: the information or property computed for a certain
program point must be valid whenever a program execution reaches this point!
Data flow analyses or model checking typically guarantee this criterion for a
fixed level of abstraction. α−simulations provide a framework to guarantee this



correctness criterion for backwards safety properties in the context of abstraction
in the following sense:11

sc�αsa implies sa |=a φ ⇒ sc |=c φ for all backwards safety properties Φ.

Thus, under the considered circumstances, “global simulation” guarantees “local
simulation”.

For forward analyses we have to consider backwards simulations12 in order to
obtain a similar result. Luckily, many abstractions on program models can be used
for both forwards and backwards analyses. In these cases, all safety properties of
the abstract model also hold of the concrete model.

Guaranteeing the Simulation Property

Two preservation properties are of interest, one concerning the operational se-
mantics and one concerning program models.

Abstraction of the Operational Semantics. Once one has defined simulations/Galois
connections for the concrete and abstract domains and also for the concrete and
abstract actions, then one can instantiate the small-step semantics rule schemes
with the concrete domains/actions and one can instantiate the rule schemes with
the abstract domains/actions. As a corollary, one wants the result that the con-
crete semantics rules are “simulated” by the abstract semantics rules. And in fact,
in [43], this result is indeed proved true for state-transition operational seman-
tics. But for the richer format of Structural Operational Semantics, one requires
a precise formalization of what it means to instantiate the rule schemes, a task
going well beyond the scope of this paper. The reader is referred to [3, 16, 45] for
the relevant machinery.

These result only address (forward simulation) and therefore only guarantee
the preservation of backwards analysis for safety.

Abstraction of the Program Models. Besides abstraction on the domain and action
level, which are admissible as long as corresponding Galois connections exist, the
typical transformation steps are collapsing, i.e., identification of nodes on the
abstract level while collecting the transition potential, and unfolding, i.e., copying
of subgraphs with several entries. Whereas collapsing is clearly an abstraction,
unfolding looks like a concretization at first sight, and, indeed, it is only an
abstraction if it goes hand in hand with an abstraction on the domain level,
where the concrete domain also distinguishes the different versions of duplicated
nodes. We have:
11 For simplicity we assume here that the formulas are identical on both levels of ab-

straction. In general this need not be true, e.g., it is often convenient to also abstract
atomic propositions of the underlying logic.

12 These are simply simulations of a program model with reversed transitions arcs—the
“op” category, if you please.



– Locally correct abstraction on the domain and action side – characterized by
the equation α ◦ [[ Ac ]]c � [[ Aa ]]a ◦ α – together with any kind of collapsing
guarantees the existence of a forwards and backwards simulation. Thus it
supports the verification of all safety properties.

– Unfolding preserves forwards simulation only. In fact, it lies in the kernel of
simulation, i.e. argument and result model simulate each other both ways.
Thus unfolding can freely be used whenever only backwards analysis for safety
is concerned.

These are only a few sufficient conditions for guaranteeing the preservation of
simulation, and there is a huge potential for elaboration here and for enlarging
the class of possible simulation-preserving constructions and transformations.
Thus simulation provides a powerful background for establishing safety preserving
abstractions.

6 Collecting Semantics

One can construct an abstract interpretation in order to extract from it a col-
lecting semantics. A collecting semantics is information extracted from the nodes
and paths of a computation graph. The classic, “first-order” [38] collecting se-
mantics extracts the states from a computation graph: For a program model
(or in general, a graph), g, its first-order collecting semantics has form collg :
ProgramPoint → 2

V al

and is defined

collg(p) = {v|(p, v) is a node in g}

Constant-propagation and type-inference analyses calculate answers that are
first-order collecting semantics.

Another form of collecting semantics is “second order” or path based; it ex-
tracts paths from the model. The set of paths that go into a program point, p, is
defined

fcollg(p) = {r | r is a path in g from root(g) to some (p, v)}

and the set of paths that emanate from p is

bcollg(p) = {r | r is a maximal path in g such that root(r) = (p, v)}

The two collecting semantics are named fcoll and bcoll because they underlie the
information one obtains from forwards and backwards iterative flow analyses, re-
spectively. For example, a live-variables analysis calculates (properties of) bcollg,
and an available expressions analysis calculates (properties of) fcollg.



The above forms of collecting semantics are “primitive” in the sense that no
judgement about the extracted information is made. In practice, the information
one desires from a data-flow analysis is a judgement whether some property holds
true of the input values to a program point or of the paths flowing into/out of a
program point. (For example, a live-variables analysis makes judgements about
which variables are live for program point p in paths in bcollg(p).)

To include such judgements, Cousot and Cousot [17] suggest that a model’s
collecting semantics can be a set of properties expressed in some logic, L. Given
a program model, g, and a proposition, φ ∈ L, we write φ ∈ [[g]] if φ holds true
of g.

For judgements to be useful, we require a weak consistency property of �α

and L:

gC �α gA ⇒ ( for all φ ∈ L, φ ∈ [[ga]] ⇒ φ ∈ [[gC ]] )

That is, any property possessed by an abstract model, gA, must also hold for
a corresponding concrete model, gC . By tightening the two implications in the
above formula into logical equivalences, we obtain weak completeness and strong
completeness, respectively. The former is studied in [17]; the latter is employed
to justify correctness of reductions of state spaces in concurrency theory [9, 18,
32].

With this viewpoint, the extraction of collecting semantics—flow information—
is in fact the extraction of properties from a program model. This suggests that
there is little difference between the collection of data-flow information and the
validation of logical safety and liveness properties from a program model.

Since validation of properties of finite-state models can be done with a model
checker, model checking becomes the natural tool for computing collecting seman-
tics,13 where collecting semantics is encoded as logical properties, as suggested
above. In the next section, we employ a model checker to calculate collecting
semantics encoded as properties in CTL.

7 An Analysis Methodology

The previous sections have introduced the necessary techniques for construction,
abstraction, and analysis of program models. When the techniques are organized
into a methodology for program interpretation and static analysis, the following
three stage approach to abstraction appears, a framework that we have used in
practice:

13 In fact, iterative model checkers are directly computing a collecting semantics in this
sense.



Three Stages of Abstraction

�
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source program + abstraction of input data

generate abstract computation graph

finite program model:

replace labels by abstractions

finite program model:

arcs labelled by program actions,
nodes labelled by abstract states

arcs labelled by abstract actions,
nodes labelled by abstract states

extract collecting semantics by
checking the model with formulas in CTL

static analysis results

The first stage in the picture might be termed “abstraction of state,” because
it is typical that a program’s input data and store are abstracted to “entities of
observation” when generating the finite program model. The abstraction might
be a trivial one, where both input data and program store are abstracted to nil,
or it might be nontrivial, where input data are abstracted to even-or-odd and the
store is a vector of variables with even-odd values.

The second stage in the above picture might be named “abstraction of action,”
because the actions (primitive statements) in the program are abstracted to a
property of interest. The abstraction might be trivial, where actions are left
as they are, or it might be nontrivial, where expressions and commands are
abstracted to Use-Mod information, like that used for bit-vector analyses. The
result of the second stage is a finite program model whose paths show the order
in which properties of actions might occur.

With this perspective, we note that the purpose of the first two stages in the
picture is a complete removal of a program’s “syntactic overhead,” as contained
in the program’s source syntax and its operational semantics rules. The result,
the abstracted program model, contains the data- and control-essence of the pro-
gram, which can be queried by a model checker to elicit the program’s semantic
properties.

If the third stage in the picture must be given a name, it would be called the
abstraction of the program model itself, because one queries the program model



about the information at its states (nodes) and its actions (the labels on the arcs
of its paths), and one collects this information into a static analysis, which is
rightly an abstraction of the program model itself.

Querying and Collecting Data Flow Information

As suggested by the previous section and Section 3, the queries one makes of
the program model can be given in a temporal logic such as CTL, or better
in the version of CTL with the parameterized Henceforth operator considered
here.14 For example, one can assemble a complete summary of dead-variable
information15 by asking the following question, for each state (node) of a program
model whose arcs are labelled with Use-Mod information

isDeadx = AG{a | a�= usex}(¬end ∧ 〈modx 〉ff )

for each variable, x, in the source program. The answers to all these queries are
collected together; they constitute a dead-variables analysis.

CTL is a good language for stating queries about a program model, because
it is a language for expressing patterns of information that one encounters when
one traverses the paths of a model. Indeed, most static analyses are defined to
collect information about the patterns of states and actions one encounters along
a program’s execution paths.

For example, dead-variables analysis is a static analysis that calculates, for
each program point, the paths that connect a program point, p, to uses of vari-
ables. (If a variable, x, is not used at the end of any such path from p, it is “dead”
at p.) When a bit-vector-based dead-variables analysis does a similar calculation,
it attaches a bit vector, one bit per program variable, to each program point, p.
The bit for variable x at p is set “off” if there exists a path from p to a use of
x, which makes the variable live. Thus, the bits in a bit-vector encode a set of
yes-no answers to queries about the state of variables along program paths, and
a variable is dead at p if its bit maintains its initial value true.

A similar story can be told for other bit-vector-based, iterative data-flow
analyses—the bit vectors encode the answers to queries about the paths lead-
ing out of (or the paths leading into) the program points in a program model.

In this way, bit-vector analyses are neatly described by our framework. But
the framework can do more than handle just bit-vector-based data-flow analyses.

Beyond Bitvector Analyses

1. At the first abstraction stage, abstraction of state, one can use nontriv-
ial abstractions—even-odd properties, sign properties, finite-ranges-of-values
properties, constant-value properties—to generate program models more pre-
cise than just a control-flow graph. The “precision” in this case might mean
that the program model is smaller than the control-flow graph, which may

14 We will simply write CTL also for this parameterized version in the rest of this paper.
15 This information is dual to the live-variable information.



be the case when the additional information suffices to evaluate conditionals,
or that the program points are “split” (duplicated with different store values
at different nodes), producing what the partial-evaluation community calls a
polyvariant analysis [26]. The same idea also underlies the property-oriented
expansion proposed in [49].
In addition, a program’s input data can be restricted to reflect a precondition.
For example, the first program model in Figure 6 shows the precision one gains
when one knows from the outset that input variable x must be restricted to
an odd number.

2. At the second abstraction stage, abstraction of actions, one can do abstrac-
tion of actions to other forms of information besides Use-Mod information.
A standard example of action abstraction is seen in the behaviour trees gen-
erated by CCS-expressions [35], where actions are abstracted to “channels.”
Also, one might abstract all actions to nil; which would be appropriate for
calculations of “first-order collecting semantics,” as suggested in Section 6.

3. At the third stage, the extraction of collecting semantics, one might use one
of a variety of logics to ask questions of the program model. Alternatives
to CTL, such as CTL*, LTL, mu-calculus, and Büchi automata, can also be
used this way, and the next section gives examples.
Finally, one can use the program logic to validate safety properties about
paths in the program model. That is, the CTL formula we use to extract
collecting semantics is also a logical proposition stating a “safety property”
of a path. And of course, program validation of real safety properties can be
performed in the very same framework that we have promoted for data-flow
analysis. Of course, the dual is well known: data-flow analysis has been used
for program validation [19, 33, 34, 39, 40], but the point has not been made as
strongly as here, where we use the very same logic for both flow analysis and
program validation.

Another benefit from the framework presented here is the clarification it gives to
the stages of a static analysis—one can, at least conceptually, build a program
model first and extract static information from it second.16 Often, these two
stages are intertwined in presentations of static analyses, making correctness
proofs harder to write and extensions harder to implement.

8 Discussion

We now discuss several applications where our methodology led to improved
solutions of static analysis problems.

State Explosion

Consider property validation for large programs or for systems of communicating
processes: If one generates a program model for a system of processes, the model’s
16 This does of course not exclude an ‘on-the-fly’ implementation, where the model is

only constructed on demand.



state space quickly becomes intractable. One solution is to construct a naive
program graph model, where many—perhaps, too many—states are merged, and
the price one pays is that the merged states generate many new paths that are
impossible in practice. Such impossible paths thwart validation of elementary
safety properties.

State-space explosion arises in model construction for single sequential pro-
grams, as well. To limit state space, a compiler builds a naive program model—the
program’s control-flow graph—which contains many more paths than what will
actually be used during execution. The extra paths might well prevent validation
of safety properties. Here is a contrived example: the control-flow graph for the
program, if even(x) then x:=succ x fi; if odd(x) then x:=0 else x:=1
fi, contains two impossible paths, which prevent validation that the program
must terminate with x equals 0.

Incremental Refinement

For these reasons, one wants a mechanism that incrementally refines a naive pro-
gram model, eliminating impossible paths. We illustrate here a technique based
on filters [20].

Say that we begin with a naive program model and try to validate that Φ
holds true for all paths in the model. Perhaps the validation fails, because the
naive model includes impossible paths that make Φ false. We want to refine the
model—not abandon it—and repeat the attempt at validation. To do so, we
define an additional abstract interpretation and apply it to the naive program
model. We do so by encoding the abstract interpretation as a proposition, Ψ ,
and we model check the formula, Ψ ⇒ Φ, on every path of the naive model. The
abstract interpretation, coded as Ψ , filters out, on the fly, impossible paths.

This technique is reminiscent of a standard practice in model checking, that
of attaching logical preconditions to strengthen the hypothesis of a formula to be
proved (for example, limiting model search to just fair paths, e.g., isFairPath ⇒ Φ
[7, 8]). But what is notable here is that an abstract interpretation, rather than a
logical precondition, is attached. This technique has been used with success by
Dwyer and Pasareanu [21] on a variety of problems in communicating systems.

An abstract interpretation that uses a finite domain of abstract values can be
encoded as a path proposition in this variant of LTL:

Ψ ::= β | X | Ψ ∧ Ψ | ¬Ψ | 〈A 〉Ψ | νX. Ψ

Recall that LTL is logic of paths: for a path, p, say that p |= β if state formula β

holds true for p’s start state; p |= 〈A 〉Ψ holds if p = s0
A−→p1, and p1 |= Ψ holds

(this is the “next state” modality); and p |= νX. Ψ holds iff p |= [νX. Ψ/X ]Ψ ,
that is, νX. Ψ is a recursive proposition.

Characterizing Automata

To understand how to use LTL, we exploit the correspondence between finite-
state automata and LTL, and present in Figure 8 an automaton that encodes
even-odd abstract interpretation of a variable, x.
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Automaton transitions:
(1) δ(e, E) = e, if tt ∈ [[E]]e (6) δ(o, E) = o, if tt ∈ [[E]]o
(2) δ(e,¬E) = e, if ff ∈ [[E]]e (7) δ(o,¬E) = o, if ff ∈ [[E]]o
(3) δ(e, x := E) = o, if o ∈ [[E]]e (8) δ(o, x := E) = e, if e ∈ [[E]]o
(4) δ(e, x := E) = e, if e ∈ [[E]]e (9) δ(o, x := E) = o, if o ∈ [[E]]o
(5) δ(e, y := E) = e, if y = x (10) δ(o, y := E) = o, if y = x

Both states are possible end states.

Fig. 8. Even-odd abstract interpretation encoded as a path formula

It is easy to imagine this automaton executed on the paths of a control-
flow graph—as long as the automaton can continue to move while it traverses
a path, the path is well-formed with respect to the even-odd-ness value of x.17

The automaton “filters out” those paths in a naive model that are impossible
with respect to x’s even-odd-ness, and in the process generates a more accurate,
restricted, reduced model. (Consider the example program at the beginning of
this section—the impossible paths are filtered out.)

Next, imagine the automaton executed on the naive model in parallel with a
model check of a safety property, Φ. This would validate Φ just on those paths
well formed with respect to x’s even-odd-ness. No intermediate, reduced model
is built; the work is done on the naive model.

The automaton in the Figure is just a pictorial representation of this LTL
formula: (For brevity, we limit the set of actions to just even x, ¬even x, x:=x+1,
and y:=2.)

isEvenx iff 〈 even x 〉isEvenx isOddx iff 〈 ¬even x 〉isOddx

〈 x := x + 1 〉isOddx 〈 x := x + 1 〉isEvenx

〈 y := 2 〉isEvenx 〈 y := 2 〉isOddx

isF inalState isF inalState

Thus, the parallel execution of even-odd analysis with the model checking of
safety property Φ is just the model check of the formula

(isEvenx ⇒ Φ) ∧ (isOddx ⇒ Φ)

17 In fact, on simply traverses the synchonous product between the program model,
which can be itself regarded a automaton, and the characterizing automaton [15, 24].
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The method proposed above is based on the observation that program analysis
can be refined by verifying implications on the logical level, which restricts the
conditions under which a certain property must hold, or, equivalently, by verifying
the original property for a product program model consisting of the original
program model and a ‘filter’ automaton which restricts the behaviour of the
program model to its desired fragment. This is possible, because the formulae
considered as premises can be fully expressed in terms of automata. Based on
this idea, it is now possible to choose

– where to put the complexity: in the formula or in the automaton,
– how to combine the product construction and the model checking.

Straightforward would be to first compute the product program model and sub-
sequently apply the model checker, as suggested in the previous section. This
would directly corresponds to the property-oriented expansion approach pro-
posed in [49], which considers product construction with automata specified in
different paradigms according to the unifying model idea presented in [50].

However, as also mentioned in the previous section, there are ‘on-the-fly’
model checkers allowing to construct the product program model on demand
during the model checking procedure, which may help to avoid the state explo-
sion problem. In fact, the same method can also be applied if one wants to verify
a parallel program.

In this way, the line between abstract interpretation in model construction and
property extraction via model checking has been blurred. The issue becomes
one of “binding times”—when is the abstract interpretation “bound” into the
program model? The answer often hinges on the desired complexity of the model
versus the complexity of the formula to be model checked.

9 Conclusion

This paper has attempted to explain how abstract interpretation, flow analysis,
and model checking can interact within a comprehensive static analysis method-
ology. In particular, we hoped to emphasize that the machinery and methods of
flow analysis, abstract interpretation, and model checking have grown together,
and that researchers can profitably use techniques from one area to improve
results in the others.

In the future, it is planned to specifically support the study of method interac-
tion, in order to improve the understanding of the interdependencies between and
the ‘optimal’ problem-specific combinations of algorithms for e.g. model construc-
tion, abstraction and analysis as addressed here. A corresponding public platform
is already available [46], and it is going to be used in program analysis [51].
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