An Evaluation of WCET Analysis using Symbolic Loop
Bounds

Jens Knoop, Laura Kovacs, and Jakob Zwirchmayr*

Vienna University of Technology

Abstract. In this paper we evaluate a symbolic loop bound generation technique
recently proposed by the authors in [7]. The technique deploys pattern-based re-
currence solving in conjunction with program flow refinement using SMT rea-
soning. The derived bounds are further used in the WCET analysis of programs
with loops. This paper presents experimental evaluations of the method carried
out with the r-TuBound software tool. We evaluate our method against various
academic and industrial WCET benchmarks, and outline further challenges for
symbolic loop bound computation.

1 Introduction

In this paper we present an evaluation of our symbolic loop bound computation method
[7] for deriving tight upper bounds on the number of loop iterations. These bounds are
further used in the WCET analysis of programs.

Given a program loop, the approach described in [7] derives tight upper bounds on
the number of loop iterations as follows. First, if the loop contains multiple paths (i.e.
multi-path loop) arising from conditionals, then the loop is over-approximated by a loop
with only one path (i.e. simple loop). To this end, SMT reasoning in conjunction with
control flow analysis is deployed. Next, the behavior of the simple loop is expressed by
a system of recurrence equations over scalar loop variables and a new variable denoting
the loop counter. These recurrence equations are then solved based on symbolic com-
putation algorithms. Namely, a pattern-based recurrence solving algorithm over linear
recurrences with constant coefficients is deployed. As a result, the values of scalar vari-
ables, i.e. the closed forms, at arbitrary loop iterations are derived as functions of the
loop counter and initial values of the variables. If initial values of variables are missing,
an over-approximation of non-deterministic assignments is deployed to derive sound
initial values. Finally, closed forms of loop variables together with the loop condition
are used to derive the smallest value of the loop counter such that the loop is terminated.
To this end, SMT solving over arithmetical formulas is used. The inferred value of the
loop counter yields an upper bound on the number of loop iterations of the simple loop,
and consequently of the multi-path loop.

The approach was implemented in the r-TuBound software tool, and successfully
tested on various examples.

* This research is supported by the CeTAT project of TU Vienna. The second author is supported
by an FWF Hertha Firnberg Research grant (T425-N23). This research was partly supported
by Dassault Aviation and is partially funded by the FWF National Research Network RiSE
(S11410-N23).

While the presentation in [7] focused on the methodology as such, we are now in-
terested in evaluating the approach in practice on a number of benchmarks. This paper
undertakes extensive investigation into understanding the practical power and limita-
tions of the method and its implementation in r-TuBound. The key question we tried
to address is the following. Is the method powerful enough to infer automatically loop
bounds that can be further used for automating the WCET analysis of programs?

The main contribution of this paper is an experimental evaluation of the symbolic
loop bound computation method, providing statistics and better understanding of the
power of the method.

Related work. We only mention some of the many approaches our work can be com-
pared to. For a detailed overview on related work we refer to [7].

In [13] the authors construct parameterized formulas to model the WCET of pro-
gram functions or loops. To this end, closed form formulas that depend only on the
number of loop iterations are generated. Unlike our approach, the inferred closed forms
are evaluated at run-time to improve the performance of the system under analysis, by
allowing optimized scheduling decisions and task selections.

In [1] the authors suggest algebraic techniques to construct a symbolic formula
that characterizes the WCET of a function. For doing so, powerful computer algebra
systems are used (CAS) to construct and simplify symbolic formulas. The described
approach could be extended by symbolic summation in order to derive loop bounds and
handle nested loops. The work presented in [1] relies on annotated programs and de-
ploys a CAS, whereas we use a pattern-based recurrence solving approach to symbolic
summation and deploy pre-computed closed form solutions.

The rest of this paper is structured as follows. Section 2 briefly overviews the sym-
bolic loop bound computation method, which is then illustrated by concrete examples
in Section 3. Section 4 describes the set of benchmarks used for experimental evalua-
tions and details the obtained experimental results. We summarize the presented work
in Section 5.

2 Symbolic Loop Bound Computation

In this section we briefly overview the main ingredients of the symbolic loop bound
computation method of [7]. For more details and theoretic considerations we refer to
(7].

Throughout this paper, a loop with only one path will be called a simple loop. Fur-
ther, we will refer to a loop with multiple paths as a multi-path loop. In what follows,
we will sometimes write loop bound or loop iteration bound to mean an an upper bound
on the number of loop iterations.

In [7], special classes of simple and multi-path loops have been identified, as de-
scribed below. For such loops a pattern-based recurrence solving algorithm together
with control flow refinement using SMT reasoning is deployed to automatically derive
tight loop iteration bounds.

while (tries._left > 0) {

tries_left-—;

for (fcode = (long) hsize; if (confirm.hit_result == 0)
fcode < 65536L; fcode x= 2L) tries_left = 0;

hshift++; }

Fig-<1- Loop using using multiplication in the update ex-|Fig. 2. Loop with a conditional update to the loop
pression. counter.

Simple Loops with C-finite Updates. Consider the following simple loop pattern.
for(i=a;i<b;i=cxi+d);

where a, b, ¢, d, i, ¢ are symbolic integer-valued constants such that (1

a,b, ¢, d do not depend on 7, and ¢ # 0.

The variable ¢ in (1) is called the loop iteration variable.

Note that updates over the iteration variable of (1) are given by linear arithmetic
expressions over program variables. We call such updates C-finite updates.

For loops as in (1), a pattern-based recurrence solving algorithm over linear recur-
rences with constant coefficients is used to derive the value of ¢ as a function of the
initial values of loop variables and a new variable denoting the loop counter. That is,
the closed form of ¢ is derived. To this end, the analysis instantiates the closed form pat-
tern of ¢ with the appropriate symbolic constants of the loop (1). Further, SMT solving
over arithmetic expression is deployed over the closed form of ¢ and the loop condition,
and a precise loop bound is derived expressing the smallest value of ¢ at which the loop
(1) terminates.

Let us note that in the case when the initial values of loop variables are missing, the
approach of [7] soundly approximates the non-deterministic initial value assignments of
loops (1), whenever the C-finite updates are expressed using left/right shift operations.
We call a simple loop with C-finite updates involving only shift operations a shift loop.
Multi-path loops. Consider the multi-path loop patterns below.

for (i=aji<bji=cx*i+d) for (i=aji<bji=cx*i+d)
if (nondet()) if (B) i = £1(i);
break; else i = f,(i);
(@ (b))

where a, b, ¢, d, i, c are symbolic integer-valued constants such that
a, b, c,d do not depend on ¢, ¢ # 0, and
f1 and f> are monotonically increasing or decreasing linear functions.

The multi-path loop given in (2)(a) requires reasoning about abrupt termination,
whereas (2)(b) involves conditional updates with linear monotonic functions f; and fs.
The method of [7] soundly translates the multi-path loops (2)(a) and (2)(b) into simple
loops as in (1), by deploying SMT reasoning over arithmetic expressions. Next, loop
bounds over the obtained simple loops are derived. These loops bounds are also tight
loop bounds of the multi-path loops (2)(a), respectively (2)(b).

for (i = 0; i < M; i++) { while (i < size) {
while (i > 0) { int j =2 x i+ 1;
if (A[i] == 0) { int p= (i - 1) / 2; if (nondet ()) J++;
failed = 1; if (nondet ()) break ; if (nondet ()) break ;
break ; i = p; i=3;
} } }
}
) Fig. 4. Abruptly terminating loop Fig. 5. Abrupty terminating loop
Fig. 3. Loop with abrupt termination. |with C-finite update. with C-finite and conditional updates.

Let us note that (2) does not cover arbitrary multi-path loops. For example, nested
loops cannot yet be handled by our approach. We leave the study of nested loops and
the generalization of (2) to future research.

3 Challenging Examples and Benchmarks

The following loop examples are taken from various benchmarks and illustrate the main
ingredients of symbolic loop bound computation.

Fig. 1 lists a loop with a C-finite update. It can be characterized by the following
linear recurrence relation:

feode(n + 1) = 2 % fcode(n), where n > 0 denotes the loop iteration counter.

Hence, the value of fcode at an arbitrary iteration n can be derived by instantiating the
closed form solution of (1). As a result, the value of fcode is expressed as a function
of n. Note that the loop condition fcode < 65536L holds at any loop iteration, and
therefore fcode(n) < 65536L is a valid formula. A precise loop bound for Fig. 1 is
then derived by computing the smallest value of n such that the loop terminates. In
other words, the (smallest) value of n is inferred such that the formula (fcode(n) <
65536L) A (fcode(n + 1) > 65536L) is satisfiable. This satisfiability problem is
encoded as an SMT query over arithmetical formulas.

Consider the loop from Fig. 2. This loop fits the loop pattern given in (2)(b). Deriv-
ing a tight loop bound for Fig. 2 requires reasoning about the the conditional update to
tries_left. To this end, the loop iterates over tries_left either by monotonically decreas-
ing the value of tries_left, or by setting the value of tries_left to 0. As in both cases the
value of tries_left decreases', the conditional statement of Fig. 2 is omitted and Fig. 2
is approximated by a simple loop of the form (1). Further, a precise loop bound for the
simple loop is computed, yielding thus a tight loop bound for Fig. 2.

Fig. 3 lists an abruptly terminating loop. The loop fits the loop pattern given in
(2)(a). The difficulty in deriving a tight loop bound for Fig. 3 comes from the presence
of the conditional statement yielding an abrupt termination of the loop. To this end, the
control flow of Fig. 3 is refined in [7] by abstracting away the break statements, and
Fig. 3 is approximated by a simple loop with C-finite updates as in (1). A precise loop
bound of the simple bound is next derived, from which a tight loop bound for Fig. 3 is
obtained.

! note that the loop condition assumes that tries_left is a positive non-zero symbolic scalar

Benchmark Suite | #Loops | TuBound | r-TuBound Types
Milardalen 207 163 165 AT, CF
Debie 75 58 59 SH, CU
Scimark 34 24 26 AT, CF
Dassault 77 39 46 AT, CF-CU-AT (2), CU(4)
Total 393 284 296 AT (3), SH, CU (5), CF (2),
CF-CU-AT (2)

Table 1. Experimental results and comparisons with r-TuBound and TuBound.

The examples given so far described loops fitting exactly one of the loop patterns
(1), (2)(a), and (2)(b). Our experiments show however that these loop patterns are used
in their combination. To this end, consider Fig. 4 and Fig. 5.

The loop from Fig. 4 requires reasoning about abrupt termination and C-finite up-
dates. A tight loop bound for Fig. 4 is inferred by first applying flow refinement to
transform Fig. 4 into a simple loop with C-finite update, and then derive a precise loop
bound for the obtained simple loop.

The program from Fig. 5 implements an abruptly terminating loop with C-finite
and conditional linear updates. After flow refinement and establishing the monotonicity
property of the conditional update, Fig. 5 is rewritten into a simple loop with only C-
finite updates. A precise loop bound of the simple loop is next computed by applying
the pattern-based recurrence solving approach of [7], and a loop bound of Fig. 5 is
finally inferred.

4 Experimental Evaluation

The approach of [7] is implemented in the r-TuBound software tool. r-TuBound extends
the TuBound framework [10, 6] by an SMT-based control flow refinement approach,
a pattern-based recurrence solving algorithm, and a loop preprocessing step applying
simple loop rewriting techniques. In this section we report on experimental results ob-
tained by applying r-TuBound on a number of challenging examples. These examples
include (i) WCET benchmarks, such as the Milardalen and Debie benchmark suite [4],
(ii) scientific benchmarks, such as the SciMark2 benchmark suite, and (iii) industrial
benchmarks using a number of examples sent by Dassault Aviation.

In our experiments, we aimed at the automated derivation of loop bounds. To this
end, we did not investigate the low-level WCET calculus on the underlying hardware
architecture, but only applied a high-level analysis of program loops on the software
level.

Let us note that in our experiments we did not use r-TuBound in conjunction with
the software model checking extension of [9]. The results reported below were obtained
by only deploying the symbolic loop bound computation framework of [7] implemented
in r-TuBound.

4.1 Benchmarks and Evaluations

WCET Benchmarks. The Milardalen Real Time and the Debie benchmark suites are
both well known in the WCET community and were used in the WCET tool challenges
since 2006 [4].

BM (#L|TB |r-TB |G BM #L |TB |r-TB | G
adpcm | 18 | 17 | 17 | - qurt 11 1 -
bs 1|0 0 - select 410 0 -
bsortl00| 3 | 3 3 - || statemate | 1 | O 0 -
cnt 4| 4 4 - sqrt 1 1 1 -
cover | 3| 3 3 - fftl 11] 6 6 -
crc 313 3 - Ims 10| 6 6 -
duff 2 11 1 - whet 1111 11 -
edn 1212 12 | - || ludemp |11 | 11 | 11 -
expint | 3 | 3 3 - || compress | 7 | 2 3 |CF
fibcall | 1 | 1 1 - fir 2|1 1 -
jannec | 2 | O 0 - minver |17 | 16 | 16 -
nsichneu| 1 | 0 0 - ||gsort_exam| 6 | O 1 |AT
insertsort| 2 | 0 0 - fdct 212 2 -
jfdctint | 3 | 3 3 - || lednum | 1 | 1 1 -
matmult| 5 | 5 5 - ndes 1212 | 12
ns 4 | 4 4 - sum 207|163 | 165 | 2

Table 3. Evaluation of r-TuBound on the Mélardalen benchmarks.

From the Milardalen suite we investigated 31 files, containing 207 loops. r-TuBound
analyzed all simple loops with constant increments/decrements (i.e. a special case of (1)
with ¢ = 1) that were analyzed also by TuBound. However, r-TuBound inferred loop
bound also for two additional loops on which TuBound failed since reasoning about
C-finite updates (with ¢ # 1 in (1)) and abrupt termination was required. In contrast
to [7] we evaluated r-TuBound on more programs from the Milardalen suite. The ad-
ditional examples contained almost only simple loops, for example the minver. c file
containing 16 simple loops, and the ndes . ¢ program containing 12 simple loops (see
Table 3 from Section 4.2).

The Debie benchmark suite contains 75 loops. r-TuBound successfully analyzed
59 loops. From these 59 loops, 58 simple loops were bound also by TuBound. Let us
however note, that in the presence of initial value information, r-TuBound finds tighter
bounds for simple loops with C-finite updates involving shift operations. The one loop
that TuBound was not able to analyze is a loop with monotonic conditional update as in
(2)(b).

When compared to TuBound, one may say that r-TuBound brings an insignificant
increase in performance when applied on the WCET benchmarks. However, let us note
that these benchmarks have been used in the WCET community already since 2006.
Therefore, it is expected that WCET tools, including TuBound, implement various
heuristics and perform very well on these benchmarks. The benefit of r--TuBound can be
better evidenced on new examples, including industrial ones, with relatively complex
arithmetic and control flow. We report on these results below.

Scientific Benchmarks. The SciMark2 benchmark suite contains 34 loops. r-TuBound
derived loop bounds for 26 loops, whereas TuBound could analyze 24 loops. The 2

BM | #L | TB | r-TB | G
class 2 2 2 SH
debie 1 0 0 -

harness | 45 34 34 -
health | 11 9 10 |CU
hwif | 3 2 2 -

measure| 6 4 4 -

tc_hand| 3 3 3 -
telem 4 4 4 -
sum 75 | 58 59 1

Table 5. Evaluation of r-TuBound on the Debie benchmarks.

loops which could only be handled by r-TuBound required reasoning about abrupt-
termination and C-finite updates.

Industrial Benchmarks. We evaluated r-TuBound on 77 loops sent by Dassault Avi-
ation. r-TuBound inferred loop bounds for 46 loops, whereas TuBound analyzed only
39 loops. When compared to TuBound, the success of r-TuBound lies in its power to
handle abrupt termination, conditional updates, and C-finite behavior.

Analysis of Experiments. Altogether, we ran r-TuBound on 4 different benchmark
suites, on a total of 393 loops and derived loop bounds for 296 loops. Out of these 296
loops, 286 loops were simple and involved only C-finite reasoning, and 10 loops were
multi-path loops which required the treatment of abrupt termination and conditional
updates. TuBound could handle 284 simple loops only.

We note that, 75% of the 393 loops were successfully analyzed by r-TuBound,
whereas TuBound succeeded on 72% of the 393 loops.

When compared to TuBound, the overall quality of loop bound analysis within r-
TuBound has increased by 3% (72% to 75%). However, TuBound already performed
well on Milardalen and Debie, and therefore the increase given by r-TuBound is only
of 1% (78% to 79% in Milardalen and 77% to 78% in Debie). For the SciMark2 and
the examples from Dassault, the increase in performance given by r-TuBound is of
6% (70% to 76%) and 9% (50% to 59%), respectively. The practical importance of
r-TuBound can thus be better evidenced on examples with more complex arithmetic
and/or control-flow.

Table 1 lists a summary of the experimental results obtained by using r-TuBound on
the aforementioned four benchmark suites. Column 1 lists the benchmark suite, column
2 the number of loops contained, columns 3 and 4 list respectively the number of loops
analyzed by TuBound and r-TuBound. Column 5 describes the type of loop and why
they could only be analyzed by r-TuBound. To this end, we distinguish between simple
loops with C-finite updates (CF), shift-loops with non-deterministic initializations (SH),
multi-path loops with abrupt termination (AT), and multi-path loops with monotonic
conditional updates (CU). Column 5 also lists, in parenthesis, how many of such loops
were encountered. For example, among the loops sent by Dassault Aviation 4 multi-path
loops with monotonic conditional updates, denoted as CU(4), could only be analyzed by

BM #L | TB | r-TB | Gain BM #L | TB | r-TB | Gain
array 6 |5 6 AT scimark 0] 0 0 -
fft 8 | 4 5 CF sor 313 3 -
kernel 9| 4 4 - sparsecomprow | 3 | 3 3 -
montecarlo| 1 1 1 - stopwatch 0|0 0
random | 4 | 4 4 - sum 34124 | 26 2

Table 7. Evaluation of r-TuBound on the SciMark2 examples.

r-TuBound. Some loops require combinations of the proposed techniques, for exampe,
multi-path loops with C-finite conditional updates and abrupt termination; such loops
are listed in Table 1 as CF-CU-AT.

A detailed evaluation of r-TuBound and comparisons with TuBound is given in
Section 4.2.
Limitations. We also investigated some of the examples on which r-TuBound failed
to derive loop bounds. We list below some limitations of r-TuBound. Handling these
limitations are left for future work.

One source of limitations is the presence of loops with more complex arithmetic
updates than the ones captured by the C-finite updates of (1). Such a non-C-finite update
is given by the update listed below:

d=dx—rx*r/(2%1i)*(2%1i+1); (wheredisused in the loop condition).

Reasoning about such updates would require solving recurrences with non-constant
polynomial coefficients in the loop variables. Algorithmic methods are available for
solving such recurrences — see [12, 5].

Another reason of r-TuBound’s failure comes from the need of supporting numeric
functions, for example, the absolute value function.

Other loops that r-TuBound cannot yet handle are simple loops that, in addition to
the loop counter, also modify a variable in the loop condition. We list such an example
below:

while (i<j) {j=j—i; i=1/2;}

In addition to the above mentioned limitations, our experiments showed that some
loops require reasoning about the array content. Such an example is given by the fol-
lowing simple loop iterating over a character string:

while (c[i] = 0) {i+ +;}

To this end, we plan to extend r-TuBound with support for arrays by using SMT solvers
[8, 3] or first-order theorem provers [11].

We did not yet investigate our approach for nested loops. We plan to study our
work in conjunction with the approach of [2], where a large number of nested loops are
handled using symbolic computation techniques over loop indexes.

4.2 Experimental Details and Results

In the following tables, column 1 (“BM”) denotes the name of the benchmark file/pro-
gram, and column 2 gives the number of loops in the corresponding file (“#L”). Col-
umn 3 lists how many of those loops were successfully analyzed by TuBound (“TB”),
whereas column 4 lists how many loops were analyzed by the symbolic loop bound
computation tehcnique of r-TuBound(“r-TB”). Column 5 (“G”) shows which loop pat-
tern (cf. the notation used in Table 1) that could only be handled by r-TuBound?.

Table 3 reports on the results obtained by running r-TuBound on 31 examples files
from the Milardalen benchmark set. Altogether, we ran r-TuBound on 207 loops from
the Milardalen suite. r-TuBound derived loop bound for 165 loops, whereas TuBound
was able to analyze 163 loops. The two additional loops analyzed by r-TuBound re-
quired recurrence solving and control flow refinement.

Table 5 shows the performance of r-TuBound on examples from the Debie bench-
mark set. Altogether, we used 8 example files containing 75 loops. TuBound was able
to compute loop bounds for 58 loops. In addition to these 58 loops, r-TuBound also
inferred loop bound to one additional shift-loop.

Table 7 gives the performance of r-TuBound on 34 loops from the SciMark bench-
mark suit. In addition to the loops that could also be analyzed by TuBound, r-TuBound
also inferred loop bounds on two loops with C-finite updates and abrupt termination.

Table 9 reports on the experimental results obtained by running r-TuBound on loops
sent by Dassault Aviation. We evaluated r-TuBound on 51 benchmark files containing
altogether 77 loops. Out of the 77 loops, r-TuBound derived loop bounds for 46 loops,
whereas TuBound analyzed 39 loops. The 7 loops that could only be analyzed by r-
TuBound included 4 loops with C-finite and conditional updates, 2 abruptly terminating
loops with C-finite and conditional updates, and 1 abruptly terminating loop with C-
finite updates.

5 Conclusion

We evaluate the symbolic loop bound computation method implemented in the r-TuBound
tool. The method combines pattern-based recurrence solving with control flow refine-
ment using SMT reasoning, and over-approximates non-deterministic initializations.
Our experimental results give practical evidence of the applicability of r-TuBound for
loop bound computation and WCET analysis.

Further work includes extending r-TuBound with more powerful symbolic com-
putation algorithms, such as solving recurrences with polynomial coefficients. We also
plan to combine r-TuBound with first-order theorem proving algorithms and derive loop
bounds of programs whose behavior requires reasoning about array, lists, and pointers.

References

1. G. Bernat and A. Burns. An approach to symbolic worst-case execution time analysis. In In
25th [FAC Workshop on Real-Time Programming, 2000.

% Subtracting column 5 from column 4 yields the number of simple loops with constant incre-
ments/decrements (i.e. ¢ = 1 in (1))

BM #L | TB | r-TB G BM #L | TB | r-TB | G
all_zeros 311 1 - minimum_sort | 2 | 2 2 -
array _ptr 313 3 - min_sort 2|2 2 -

asm_memset2 2 11 1 - muller 212 2 -
behavior 111 1 - nb_occ 1 1 1 -
b_s_o 110 0 - negate 111 1 -
break 3] 1 1 - ovt_vs_poly 110 0 -
bresenham 111 1 - permut_search2 | 1 | 0 0 -
bsearch 110 0 - permutsearch | 1 | O 0 -
bts0041-bis 313 3 - r_strcpy 110 0 -
bts0041 313 3 - string_constant | 1 | O 0 -
continue 310 3 |CU,CU,CU struct_hack 310 0 -
copy 1|0 0 - suml 1 1 1 -
count_bits 110 0 - sum?2 2|2 2 -
dillon4 1|1 1 - test5_floats 110 0 -
division 1|0 0 - trace.c 2|2 2 -
dowhile 1 1 1 - vamos 210 0 -
fs253 110 0 - vieiral 212 2 -
fs256 1 1 1 - vieira2 110 0 -
fs350 1 1 1 - weberl 1 1 1 -
ghost_label 111 1 - weber3 110 0 -
heap 210 2 AT, weber4 110 0 -
CF-AT-CU
heapsort 311 2 | CF-AT-CU weber5 110 0 -
inv_perm_minimal | 2 | 1 1 - weber6 110 0 -
loop_eq 110 0 - weber8 110 0 -
loop-inv 1|0 1 CU weber9 1|1 1 -
malloc 1 1 1 -
sum 77139 46 |7

Table 9. Evaluation of r-TuBound on examples sent by Dassault Aviation.

. R. Blanc, T. Henzinger, T. Hottelier, and L. Kovdcs. ABC: Algebraic Bound Computation
for Loops. In Proc. of LPAR-16, pages 103-118, 2010.

. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.
In Proc. of TACAS, pages 174-177, 2009.

. N. Holsti, J. Gustafsson, G. Bernat, C. Ballabriga, A. Bonenfant, R. Bourgade, H. Cassé¢,
D. Cordes, A. Kadlec, R. Kirner, J. Knoop, P. Lokuciejewski, N. Merriam, M. de Michiel,
A. Prantl, B. Rieder, C. Rochange, P. Sainrat, and M. Schordan. WCET 2008 - Report
from the Tool Challenge 2008 - 8th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis. In Proc. of WCET, 2008.

. M. Kauers. SumCracker: A Package for Manipulating Symbolic Sums and Related Objects.
J. of Symbolic Computation, 41(9):1039-1057, 2006.

. R. Kirner, J. Knoop, A. Prantl, M. Schordan, and A. Kadlec. Beyond Loop Bounds: Com-
paring Annotation Languages for Worst-Case Execution Time Analysis. J. of Software and
System Modeling, 2010. Online edition.

10.

11.

12.

13.

J. Knoop, L. Kovacs, and J. Zwirchmayr. Symbolic Loop Bound Computation for WCET
Analysis. In Proc. of PSI, 2011. To appear.

. L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In Proc. of TACAS, pages 337—

340, 2008.

. A. Prantl, J. Knoop, R. Kirner, A. Kadlec, and M. Schordan. From Trusted Annotations to

Verified Knowledge. In Proc. of WCET, pages 3949, 2009.

A. Prantl, J. Knoop, M. Schordan, and M. Triska. Constraint Solving for High-Level WCET
Analysis. In Proc. of WLPE, pages 77-89, 2008.

A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Communi-
cations, 15(2-3):91-110, 2002.

C. Schneider. Symbolic Summation with Single-Nested Sum Extensions. In Proc. of ISSAC,
pages 282-289, 2004.

E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric Timing Analysis. In Proc. of
LCTES, pages 88-93, 2001.

