
The Auspicious Couple: Symbolic Execution
and WCET Analysis *

Armin Biere1, Jens Knoop2, Laura Kovács3, and Jakob Zwirchmayr2

1 Johannes Kepler University Linz, Austria biere@jku.at
2 Vienna University of Technology, Austria [knoop|jakob]@complang.tuwien.ac.at
3 Chalmers University of Technology, Sweden laura.kovacs@chalmers.se

Abstract
We have recently shown that symbolic execution together with the implicit path enumeration technique
can successfully be applied in the Worst-Case Execution Time (WCET) analysis of programs. Symbolic
execution offers a precise framework for program analysis and tracks complex program properties by
analyzing single program paths in isolation. This path-wise program exploration of symbolic execution is,
however, computationally expensive, which often prevents full symbolic analysis of larger applications:
the number of paths in a program increases exponentially with the number of conditionals, a situation
denoted as the path explosion problem. Therefore, for applying symbolic execution in the timing analysis
of programs, we propose to use WCET analysis as a guidance for symbolic execution in order to avoid
full symbolic coverage of the program. By focusing only on paths or program fragments that are relevant
for WCET analysis, we keep the computational costs of symbolic execution low. Our WCET analysis
also profits from the precise results derived via symbolic execution.
In this article we describe how use-cases of symbolic execution are materialized in the r-TuBound toolchain
and present new applications of WCET-guided symbolic execution for WCET analysis. The new appli-
cations of selective symbolic execution are based on reducing the effort of symbolic analysis by focusing
only on relevant program fragments. By using partial symbolic program coverage obtained by selective
symbolic execution, we improve the WCET analysis and keep the effort for symbolic execution low.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems

Keywords and phrases WCET analysis, Symbolic execution, WCET refinement, Flow Facts

1 Introduction

Symbolic execution can analyze a program with high precision, by using symbolic instead of con-
crete input values of the program. Programs are symbolically executed path-wise, and each program
path is analyzed in isolation. This, however, comes at the price that every program path needs to be
symbolically executed in order to infer results that are valid for the entire program. In other words,
a full symbolic coverage of the program is needed for verifying program properties using symbolic
execution. As the number of paths increases exponentially with the number of conditionals in the
program, computing full symbolic coverage for larger applications is in practice not realistic. Ap-
plications of symbolic execution therefore only explore relevant parts of the program behavior and
compute a partial symbolic coverage of the program.

Such a compromise between precision and computability is also present in the Worst-Case Exe-
cution Time (WCET) analysis of programs. Namely, a successful WCET analysis requires a balance
between the speed and the precision of the deployed analysis. Precision of the analysis is gained by
applying powerful program analysis techniques that gather information about the program and pass

*This research is supported by the FP7-ICT Project 288008 T-CREST, the FWF RiSE projects S11408-N23 and
S11410-N23, the WWTF PROSEED grant ICT C-050, the FWF grant T425-N23, and the CeTAT project of the TU
Vienna.

© Armin Biere, Jens Knoop, Laura Kovács, Jakob Zwirchmayr;
licensed under Creative Commons License CC-BY

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


2 The Auspicious Couple: Symbolic Execution and WCET Analysis

it to further analysis- and computation-steps. Precision of the analysis yields tight WCET estimates,
however, at the cost of high computational effort; this sometimes prevents the analysis to terminate
within a given time-limit. Precision of the WCET analysis is therefore often traded for its speed:
faster analysis with likely imprecise WCET estimates is preferred to a precise but slow one. Follow-
ing this compromise, automated methods for refining imprecise WCET results into tighter ones are
needed in the WCET analysis of programs.

In this article we argue that combining symbolic execution with traditional WCET analysis yields
an efficient and precise method for computing WCET estimates. We show that, for using symbolic
execution in WCET analysis, a partial symbolic coverage of the program is sufficient to tighten
and, eventually, prove the computed WCET bound of the program to be precise. We do so by
applying selective symbolic execution over program parts and avoid the path explosion problem
of traditional symbolic execution. To this end, we use costly symbolic execution only for those
parts of the program that influence the WCET estimate. Our WCET-guided symbolic execution is a
precise selective symbolic execution for relevant parts of the program, and avoids the computational
overhead of full symbolic execution. Our workhorse in this article is the r-TuBound toolchain [16].

We extend r-TuBound with symbolic execution (Section 3) and present three existing applica-
tions of symbolic execution in r-TuBound for WCET analysis (Section 4):

We use symbolic execution in r-TuBound on selected program fragments to analyze programs
which could not be analyzed by r-TuBound due to a too restrictive programming model of [15];
We deploy symbolic execution in r-TuBound to compute loop bounds. This extension allows
r-TuBound to calculate loop bounds in cases where it has previously failed;
Based on the implicit path enumeration technique (IPET) [19], we use the result of an initial
WCET analysis and apply symbolic execution in r-TuBound to tighten initial WCET estimates
and eventually prove these bounds precise, by applying the work of [17].

Based on our current use of symbolic execution in r-TuBound, we also discuss further applications
of symbolic execution for the WCET analysis of programs (Section 5). These new directions rely on
partial symbolic coverage of the program and include:

inferring precise execution frequencies for loops with conditionals;
generating WCET path test-cases used in measurement-based WCET analysis tools;
automated support for mode-sensitive analysis of programs after an initial (IPET-based) WCET
analysis.

We believe that the WCET applications proposed and discussed in this article encourage the further
use of symbolic execution in WCET analysis. The symbolic execution extensions that are already
implemented in r-TuBound were successfully applied to examples coming from the WCET tool
challenge [10]: WCET estimates were tightened and the cost of symbolic execution was low. We are
confident that the overhead for the proposed applications of symbolic execution in WCET analysis
can be kept low, while providing valuable information about the program.

2 Preliminaries

In this section we give an overview of the main ingredients of symbolic execution and WCET anal-
ysis. For more details, we refer to [3, 6] and [15, 18], respectively.
Symbolic Execution. Symbolic execution uses symbolic instead of concrete input data to symbo-
lically execute a program. To do so, input variables of the program are assumed to be “symbolic,”
which means that they can have an arbitrary value (conforming to the specified data-type). If a con-
ditional statement splits the control-flow of the program, symbolic execution follows both successor
edges of the conditional, restricting possible values of symbolic variables according to the condition.
For example, if a conditional executes the true-edge of the condition only if a variable has a certain



A. Biere, J. Knoop, L. Kovács, J. Zwirchmayr 3

constant value, then symbolic execution assumes the constant value for the variable when following
this edge. Thus, symbolic variable values are restricted by path conditions or assumptions involving
the respective variable. This allows to track complex constraints for each variable and use solvers,
such as [5], to reason about the derived constraints.
Symbolic execution of programs with conditionals and loops often leads to the path explosion prob-
lem, as the number of paths needed to be symbolically executed increases exponentially with the
number of conditionals in the program. Hence, full symbolic coverage of larger applications is in-
feasible in practice. The problem of path explosion can be addressed in different ways, e.g., by using
heuristics for computing only partial symbolic coverage of the program, for instance in the context
of test-case generation and bug-hunting.
WCET Analysis. A static WCET analysis toolchain typically includes several high-level analy-
ses that gather so-called flow fact information about the program. Essential flow facts include loop
bounds and execution frequencies of conditional edges in the program. When computing WCET
estimates, the underlying hardware architecture needs to be analyzed for inferring execution times
of program blocks. Additional hardware features, such as cache-configuration and pipeline layout,
also need to be taken into account. Precision of WCET bounds denotes, in this article, that any
over-estimation of the WCET is due to an imprecise hardware modelling and not due to infeasible
paths.

With the block execution times computed for the program, various techniques can be applied to
find the path that exhibits the WCET of the program. One of the most common approaches is the
implicit path enumeration technique (IPET) [19]. It is applied to the control flow graph (CFG) of a
program and relies on the fact that each program execution satisfies the following flow properties:
(i) a program execution executes the entry point of the program once and (ii) other program blocks
are executed as often as their predecessor blocks. Therefore, any program block following the en-
try point is executed once, unless it appears in a conditional or loop statement. For a conditional
(iii) the total sum of the execution frequencies of its conditional blocks (denoted the true- and
false-block of the conditional) coincides with the execution frequency of the predecessor block
of the conditional, which is the condition-block. For blocks inside loops, (iv) the execution frequen-
cies are multiplied by the loop bound. Hence, when applying IPET, loop bounds are assumed to be
supplied as flow-facts.

To apply IPET, the program is represented as an integer linear program (ILP) where each pro-
gram block is modeled by an ILP variable that has the block execution time associated with it. An
ILP-solver [2] is then used to solve the flow problem (i) - (iv) specified above. By using an ILP
encoding on execution frequencies, the solution of the corresponding ILP problem assigns values to
the ILP variables, that is, execution counts of program blocks. The WCET estimate for the program
is then obtained by maximizing the sum of the products of execution frequencies and block execu-
tion times for each block.

As flow facts about programs are not always precise (e.g. loop bounds are not exact but are over-
approximated), the ILP encoding of the program usually encodes numerous spurious program paths.
Some of these spurious program paths might yield high execution times. Therefore, the WCET esti-
mate computed from the ILP solution is usually an over-estimation of the actual WCET: its precision
crucially depends on the quality of additional flow facts supplied to IPET. For example, supplying
additional flow facts that specify valid execution frequencies for conditional blocks can result in a
tighter WCET estimate.



4 The Auspicious Couple: Symbolic Execution and WCET Analysis

3 Selective Symbolic Execution in r-TuBound

In this section we describe our extensions to the r-TuBound toolchain [16], by integrating symbolic
execution into r-TuBound. The common theme of all these extensions relies on a selective use of
symbolic execution for timing analysis, instead of symbolically executing the whole program.

r-TuBound applies high-level analyses on the source level and calculates WCET estimates using
a low-level analyzer. In a nutshell, the main steps of r-TuBound are as follows. Given a program with
loops written in a restricted class of C, r-TuBound deploys interval and points-to analysis to derive
bounds, called loop bounds, on the number of loop iterations. The source code, annotated with the
results of these analyses, is then compiled by a WCET aware compiler. The resulting assembly is
analyzed by the WCET analyzer CalcWCET167 of the Infineon C167 microprocessor [14]. It applies
the IPET approach, solves the resulting ILP problems and derives WCET estimates as outputs.

Relying on the infrastructure of [16], we extended r-TuBound by symbolic execution.

Figure 1 Architecture of the WCET
toolchain. Colored parts rely on symbolic ex-
ecution.

Figure 1 shows the current workflow of r-TuBound,
where the colored components correspond to the new
extensions. We refined the loop bound computation
step of r-TuBound by exhaustive symbolic execution
for loops, implemented in the r-Loopbounds step
of Figure 1. We also added a selective symbolic engine
to r-TuBound for deriving tight WCET bounds, listed
as the Selective SE step of Figure 1. In the rest
of this section we describe the integration of symbolic
execution in r-TuBound.
Symbolic Execution and r-TuBound. We use the

symbolic execution engine of [3] in r-TuBound to construct a precise memory-model of a program.
Given an input program (written in C), the program is first parsed and stored as an abstract syntax
tree in the code-list. The code-list is then further processed: program paths are extracted and are
symbolically executed by writing and reading the symbolic representation of the program memory.
As a result, a representation of the symbolic program execution is obtained as a set of satisfiability
modulo theory (SMT) formulas, where the SMT formulas are expressed in theory of bit-vectors and
arrays. Verification conditions, expressing runtime and memory-access properties, are generated to
guarantee runtime- and memory-safety of the program (e.g. does not dereference NULL). Proper-
ties that hold in the symbolic representation of a program are also guaranteed to hold in the actual
program. Instead of symbolically executing all paths in the program, selective symbolic execution
allows to execute paths selectively by supplying a sequence of branching decisions that encode ex-
ecutions of the program. The branching decisions are extracted from the IPET solution. These
decisions allow to iteratively select and symbolically execute WCET paths. Precise constraints are
only inferred about the WCET path, reducing the costs for symbolic execution.

4 Precise WCET Analysis without Path Explosion in r-TuBound

Symbolic execution infers precise program properties that can further be used in an IPET-based
WCET analysis. Nevertheless, symbolic execution comes with the cost of analyzing each program
path, a practically infeasible task for large programs with loops and conditionals. To avoid this
problem, when using symbolic execution for WCET analysis in r-TuBound, we identify relevant
program parts, that is program fragments for which symbolic execution is necessary to be applied.
More precisely, we apply symbolic computation in the following three scenarios: (i) analyzing re-
duced program fragments in isolation of the entire program, by reasoning about single statements in
loop bodies, as well as about loops and nested loop structures, (ii) deriving loop bounds on the num-



A. Biere, J. Knoop, L. Kovács, J. Zwirchmayr 5

ber of loop iterations, and (iii) analyzing a small number of paths for refining and proving precise
WCET bounds. For doing so, (i) relies on the programming model of [15], (ii) makes uses of [3] and
is restricted only to the programming model of the underlying symbolic execution engine, and (iii)
is based on the theoretical framework presented in [17].

1: int main (int flag) {
2: int i;
3: for(i = 0; i < 5; i++)
4: if(i == 4 && flag) {
5: i = 0;
6: flag = 0;
7: }
8: }

Figure 2 Our running ex-
ample. All data is assumed
uninitialized.

In what follows, we overview the relevant parts of symbolic exe-
cution in each of the above scenarios of r-TuBound, and illustrate our
work on the example of Figure 2. Based on the current applications
of symbolic execution in r-TuBound, in Section 5 we will outline new
and ongoing applications of symbolic execution for WCET analysis.

(i) Analyzing reduced program fragments. We use the symbolic
execution framework of [3] to verify arithmetic properties about one
or more conditional updates of the loop counter in a loop. Symbolic
execution is appropriate in this setup as interval analysis often lacks
sufficiently precise analysis results. By using symbolic execution, in

the current version of r-TuBound we can verify arithmetic properties about loop counters without
the need of deriving tight intervals for the values of loop counters. Even more, we are able to
handle a more general programming model than the one used in [15]. Namely, we can analyze loops
whose conditional updates are arbitrary expressions in the combined theory of linear arithmetic,
bit-vectors and arrays, whereas [15] was restricted to the theory of linear arithmetic. If the such
derived arithmetic properties are proved to be correct by using [3], the loop bound computation step
of r-TuBound can safely be applied. Our use of symbolic execution also allows to merge conditional
updates of the loop counter into a so-called combined minimal update, which then yields a tighter
loop bound, and hence a tighter WCET estimate.
Example. The loop analysis step of [15, 16] fails to compute a bound for the loop in Figure 2. This is
so because the conditional update to the loop counter i (in line 5) violates the computed loop bound
in cases when the loop counter is reset, i.e. when flag is true. In Figure 2, i increases in the loop
header. Therefore, the r-Loopbounds step of r-TuBound symbolically executes the conditional
update for an arbitrary (i.e. symbolic) loop iteration and verifies that the conditional update can only
increase the value of i. If this property is violated, it is not safe to compute a loop bound using
the techniques of [15, 16] implemented in the Loopbounds step of Figure 1. In the example in
Figure 2, the property is false, the conditional update can decrease the loop counter, and therefore
no loop bound is computed.

(ii) Loop bound computation. If the loop bound computation step of [15] in r-TuBound fails, we
apply exhaustive symbolic execution of the reduced program in r-TuBound. As a reduced program
we consider the program that only contains the loop under study together with relevant variable
declarations, i.e. the variables used in the loop. Variable values are treated as symbolic, with the
exception of the loop counter. Additional information, such as intervals for variable values or
program slices, can also be supplied in this step to improve the precision of the loop bounds. A
supplied time-limit guarantees termination of the approach. The reduced program is symbolically
executed in r-TuBound, where r-TuBound initially sets the loop bound to 0. If symbolic execution
reports that the negation of the loop condition is unsatisfiable on the (unwound loop) path, the loop
bound is increased by one. Upon termination within the time-limit, no execution of the program
exhibits a higher loop bound. Such a use of symbolic execution in r-TuBound is especially useful
when bit-precise reasoning is required.
Example. The approach of [15] cannot derive a loop bound for Figure 2. Therefore, (bounded)
exhaustive symbolic execution is applied to only analyze the program loop. By using symbolic
execution in r-TuBound, we derive 9 as the exact loop bound of Figure 2.

(iii) Deriving precise WCET bounds. The WCET analysis approach presented in [17] relies on the



6 The Auspicious Couple: Symbolic Execution and WCET Analysis

tight combination of a symbolic execution engine and a WCET analyzer. It first applies an IPET-
based WCET analysis that yields an ILP problem that encodes constraints on the program flow and
a WCET estimate. Next, symbolic execution on single program paths is applied in order to infer
constraints that allow tightening and ultimately proving the WCET bound precise. For doing so,
the ILP solution describing the execution frequencies of program blocks and the ILP problem is
analyzed, and one or more spurious program execution traces exhibiting the WCET are identified.
These execution traces are then excluded from the set of possible program executions, by adding
a new ILP constraint to the ILP problem. The resulting new ILP problem is then used in the next
iteration of the approach, by again applying IPET in combination with symbolic execution. In each
iteration either a new and lower WCET estimate is derived or a program trace exhibiting the old
WCET is obtained. In the latter case, the computed WCET is the actual WCET of the program, and
the algorithm terminates. The computed WCET is precise wrt the underlying hardware-model.

Note that in [17] only paths extracted from the ILP solution are symbolically executed, avoiding
thus the full path explosion problem. problem of symbolic execution. The WCET estimates serve
here as a measure for the relevance of paths: they allow to select relevant paths that need to be sym-
bolically executed in order to tighten the WCET.

We implemented the approach of [17] in r-TuBound and describe it here. The program is parsed
and the IPET approach is applied. An ILP problem is next obtained and solved, by using the ILP
solver lp_solve of [2]. The obtained ILP solution encodes a WCET estimate of the program. Fur-
ther, the execution trace specified by the ILP solution is (re)-constructed. We encode execution
traces as sequences of branching decisions, where branching decisions are obtained as follows. For
each conditional block, i.e. a program block with jump-instructions to other blocks, the execution
frequency of the jump-targets specifies which block is assumed to be executed on the path exhibit-
ing the WCET estimate. If the condition evaluates to false, the else-block of the conditional is
executed. Thus, the ILP solution specifies an execution frequency of 0 for the then-block and an
execution frequency of 1 for the jump-target, the else-block. The inferred branching decision is f.

If both edges of a conditional have an execution frequency ≥ 0 in the ILP solution, both program
blocks of the conditional are executed. In this case, the WCET candidate encodes multiple actual
program executions. Hence, from the ILP solution, one or more program paths exhibiting the WCET
estimate can be constructed. We therefore refer to program paths exhibiting the WCET as WCET
trace candidates. If one of these is feasible, the computed WCET bound is proven precise and yields
the actual WCET of the program in the underlying hardware model. If all of them are infeasible, the
ILP problem of IPET can be refined and a tighter WCET estimate can be computed. WCET trace
candidates in r-TuBound are expressed as SMT formulas in the combined theory of bit-vectors and
arrays, and the SMT solver Boolector [5] is used to check their feasibility. In our current r-TuBound
implementation we rely on a manually constructed mapping between the assembly analyzed with
CalcWcet167 and the source of the application. In other words, we manually verify that the source
and assembly exhibit a compatible branching behaviour. Construction of this mapping can be omit-
ted when symbolic execution is performed on the binary level.
Example. The initial ILP solution derived from the ILP problem of IPET (using the loop bound
9) specifies the execution of the conditional block in each iteration of the loop in Figure 2. The
WCET trace candidate extracted from the ILP solution encodes exactly one program path; this path
executes the conditional block 9 times. This WCET trace candidate is specified by the following
sequence of branching decisions t. . .t (9 times t), where t denotes the true-edge of the condi-
tional statement. By symbolically executing this WCET trace candidate, we derive the infeasibility
of t. . .t. Thus, an additional ILP constraint is constructed to exclude this WCET trace candidate
from the ILP problem. The new ILP problem is solved again, yielding a tighter WCET estimate
and new WCET trace candidates. This process is iterated until a feasible WCET trace candidate is



A. Biere, J. Knoop, L. Kovács, J. Zwirchmayr 7

found. In Figure 2, a feasible WCET trace candidate is derived after 8 iterations. As a result, the
exact execution frequency of the true-block of the conditional is inferred and constrained to 1. In
a simplified scenario where execution of each program instruction takes 1 time unit (t), the actual
WCET of the program is then derived to be 40t. The WCET is derived by summing up the execution
times (a)-(c): (a) the initialization in the loop header (i=0) takes 1t; (b) Among the execution fre-
quencies of loop iterations, based on the derived execution frequency of the conditional statement,
the following case distinction is made: for 8 loop iterations, an iteration takes 4t, 1t is the evaluation
of the loop condition i<5, 2t are needed to execute the condition i==4 && flag of the condi-
tional (two instructions) and 1t is taken for the loop counter increment i++. All together, these eight
loop iterations take 32t . One loop iteration, namely the one in which the conditional statement is
executed, requires 6t to be executed. When compared to the previous cases, the additional 2t result
from the execution of the true-block of the conditional. (c) The last evaluation of loop condition
i < 5 after 9 loop iterations takes 1t.

Summarizing, the applications (i)-(iii) discussed above share a common approach: instead of
symbolically executing the entire program, selective symbolic execution is performed only on frag-
ments or single paths of the program in order to prevent symbolic execution from running into the
path explosion problem.

5 Further Applications of Symbolic Execution for WCET

In this section, we discuss three additional applications of symbolic execution in WCET analysis,
by using the symbolic execution framework presented in Section 3. Similarly to Section 4, these
applications apply only partial symbolic coverage of the program. The material presented in this
section is work-in-progress and requires further experimentation.
Precise execution frequencies for loops. When the loop bound computation techniques of [15] fail,
exhaustive symbolic execution of the loop is applied as described in Section 4(ii). The application
scenario of Section 4(ii) can be further extended to compute execution frequencies for conditional
blocks inside the loop: by applying exhaustive symbolic execution, a loop bound and feasible WCET
traces are derived. The execution frequencies of program blocks in the feasible traces is also ob-
tained. In case of multiple feasible traces, a set of execution frequencies is inferred for each block.
We then set the execution frequency of a block to be less or equal to the highest and greater or equal
to the lowest value among its set of possible execution frequencies, and use this value in the ILP
encoding of the program. To ensure that the such chosen execution frequency is precise, we use the
approach of Section 4(iii) and iteratively refine the execution frequency of each edge inside the loop.
Example. Consider Figure 2 again. An initial IPET-based WCET analysis (without additional flow
facts) sets the execution frequency of the true-block of the conditional to 9. By applying our
approach, we use exhaustive symbolic execution on the loop of Figure 2. As a result, we derive
the maximum execution frequency of 1 for the true-block of the conditional. Using this additional
flow fact in the initial IPET-based WCET analysis, the precise WCET of the program is also derived.
(ii) WCET path test-cases. Our implementation of Section 4(iii) in r-TuBound can also be used to
generate WCET path tests-cases. The approach of Section 4(iii) already extracts and symbolically
executes WCET trace candidates. A symbolic execution engine can be used to generate concrete pro-
gram inputs from the trace that is symbolically executed, forcing actual executions of the program
to follow the same trace. The program inputs for feasible WCET trace candidates thus represent
program inputs which lead to the execution of the actual WCET path, that is, a concrete program
path exhibiting the WCET. The program inputs generated by symbolic execution can be used by
hardware-aware dynamic WCET analyzers, see e.g. [20], to take additional, hardware-dependent,
time measurements. We refer to such analyzers as measurement-based WCET analyzers. The gen-
erated test-cases can help measurement-based WCET analyzers to derive relevant timing behavior



8 The Auspicious Couple: Symbolic Execution and WCET Analysis

of the application on the WCET path. At the same time, the measurements can be used as feedback
about the precision of static analyzers: little variation between the statically computed WCET esti-
mate and the measurements on the WCET path are an indication of precision of the static analyzer.
Even more, the statically calculated WCET estimate must never be below the WCET value reported
by the measurement-based analyzer.
Example. Consider Figure 2. The WCET analysis of Section 4(iii) infers the WCET path to execute
the true-block of the conditional once, when i is 4 and when the value of the symbolic variable
flag is assumed to be true. Based on the symbolic execution of this WCET trace, the symbolic
execution engine in r-TuBound generates a test case which initially assumes flag to evaluate to
true. Supplying this input to a measurement-based WCET analyzer that runs the actual program
allows to take measurements on the WCET path.
(iii) Mode-sensitive analysis. The symbolic execution engine of r-TuBound used in Section 4(iii)
can further be used to support automated mode-sensitive WCET analysis. Modes characterize a
certain state that the program is executed in. For example, the program could be in a “normal
operation,” an “initializing” or an “error” mode. Given a program, its precise WCET is derived
using the method of Section 4(iii). Assume now that the program is modified, e.g. , by setting a
program flag resulting in a different mode of execution. The approach of Section 4(iii) will then
automatically recompute the WCET for the modified program. This mode-sensitive behaviour can
be observed in functions from the Mälardalen benchmark suite of [10], where the flags (init,
found) control the execution mode and thus the WCET path. These control variables are not yet
found automatically in r-TuBound. However, simple methods could be used to identify these flags,
for example by checking whether two conditions are mutually exclusive. We leave the integration of
r-TuBound with such techniques for further work.
Example. Consider again Figure 2 and assume that flag == true indicates an error-mode.
Changing the initial value of the variable flag from uninitialized to false changes the feasible
WCET path of the program, and hence the WCET. In the such modified program the approach of
Section 4(iii) infers that the loop is executed 5 times instead of 9 times as computed in Section 4.
Applying the technique of Section 4(iii) to the modified program incrementally changes the ILP to
reflect the change in the program behavior, resulting in a WCET for the new WCET path, that is a
WCET when the program is not executed in the error mode.

Summarizing, similarly to Section 4 the three applications discussed in this section selectively
apply symbolic execution to the program. In (i), we argue that bookkeeping the exact frequencies
of program blocks can be done in a cheap way and exhaustive symbolic execution can be applied to
derive loop bounds. In (ii) and (iii) we rely on the implemented symbolic execution infrastructure
and use it in conjunction with the approach of Section 4(iii). This way, we only apply symbolic
execution on a (reduced) number of WCET trace candidates, and avoid the burden of exploring all
program paths.

6 Related Work

Symbolic execution was originally used for test-case generation and has recently found more and
more applications in program verification, for example, in bug-hunting [6]. Applications of sym-
bolic execution in program verification use various heuristics to speed up symbolic execution, iden-
tify and track relevant program information and use constraint solvers to prove caching queries. Our
symbolic execution engine in r-TuBound offers only few heuristics and derives as much program
information as needed for the WCET analysis. In general, inferring precise program information
comes with high computational costs, a problem which we avoid by using selective symbolic execu-
tion: r-TuBound applies symbolic execution only when information about the program is too coarse



A. Biere, J. Knoop, L. Kovács, J. Zwirchmayr 9

or when other analysis methods fail.
A similar idea is presented in [4] where symbolic execution is used to refine spurious def-use

results via a path feasibility analysis. In [4] branching decisions are determined at compile time and
used to identify and remove infeasible paths. This method can be seen as a light-weight on-demand
symbolic execution of conditional nodes, whereas symbolic execution in r-TuBound always executes
single paths.

Symbolic execution for WCET analysis is also used in [13] and avoids some typical pitfalls of
symbolic execution. For example, loops are not unfolded and hence multiple executions of the same
block are omitted. We note that [13] analyses each program block whereas our selective symbolic
execution approach in r-TuBound only analyses relevant program blocks and paths.

A related approach is the abstract execution framework of [11], where context-sensitive abstract
interpretation is applied to analyse loop iterations and function calls in separation. Instead of apply-
ing a fix-point analysis, abstract operations on abstract values are applied in [11], where an abstract
value can, e.g. , be represented as an interval. When abstract values prevent the evaluation of a con-
ditional, both branches need to be followed. Abstract states can be merged at join points to prevent
the path explosion problem. As a result, a single abstract execution can represent execution of mul-
tiple concrete paths. This is not the case in the traditional use of symbolic execution. Compared to
r-TuBound, abstract execution in [11] analyses the entire program, whereas in r-TuBound we apply
symbolic execution only to relevant parts of the program. An integration of abstract execution in
r-TuBound is an interesting research direction for future work.

In the traditional use of static WCET analyzers, high-level tools gather flow fact information
about the program under analysis. This information is subsequently used in further (low-level)
WCET analysis. Static WCET analyzers, see e.g. [16, 1, 9], often use the IPET technique [19] to
calculate WCET estimates. This leads to an over-estimation of the WCET since the IPET modeling
of a program usually encodes spurious execution traces that are infeasible in the concrete program.
The approach of [17] addresses the problem of refining imprecise WCET estimates, by using sym-
bolic execution in conjunction with IPET. We implemented this combination in r-TuBound. The
results and applications of our implementation offer an automated technique to reduce, and possi-
bly avoid over-estimation in WCET computation. A similar method is presented in [12], where an
ILP encoding of the program is used to check whether partial solutions of a specific size to the ILP
problem yield infeasible program paths. Feasibility of solutions is checked using model checking,
by encoding block execution frequencies as program assertions. Unlike [12], we apply path-wise
symbolic execution to avoid model checking the entire program and use SMT solving for checking
feasibility of program paths.

Measurement-based timing analysis techniques, such as [20], can be seen complementary to
static WCET analysis tools. Measurement-based tools require test inputs that cover a sufficient por-
tion of the program executions to infer a tight WCET bound with a high confidence. The method
of [20] systematically generates test-cases for arbitrary program executions, based on model check-
ing and various heuristics. In the proposed application of symbolic execution in r-TuBound we
generate test-cases only for program executions along the WCET trace candidate path(s).

A different approach to WCET analysis is given in [7], that relies on segment- and state-based
abstract interpretation [8]. This state-based approach has similarities with the ILP problem refine-
ment of r-TuBound. Integrating this approach in r-TuBound is an interesting task to be investigated.

7 Conclusion

We outlined applications of symbolic execution in WCET analysis, as implemented in r-TuBound:
reasoning about single statements in loops, computing loop bounds, and refining the results of an



10 The Auspicious Couple: Symbolic Execution and WCET Analysis

a-priori used WCET analyzer. The approaches have successfully been tested on a number of WCET
benchmarks. Additional applications of symbolic execution can be implemented in r-TuBound by
only minor changes of the underlying symbolic execution engine. With such changes at hand, we are
confident that symbolic execution can also be used in hardware-aware dynamic WCET analyzers.
We believe that, an efficient use of symbolic execution, called selective symbolic execution in this
article, gives a valuable extension to the program analysis toolbox applied in WCET analysis.

References

1 C. Ballabriga, H. C. Hugues, C. Rochange, and P. Sainrat. OTAWA: an Open Toolbox for Adaptive
WCET Analysis. In Proc. of IFIP Workshop (SEUS), pages 35–46, 2010.

2 M. Berkelaar, K. Eikland, and P. Notebaert. lp_solve 5.5, Open source (Mixed-Integer) Linear
Programming system. Software, 2004. http://lpsolve.sourceforge.net/5.5/.

3 A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. SmacC: A Retargetable Symbolic Execution
Engine. In Proc. of ATVA, 2013. To appear.

4 R. Bodík, R. Gupta, and M. L. Soffa. Refining Data Flow Information Using Infeasible Paths.
SIGSOFT Softw. Eng. Notes, 22(6):361–377, Nov. 1997.

5 R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays. In
Proc. of TACAS, pages 174–177, 2009.

6 C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three Decades Later. Commun.
ACM, 56(2):82–90, 2013.

7 P. Cerny, T. Henzinger, and A. Radhakrishna. Quantitative Abstraction Refinement. In Proc. of
POPL, pages 115–128, 2013.

8 P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Proc. of POPL, pages 238–252, 1977.

9 J. Gustafsson. SWEET: SWEdish Execution Time tool. Software, 2001. http://www.mrtc.
mdh.se/projects/wcet/sweet/index.html.

10 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET Benchmarks: Past,
Present and Future. In Proc. of WCET, pages 136–146, 2010.

11 J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic Derivation of Loop Bounds
and Infeasible Paths for WCET Analysis Using Abstract Execution. In RTSS, pages 57–66, 2006.

12 Ho Jung Bang and Tai Hyo Kim and Sung Deok Cha. An Iterative Refinement Framework for
Tighter Worst-Case Execution Time Calculation. In Proc. of ISORC, pages 365–372, 2007.

13 D. Kebbal and P. Sainrat. Combining Symbolic Execution and Path Enumeration in Worst-Case
Execution Time Analysis. In Proc. of WCET, 2006.

14 R. Kirner. The WCET Analysis Tool CalcWcet167. In Proc. of ISoLA (2), pages 158–172, 2012.
15 J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic Loop Bound Computation for WCET Analysis.

In Proc. of PSI, pages 116 – 126, 2011.
16 J. Knoop, L. Kovács, and J. Zwirchmayr. r-TuBound: Loop Bounds for WCET Analysis. In Proc. of

LPAR, pages 435 – 444, 2012.
17 J. Knoop, L. Kovács, and J. Zwirchmayr. WCET Squeezing: On-demand Feasibility Refinement.

Technical Report 2013-V-1, TU Vienna, Institute of Computer Languages, May 2013.
18 A. Prantl, M. Schordan, and J. Knoop. TuBound - A Conceptually New Tool for Worst-Case

Execution Time Analysis. In Proc. of WCET, 2008.
19 P. P. Puschner and A. V. Schedl. Computing Maximum Task Execution Times – A Graph-Based

Approach. Real-Time Systems, 13(1):67–91, 1997.
20 M. Zolda and R. Kirner. Compiler Support for Measurement-based Timing Analysis. In Proc. of

WCET, pages 62–71, 2011.

http://lpsolve.sourceforge.net/5.5/
http://www.mrtc.mdh.se/projects/wcet/sweet/index.html
http://www.mrtc.mdh.se/projects/wcet/sweet/index.html

	Introduction
	Preliminaries
	Selective Symbolic Execution in r-TuBound
	Precise WCET Analysis without Path Explosion in r-TuBound
	Further Applications of Symbolic Execution for WCET
	Related Work
	Conclusion

