
FFX: A Portable WCET Annotation Language

Armelle Bonenfant, Hugues Cassé,
Marianne de Michiel

IRIT - Université de Toulouse
118 route de Narbonne, F-31062 TOULOUSE

[michiel,casse,bonenfant]@irit.fr

Jens Knoop∗, Laura Kovács∗†, Jakob
Zwirchmayr∗‡

E185.1 - Vienna University of Technology
Argentinierstraße 8, A-1040 VIENNA

[knoop,lkovacs,jakob]@complang.tuwien.ac.at

ABSTRACT
In order to ensure safety of critical real-time systems it is
crucial to verify their temporal properties. Such a property
is the Worst-Case Execution Time (WCET), which is ob-
tained by architecture-dependent timing analysis and arch-
itecture-independent flow fact analysis. In this article we
present a WCET annotation language which is able to ex-
press such information originating from the user or the anal-
ysis. The open format, named FFX to stand for Flow Facts
in XML, is portable, expandable and easy to write, under-
stand and process.

We argue that FFX allows to reuse and exchange the an-
notation files among WCET tools. FFX therefore permits
to tighten WCET results and decreases the effort to sup-
port new architectures. Additionally, FFX flow fact files
allow fair comparisons of both flow facts and WCET results.
FFX can be used for quality assurance when developing
new analysis techniques, using it as a flow fact database
to test against. We present a small case study exemplify-
ing the above points. Our case study puts special focus
on the aspect of comparability and information exchange
among WCET tools. In our experiments with FFX, we
use the WCET analysis tool chains Otawa/oRange and r-
TuBound/CalcWCET167.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time systems and embedded systems

∗This research is partly supported by the FP7-ICT Project
288008 Time-predictable Multi-Core Architecture for Em-
bedded Systems (T-CREST), the FWF National Research
Network RiSE (S11410-N23) and the WWTF PROSEED
grant (ICT C-050).
†L. Kovács is supported by an FWF Hertha Firnberg Re-
search grant (T425-N23).
‡J. Zwirchmayr is supported by the CeTAT project of TU
Vienna.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
RTNS’12 , November 08 - 09 2012, Pont a Mousson, France
Copyright 2012 ACM 978-1-4503-1409-1/12/11 ...$15.00.

1. INTRODUCTION
Critical hard real-time systems are composed of tasks which

must imperatively finish before their deadline. A task schedul-
ing analysis, requiring a priori WCET analysis of each task,
is performed in order to guarantee safety of the system.

Static WCET analysis is performed using timing analysis
tools which need flow fact information about the program
under analysis. Such information may be given manually by
the developer or inferred automatically by a flow fact ana-
lyzer. Well-known WCET tools, such as aiT [1], Bound-T
[22] or SWEET [8], use so-called annotation languages in
order to carry gathered information. In [12] the authors de-
fine and summarise ingredients of an annotation language in
order to classify the information needed by the WCET anal-
ysis performed by various WCET tools. Following this line,
the recent work of [13] encourages the WCET community to
converge towards the use of a common annotation language
for comparing various WCET tools.

In this article we address this suggestion and introduce
a portable annotation language, called FFX (Flow Facts in
XML). Fig. 1 illustrates the difference between the tradi-
tional workflow of WCET analyzers (Fig. 1(a)), relying on
an internal format to exchange information between front-
end and back-end, and the workflow of WCET analyzers us-
ing a portable annotation format, as proposed in this article
(Fig. 1(b)). By a WCET analysis tool chain of a WCET
analyzer we mean the full collection of tools used to ana-
lyze a program. Usually, a WCET analysis tool chain con-
sists of architecture-independent high-level analyzers gath-
ering flow facts about the program, e.g. oRange [3] or r-
TuBound [15]. Such tools we name the WCET front-end.
The parts of a WCET analysis tool chain that operate on
the architecture-dependent lower level, we denote as WCET
back-end, e.g. Otawa [3] and CalcWCET167 [11].

The workflow presented in Fig. 1(b) emphasizes the con-
tributions of this article. FFX portability allows one to use
and reuse results from one tool within another tool. As
back-ends might support multiple architectures, such an in-
termediate format allows one to extend the usage of various
WCET tools to different platforms and architectures. The
intermediate format in our case is FFX. A presentation of
the FFX format is already reported in [4]. In this article we
extend [4] by the following aspects.

(i) We propose an open, portable and expandable anno-
tation format, called FFX, as an intermediate format for
WCET analysis. Such an annotation format is needed for
a fair comparison of various WCET results. For instance,
during the WCET tool challenge [23] almost all participants

(a) (b)

Figure 1: (a) shows the traditional workflow of WCET analyzers using different internal formats. (b) shows
the abstract setup of the FFX experiment for an arbitrary number of WCET analysis tool chains. It depicts
tool chain 1 translating its internal format to the intermediate format, tool chain 2 supporting it natively
and tool chain n dropping its internal format in favor of the intermediate format.

had trouble annotating the benchmarks with the supplied
flow constraints: the restrictions, often formulated in natu-
ral language, can be hard to understand correctly and even
harder to annotate in a given flow fact language. We believe
that with such an annotation language at hand, it is easier
to tackle the WCET tool challenge and possibly open the
opportunity for other tools to participate.

(ii) The FFX format allows combining flow fact infor-
mation from different high-level tools. WCET analysis is
usually two-fold: the timing analysis part is architecture-
dependent, whereas the flow fact analysis is not. For this
reason one cannot compare results from tools that do not
support a common architecture, e.g. ARM or PowerPC, in
the WCET tool challenge. With the FFX format at hand,
we believe tools have the opportunity to extend their flow
fact analysis to other architectures that are not supported
by their original tool chain.

(iii) FFX decreases the implementation effort when in-
tegrating different WCET analysis tool chains. One could
argue that integration of two WCET analysis tool chains by
supporting the native format of the other tool chain has the
same implementation effort. Nevertheless, when using the
intermediate format FFX, the effort decreases with a higher
number of tool chains involved. Consider Fig. 1. Adding
another tool, that is Tool n+1, to Fig. 1(a) requires to im-
plement n translations to the native formats of the other
tools. Using Tool n+1 in Fig. 1(b), with FFX as inter-
mediate format, reduces implementation effort to exactly 2
translations. Moreover, an intermediate format comes with
the advantage that a change in the internal format of a spe-
cific tool does not require all the other tools to update their
translation. Because of this decoupling, it is only necessary
to update the translation from FFX to the modified internal
format for one tool [6].

(iv) Introducing a common annotation language is impor-
tant in order to tighten and compare WCET results. FFX
allows to perform the timing analysis by using an annota-

tion file from arbitrary source, for example provided by users
or inferred by a flow fact analyzer. To improve the WCET
accuracy, a tool could use annotations provided by another
flow fact analyzer. It is possible to merge the results of
several flow fact analyzers in order to obtain the most ac-
curate information available. This approach is already used
partially in the Otawa tool in order to collect and merge
analysis information from several sub-analyzers.

(v) FFX can be used for quality assurance to test and
validate new analysis techniques and tools against. This is
achieved by using FFX as a flow fact storage or knowledge
base about benchmarks. Therefore, we believe that having
the same annotation language, i.e. FFX, will also help the
real-time systems developers. They will be able to adapt
their choice of WCET tool to their targeted architecture or
type of programs without learning a new format or tool.

(vi) We introduce an FFX support for the r-TuBound tool
and perform experiments with FFX using r-TuBound and
oRange. To this end, we instantiate Fig. 1(b) with the r-
TuBound tool [15] and the oRange tool [16] as high-level
tools, and use FFX as intermediate format. Otawa [3] and
CalcWCET167 [11] serve as WCET back-ends for the tool-
chains. We thus get two sets of comparable FFX flow facts
and two WCET estimates for each of the architectures sup-
ported by the two tool chains. Additionally, it is possible to
combine the flow facts gathered by the tools to get a more
accurate WCET estimate. We report on our experiments
and conclude both practical and theoretical benefits of us-
ing a common format that allows to exchange flow facts and
back-ends for the WCET analysis of systems.

Let us note that the approach pursued with the FFX for-
mat is especially suited for WCET analysis tools that per-
form the high-level WCET analysis on source level. This
is so because WCET tools usually define ways to safely
map source constructs to locations in the binary represen-
tation (for example, by using debugger information, by pre-
venting certain compile time optimizations, or by safely co-

transforming the annotations depending on the optimiza-
tions applied). Naturally, flow facts extracted on binary level
can also be stored in FFX format, nevertheless, caution is
required when comparing these with flow facts constructed
from source level, as the mapping of source level constructs
to the binary representation can be tricky.

This article is structured as follows. After focusing on
related work in Section 2, we present in Section 3 the in-
gredients of the FFX annotation language, followed by a
short description of the Otawa/oRange tool in Section 4.1.
Otawa/oRange use FFX as their native annotation language.
In Section 4.2 we give an overview about r-TuBound/Calc-
WCET167 and describe initial FFX support. We then inves-
tigate benefits of using FFX on our case study examples and
present our results in Section 5. In Section 6, we conclude
and discuss future extensions of the approach.

2. RELATED WORK
The majority of existing WCET tools come with their

own annotation language to carry flow facts. For example,
the SWEET tool [8] uses a flow information format called
“context-sensitive valid-at-entry-of flow facts”, the aiT tool
uses the “aiS” format [1], and the Bound-T tool uses the
“Bound-T Assertion Language” [22].

SWEET offers “value annotations” to specify constraints
on possible input values of a program, and allows to anno-
tate flow facts in both local and global contexts. Addition-
ally, flow information can be marked to hold only in certain
function call-string contexts [8]. On the other hand, aiT
understands both source level annotations as well as binary
annotations, using the aiS format. It uses program points to
identify source locations as addresses, routine and file names,
and it combines so-called atoms to construct more complex
flow facts. Bound-T uses source-code mark positions and
carries additional assertions in a text file. Assertions are
statements about the program that bound certain aspects
of the behaviour, e.g. loop bounds or information about the
stack usage. Bound-T assertions are then valid flow infor-
mation at certain program points, identified by the markers.

Basic annotations, e.g. loop bounds, are supported by all
aforementioned annotation languages. Nevertheless, the for-
mats of deployed annotations are quite different. In what fol-
lows, we argue that our intermediate flow fact format FFX
allows to specify important flow information in most WCET
analyzers. We therefore believe, that even if some flow facts
from different tools cannot yet be formulated in FFX, our
work already supports many properties of state-of-the-art
annotation languages. Thus, FFX can be used to make
fair comparisons in order to gain comparability between the
tools. Further, it allows to exchange and interchange in-
formation and back-ends between tools, resulting in better
WCET estimates when using the tools in collaboration.

The approach of [17] argues that source based annotations
are portable, easy to use and flexible to integrate in existing
tool chains. FFX follows this line of argument by focus-
ing especially on the flexible integration within existing tool
chains.

The strength of FFX has already been shown to some ex-
tent in [3], as it is the internal format of the oRange/Otawa
tool. oRange/Otawa benefits from the fact that all com-
ponents of the tool chain use a common format to carry

analysis information. Additionally, in the Merasa1 project
the FFX format was successfully used in order to compare
results of Otawa [3] with RapiTime2. FFX thus already
proved to be a suitable annotation language as the internal
format of the Otawa/Orange WCET tool chain [3]. Adding
FFX support for r-TuBound/CalcWCET167, as presented
in this article, shows that FFX is also suitable for interme-
diate flow fact representation.

The FFX format described in this article extends [3] and
supports most of the ingredients proposed in [12]. Unlike
[12], where only the theoretical benefits of a common anno-
tation language are discussed, in this article we propose FFX
as a common annotation language. We address both theo-
retical and practical details of FFX as a common annotation
language and present initial experiments with FFX. As the
format is expandable, we believe that all the required ingre-
dients of an annotation language can be supported without
breaking compatibility with tools not supporting new infor-
mation.

3. THE FFX ANNOTATION LANGUAGE
The FFX format has been introduced for and with the

Otawa WCET analysis tool chain [5]. FFX is an XML-based
file format that is used to represent flow facts. Such infor-
mation is either used to help to achieve the computation, or
to exhibit WCET in particular situations. The main con-
cepts and ideas that drive the design and the development
of FFX include – freedom: tools using FFX do not need to
support all features. In the worst-case, unsupported features
induce a loss of precision but never invalidate information;
expandability : the use of XML allows to easily insert new
elements or new attributes without breaking the compati-
bility with other tools; soundness: all provided information
must be ruled by a precision order, ensuring that, at least,
information in most generic cases must not be more precise
than in particular cases.

One of the goals of FFX is to have an annotation lan-
guage that can be extended by constructs that yield im-
provements in the WCET computation, e.g. flow facts (loop
bounds, exclusive paths, indirect function calls, control flow
constraints, etc.), platform configuration (I/O, caches, etc.),
target processor, tasks or entry points, configurations of an-
alyzers, data domain information and more.

Another motivation for FFX is to have the capability to
merge the result files of different tools, allowing the tools
to interchange information, e.g. between the cache analyzer
and the flow fact analyzer. The choice to carry all that
information in a single file is made in order to take into ac-
count the enormous number of paths and context sensitive
information in a program. Carrying all this information di-
rectly in the source would clutter the source under analysis.
Obviously this comes with a drawback, storing the infor-
mation external to the source file could lead to divergence
between code and information. This however, is a matter of
bookkeeping, as one can, e.g. use version strings or source
hashes to avoid divergence. FFX offers means to store that
information, for example, in constructs comparable to the
already mentioned platform configuration part. Addition-
ally it eases communication between tools that apply the
analysis results on different representations, be it on source

1http://www.merasa.org
2http://www.rapitasystems.com/

http://www.merasa.org
http://www.rapitasystems.com/

or binary level.
The XML nature of the format allows to collect informa-

tion provided by different tools3. XML is standardized, easy
to read and write for the developer as XML is a textual for-
mat and it offers great tool and library support. Its tree
structure is particularly interesting when representing con-
trol flow graphs, as it can implicitly represent a call graph.

3.1 FFX Elements
In this subsection we present the most important elements

of FFX, fully described in [5]. The notation uses EBNF rule
format. We focus here on flow fact elements4.

At the current state of development, FFX permits to ad-
dress interesting program parts and to express information
to resolve complex control structures, e.g. indirect branches
due to switch statements that are compiled to function ta-
bles or function pointer calls. An FFX file may include only
the code parts for which flow facts have been derived.

3.1.1 Location Attributes
Location attributes (Fig. 2) allow to identify code either

in the binary or in the source representation of the program.
This is done using different sets of attributes depending on
the constructs used.

LOCATION-ATTRS ::=
| IDENTIFICATION
| ADDRESS-LOCATION
| LABEL-LOCATION
| SOURCE-LOCATION

Figure 2: FFX Location Attributes

IDENTIFICATION: Instead of identifying concrete loca-
tions in the program, it allows to make references to parts
in the code represented by the other location attributes. A
typical usage is to annotate the execution count of a piece
of code inside a control constraint.

ADDRESS-LOCATION: Location by an address is the
simplest scheme. A target location is represented as an ad-
dress stored in an attribute. The drawback is that the lo-
cation may be invalidated each time the application is com-
piled.

LABEL-LOCATION: The label location provides more
flexibility. It encodes locations either by a label, or by a
label and an offset. This scheme does not support recompi-
lation but relinking of libraries, as the code is not modified.
It only requires the translation of the label address from one
position to another.

SOURCE-LOCATION: Source locations support recom-
pilation and relinking but not source modifications. It de-
fines the location as a source file name together with a line
number in the file. To be applicable, it requires either a
source representation or a binary representation embedding
debugging information. It is preferable to have only one
statement per line, otherwise ambiguity can emerge between
locations in certain circumstances. It is necessary to obtain

3XInclude http://www.w3.org/TR/xinclude/
4An example for the usage of cache analysis results is given
in [2].

an XML tree corresponding to the call graph, which is guar-
antied if there is only one statement per line.

3.1.2 Context Elements
A context element (Fig. 3) defines a condition on the in-

formation it contains. Information embedded in unsatisfied
contexts is not considered, i.e. only information contained
in valid contexts is used in further analysis.

CONTEXT ::=
<context name="TEXT">
TOP-LEVEL-ITEM*

</context>

Figure 3: FFX Context Element

<context name="arm">
<function name="f">
<loop maxcount="10"/>

</function>
</context>

<context name="arm">
<context name="task_1">
<function name="f">
<loop maxcount="5"/>

</function>
</context>

</context>

Figure 4: FFX Context Example

Consider, for example, Fig. 4: if the only valid context
is arm, the loop bound will be 10. If both context arm and
task_1 are valid, the bound 5 will be used for further anal-
ysis.

Note that context names may be classified and prefixed us-
ing the following constructions below: hard:TEXT for hard-
ware contexts, task:TEXT for task contexts and scen:TEXT

for scenario contexts.
A hardware context represents different behavior of an

application, depending on the underlying hardware. For ex-
ample, the number of possible iterations of a loop counting
the number of one-bits in a word depends on the size of the
word. It will be 32 on 32-bit machines and 64 on 64-bit
machines.

Functions composing an application may be called from
different tasks that make up the real-time system. Depend-
ing on the task calling the functions, some flow properties
may have different values. One could just take the worst-
case behavior to characterize the functions, independent of
the context. Nevertheless, this would come at the price of a
loss of precision and an overestimation of the WCET.

Finally, flow information may depend on a chosen sce-
nario. For example, an execution configuration chosen by
the user, or a system that exhibits state variables control-
ling the running mode of the application. These might bring
the application to a “running state”, “failure state” or “crit-
ical state”. It may be interesting to examine the different
properties of a task according to the running mode, as the
scheduling decisions can also change accordingly. In addi-
tion, the properties defined in a scenario may also be used
to force the behavior of the task, for example, by fixing the
value of the state variables.

http://www.w3.org/TR/xinclude/

3.1.3 Control Flow Elements
A function element (Fig. 5) represents the static code lo-

cation for the given function. It can contain statements and
thus allows to identify and access dynamic locations inside
the function.

FUNCTION ::=
<function LOCATION-ATTRS INFORMATION-ATTRS>
STATEMENT*

</function>

Figure 5: FFX Functions

The LOCATION-ATTRS identify the static location of
the function in the code. INFORMATION-ATTRS repre-
sent generic hooks where any flow information can be at-
tached to (frequency, execution time, etc.).

Different statements are supported inside functions (Fig. 6)
and represent the flow structure of the code. They can be
composed to express dynamic locations that depend on a
specific context.

STATEMENT ::= BLOCK | CALL | CONDITION | LOOP

Figure 6: FFX Statements

BLOCK: A block element identifies a piece of code, pos-
sibly composed of several execution paths, but with a single
entry point only.

CALL: A call element identifies the call to a function. Its
location represents the caller and it must contain a func-
tion element representing the callee. Multiple call elements
that embed functions allow to represent call-chain locations.

CONDITION: A condition element represents a condition
with several alternatives. In the C language, it applies to
both if statements and switch statements.

LOOP (Fig. 7): A loop element matches a loop construct
in the code. It may contain iteration elements in order to
represent properties that are valid only during certain iter-
ations of the loop.

LOOP ::=
<loop LOCATION-ATTRS INFORMATION-ATTRS>
STATEMENT*

</loop>
| <loop LOCATION-ATTRS INFORMATION-ATTRS>

<iteration number="INT">
STATEMENT*

</iteration>
</loop>

Figure 7: FFX Loops

The iteration number i can be positive, identifying the ith
iteration, or negative, identifying the ith iteration counted
from the last iteration. A Loop bound attribute is an IN-
FORMATION-ATTRIBUTE but is limited to loop elements
(Fig. 8).

The attribute executed is set to false if the element is
never executed. maxcount and totalcount, attributes of
loop elements, denote the maximum number of loop iter-
ations for each loop entry and the maximum number of
loop iterations in relation to the outer loop scope. Those

LOOP-ATTR ::=
| maxcount="INT|NOCOMP"?
| mincount="INT|NOCOMP"?
| totalcount="INT|NOCOMP"?
| exact="BOOL"?
| executed="BOOL"?
| expmaxcount="TEXT"?
| exptotalcount="TEXT"?

Figure 8: FFX Loop Attributes

attributes can either be integer values, NOCOMP (not com-
putable) or parameterized expressions. The loop attribute
exact is set to true if the totalcount attribute is exact, i.e.,
no overestimation. expmaxcount, respectively exptotalcount,
is a formula computing the value of maxcount, respectively
totalcount, if no concrete value can be inferred for maxcount,
respectively totalcount. These attributes represent the it-
eration count as a formula, using a syntax similar to that of
C arithmetic expressions.

The power of FFX comes with the fact that it is expand-
able. One could add custom tags in order to make a certain
tool more efficient. The custom tags will simply be ignored
by tools that do not support them. As an example, consider
a WCET back-end that relies on the Implicit Path Enumera-
tion Technique (IPET) that usually only handles linear con-
straints, whereas FFX could introduce arbitrary constraints.
Nevertheless, the back-end can just ignore these non-linear
constraints and find a solution for the remaining constraints.
A similar situation is the iteration construct: it is unused,
and hence not written, by both (static analyzers) oRange
and r-TuBound, but emitted by the measurement based an-
alyzer rapiTa [21], where it is much more valuable to inspect
single iterations of loops.

4. FFX SUPPORT IN ORANGE/OTAWA AND
R-TUBOUND

This section overviews features of the FFX annotation
format and presents its usage in the flow fact analyzers oR-
ange and r-TuBound and the WCET analysis tools Otawa
and CalcWCET167, respectively.

4.1 FFX in oRange/Otawa
oRange [16] is the flow fact analyzer for Otawa. It per-

forms a static analysis based on flow analysis and abstract
interpretation of C programs. Currently oRange does not
use FFX as input but produces FFX files as output. It gen-
erates flow fact information for functions, calls, conditions
and loops starting from a supplied entry point.

Fig. 9 shows an excerpt of a typical FFX file generated
by oRange for the analysis of the bs.c benchmark from the
Ml̈ardalen suite [7]. As mentioned, the structure of the FFX
file represents the structure of the C program, as it is com-
parable to a call graph representation of the program.

Some elements defined in FFX are currently not supported
by oRange, others that are supported by oRange are not
supported by Otawa. Due to the composable nature of FFX,
Otawa combines analysis results of different sub-tools prior
to WCET computation.

4.2 FFX in CalcWcet167/r-TuBound
r-TuBound extends the WCET analysis tool TuBound

[19, 18] by combining symbolic computation techniques with

<loop loopId="1" line="67" source="bs.c" exact="false" maxcount="5"
totalcount="5"
maxexpr="floor((log(14-0)-log(ceil(0+epsilon)))/log(1/0.5)+1)+1"
totalexpr="floor((log(14-0)-log(ceil(0+epsilon)))/log(1/0.5)+1)+1">

<conditional>
<condition varcond="IF-1" line="85" source="bs.c"

isexecuted="true" expcond="" expcondinit="(data[mid]).key==x"></condition>
<case cond="1" executed="true"></case>
<case cond="0" executed="true">
<conditional>
<condition varcond="IF-2" line="79" source="bs.c" isexecuted="true"

expcond="" expcondinit="(data[mid]).key>x">
</condition>
<case cond="1" executed="true"> </case>
<case cond="0" executed="true"> </case>

</conditional>
</case>
</conditional>

</loop>

Figure 9: FFX flow facts output by oRange

the timing analysis of programs. Inputs are arbitrary C/C++
programs. The r-TuBound tool chain consists of a high-
level source analyzer, a WCET-aware compiler and a low-
level WCET analyzer. The low-level WCET analyzer re-
lies on flow facts inferred by the high-level source analyzer.
The high-level source analyzer implements interval analy-
sis, points-to analysis and loop bound computation using
abstract interpretation, symbolic computation and a model
checking extension. The flow facts derived during the high-
level source analyses are further used as source code an-
notations in the low-level WCET analysis, in the form of
#pragma declarations. The WCET analysis of the system is
performed for the Infineon C167 microprocessor. It is real-
ized by a WCET-aware compiler and the low-level WCET
analyzer CalcWCET167 that applies the implicit path enu-
meration technique (IPET) using integer linear program-
ming [20]. The WCET-aware compiler and the low-level
WCET analyzer of r-TuBound are using the WCETC lan-
guage [10]. WCETC is similar to the ANSI C, extending it
by constructs for WCET path annotations. These annota-
tions in WCETC allow one to specify loop bounds and to
use markers to express restrictions in the runtime behavior of
the program [9], e.g., relational constraints on the execution
frequencies of program blocks. This is illustrated in Fig. 10.
The loop bound computation step derives the loop bound of
the program fragment in Fig. 10(a) to be 4. Fig. 10(b) shows
the loop bound as a pragma annotation in the source. The
annotated source code is then transformed to the WCETC
program given in Fig. 10(c). This WCETC code is finally
compiled and statically analysed using CalcWCET167.

As mentioned for Otawa/oRange, also r-TuBound/Calc-
WCET167 does not support all constructs offered by FFX.
Nevertheless, this is not an obstacle, as unsupported con-
structs can be ignored by tools in further analysis. An
example are loop attributes: FFX allows to annotate the
totalcount of loop iterations, i.e., the maximal number of
iterations of the loop during the whole execution of the pro-
gram, as well as the maximum number of iterations each
time the loop is entered. r-TuBound only supports the lat-
ter, but can just ignore the other attribute.
For further details on TuBound and r-TuBound we refer the
reader to [19, 18, 14, 15].

4.3 Immediate Benefits
Implementing FFX support for r-TuBound allows us to

use Otawa as WCET back-end for r-TuBound and to use
CalcWCET167 as WCET back-end for oRange. This way,
both tools are able to analyze code for a new architecture.
Further, it is possible to compare flow facts in a common for-
mat and to compare WCET estimates on different platforms
in a unified way.

In particular, for (r-)TuBound we overcome this way a ma-
jor hurdle when participating in the WCET tool challenges.
This is due to the WCET back-end used in the r-TuBound
tool chain that does not support the ARM and the PowerPC
platform (cf. [23]) used in the challenge. While updating the
WCET back-end to support a new platform usually requires
heavy engineering effort, the approach we followed here, i.e.,
introducing in r-TuBound the WCET annotation language
FFX, turned out to be very light-weight.

In fact, extending r-TuBound with an FFX support re-
quired only modest effort, as r-TuBound outputs annotated
source code after each analysis step. We extract from the an-
notated source code all necessary analysis results and store
the results in FFX format to an FFX file. The tree-like
nature of FFX supports this approach, allowing for the con-
struction of the XML representation as yet another layer in
the cascade of high-level analyses, executed before the low-
level WCET analysis. No changes to either the high-level
analyzer nor the low-level back-end are necessary. This ad-
vantage extends to other tool chains when using FFX as an
intermediate format: developers of WCET tools only need to
implement a translation from their internal format to FFX,
without changing the internal format of their tools. Another
benefit of exporting to FFX instead of directly translating
to a specific tool format emerges when additional tools par-
ticipate in such a tool-cooperation: Using FFX reduces the
implementation effort to two transformers, one for the high
level to translate flow facts to FFX and one for the low level
to translate from FFX to the back-ends native format, no
matter how many tools participate. Nevertheless, one gains,
for each high-level tool, support for all platforms supported
by any of the back-ends. Using the direct translation would
require to write a transformer for each of the back-ends. Ad-
ditionally, such a decoupling from the tools native formats
results in robustness towards changes in native formats, as

for (i = 1;
i < 100;
i = i * 2 + 1)

{...}

(a)

for (i = 1;
i < 100;
i = i * 2 + 1)

{
#pragma wcet_marker location1
#pragma wcet_loopbound (4..4)
... }

(b)

for (i = 1;
i < 100;
i = i * 2 + 1)

maximum 4 iterations
{
marker location1
... }

(c)

Figure 10: C program analysed for WCET.

only one FFX translator needs to be adapted.
Flow facts annotated as pragmas are translated to the fol-

lowing list of FFX elements: flowfacts, functions, loops,
calls and conditionals.

Further, the following FFX attributes are required for suc-
cessful WCET analysis: the line attribute which is used to
specify the source location of constructs. r-TuBound uses
#pragma wcet_marker that need to be translated to line
numbers. The most important flow information that r-Tu-
Bound infers are loop bounds. The maxcount attribute of the
loop tags is used to encode those. The totalcount and the
exact attribute are currently unsupported by r-TuBound.
The elements and attributes are extracted from the anno-
tated source that r-TuBound emits after each analysis step.

The following constructs are not used in the pragma trans-
lations; they could, however, be used to refine the flow infor-
mation and thus tighten the WCET estimate: the executed

attribute allows to constrain the execution of paths and/or
calls. It could be used to encode #pragma wcet_constraint

of a specific form. The numcall attribute could be extracted
using r-TuBound’s static profiler but is currently not con-
sidered (it encodes the total number of calls to a function).
Some WCETC constructs cannot yet be translated to FFX,
for example the #pragma wcet_constraint construct which
limits the execution count of a program block.

The example in Fig. 11 presents a snippet of code from
the Mälardalen [7] benchmark bs.c, annotated with flow in-
formation as used in r-TuBound, and its representation in
FFX format. In r-TuBound #pragma wcet_marker is used
to identify blocks and associate analysis information with
them (e.g. the #pragma wcet_loopbound). FFX represents
locations as FFX elements with line number attributes as-
sociated with them instead of markers. The loop bound is
annotated as maxcount attribute of the loop element. Most
of the additional information (source, condition, extern)
can be extracted from the source. Expressing flow facts not
only in WCETC but also in FFX offers numerous advan-
tages: most important, we can compare WCET tools on
multiple levels. Further, it allows to specify flow facts in
an unambiguous way for different tools and to keep analysis
information persistent. It offers the possibility of merging
FFX files from different tools, i.e. acquiring a tighter WCET
estimate by using the most exact information available, e.g.,
the tightest loop bounds.

5. EXPERIMENTAL COMPARISON
As pointed out, our experimental case study focuses on

the aspect of comparability, information exchange and ex-
tending WCET results to previously unsupported platforms
by translating the most important flow facts to FFX and

...
// main calling binary_search

int binary_search(int x) {
#pragma wcet_marker(label30)
...
while (low <= up) {

#pragma wcet_marker(label23)
mid = ((low+up)>>1);
if (data[mid].key == x) {

#pragma wcet_marker(label18)
up = (low-1);
fvalue = (data[mid].value);

} else {
if ((data[mid].key) > x) {

#pragma wcet_marker(label21)
up = (mid-1);

} else {
#pragma wcet_marker(label22)

low = (mid+1);
}

}
#pragma wcet_loopbound(8..8)
}
return fvalue;

}

...
<call name="binary_search" numcall="1" line="54"

source="bs.c" executed="true"
extern="false">

<function name="binary_search" executed="true"
extern="false">

<loop loopId="0" line="67" source="bs.c"
exact="false" maxcount="8">

<conditional>
<condition varcond="IF-1" line="70"

source="bs.c" isexecuted="true"
expcond="data[mid].key==x;" />

<case cond="1" executed="true" />
<case cond="0" executed="true">
<conditional>
<condition varcond="IF-2" line="79"

source="bs.c"
isexecuted="true"
expcond="data[mid].key>x;"/>

<case cond="1" executed="true" />
<case cond="0" executed="true" />

</conditional>
</case>

</conditional>
</loop>

</function>
</call>
...

Figure 11: Part of the Mälardalen benchmark s.c:
on top, the original annotations as output after high-
level analysis by r-TuBound, on bottom, the FFX
translation.

Figure 12: Current use of FFX as interme-
diate format for r-TuBound/CalcWCET167 and
Otawa/oRange. The experiments were performed
for the ARM and C167 architecture.

WCETC, respectively. Extensions to this work could focus
on using a larger subset of FFX to also allow other tools to
participate in information and WCET back-end interchange.

The translation from WCETC to FFX and vice versa al-
lows to investigate differences in flow facts derived from the
high-level (e.g. loop bounds) and to study their effect on the
tightness of the WCET calculation for a specific platform.

In our case study about FFX-based WCET analysis, we
use and compare r-TuBound/CalcWCET167 and oRange/-
Otawa. Fig. 12 illustrates the concrete setup of the experi-
ments: the leftmost and the rightmost arrows represent the
default workflow and flow of information for each tool chain.
Arrows crossing from one tool chain to the other correspond
to flow fact translation, either from FFX to WCETC or
from pragmas to FFX. There exist multiple locations where
the tools can exchange information and where the output
of the tools can be compared. On flow facts level, depicted
in the top left of the diagram, one can compare the FFX
output of oRange with the FFX output translated from r-
TuBound pragmas. Similarly, on WCETC/pragma level. On
the low level, at the bottom of the diagram, one can compare
the WCET estimates for architectures supported by Otawa
and CalcWCET167 by supplying them with translated r-
TuBound and oRange flow facts, respectively.

We will present a synthetic example to illustrate the pre-
cision gain from combining flow facts from different analyz-
ers. Additionally, we perform experiments on three WCET
benchmarks taken from the Mälardalen [7] benchmark fam-
ily, bs.c, cnt.c and minver.c. All of them are small enough
to manually inspect and compare the tool outputs. We
choose benchmark bs.c because oRange performs better flow
fact analysis than r-TuBound, cnt.c because oRange and r-
TuBound infer the same flow facts and minver.c because
r-TuBound performs better flow fact analysis on the bench-
mark than oRange. We summarize our results in Table 1.
The columns X+Y denote the WCET obtained using X as
the flow fact analyzer (r for r-TuBound and o for oRange)
and the Y back-end (C167 for CalcWCET167 and ARM for
ARM Otawa back-end). Therefore, only columns with same
Y back-end (columns 2 and 3 or 4 and 5) are meaningful to

compare.

struct DATA { int key; int value; };
struct DATA data[15] = {
{1, 100}, {5,200}, {6, 300},
{7, 700}, {8, 900}, {9, 250},
{10, 400}, {11, 600}, {12, 800},
{13, 1500}, {14, 1200}, {15, 110},
{16, 140}, {17, 133}, {18, 10}

};

void main (void) {
int i, nondet;
int mid, up, low, x;

for (i = 1; i < 100; i++) {
if (nondet)
i = i * 2 + 1;

else
i = i * 2 + 2;

low = 0;
up = 14;

while (low <= up) {
mid = (low + up) >> 1;
if (data[mid].key == x)
up = low - 1;

else if (data[mid].key > x)
up = mid - 1;

else
low = mid + 1;

}
}

}

Figure 13: A synthetic example where r-TuBound
helps oRange to infer a tighter bound on the to-
tal number of loop iterations. The example is con-
structed partly from the bs benchmark (inner loop)
and examples presented in [14] (outer loop).

(a) The WCET resulting from oRange flow facts on the
C167 platform for function b_s is tighter than the WCET for
r-TuBound flow facts (19140 vs. 29220). The WCET when
using r-TuBound flow facts is tighter for function minver

(910640 vs. unbound). (b) The WCET estimate on ARM
is tighter when using oRange flow facts for the analysis
of function b_s (775 vs. 11890), and tighter for function
minver when using r-TuBound flow facts (98905 vs. un-
bound). Thus, in this case, one can merge the flow facts
to achieve a better WCET than with the original tool chain
(Table 2). The difference in WCET in this case is only
due to differences in the loop bounds. We are currently in-
vestigating whether and how much the WCET result will
diverge for larger benchmarks with additional differences in
the FFX files (e.g. differences in flow information about in-
feasible paths).

The piece of code above (Fig. 13) shows the gain from
combining flow facts extracted by different flow fact ana-
lyzers. The example is synthetic and its only purpose to
illustrate the theoretical capabilities of merging flow facts:
When analyzing the example, r-TuBound can make use of
its loop refinement capabilities, thus refining the loop bound
of the outer loop to 6. For the inner loop, r-TuBound in-
fers an over-approximated loop bound of 8. Using these
loop bounds for further analysis, a totalcount (the max-
imal number of executions of the inner loop when running

BM Fct r+C167 o+C167 r+ARM o+ARM Notes
bs main 920 920 1220 815

b s 29220 19140 1180 775 bound 8 vs. 5
cnt Init 216020 216020 13175 13175

InitS 920 920 45 45
main 1120 1120 31620 31620
RandI 1840 1840 35 35
Sum 39700 39700 18265 18265
Test 12360 12360 31530 31530
ttime 920 920 35 35

minver main 167760 167760 140920 -
minver 910640 - 98905 - bound for while

mmul 474880 474880 39145 39145
mfabs 7500 7500 250 250

Table 1: BM denotes the benchmark, Fct lists functions in the benchmark, the next 4 columns denote the
WCET result on different platforms using the given flow fact analyzer and WCET back-end. The last column
points out the difference in the flow facts.

BM Fct r/o+C167 r/o+ARM Improvement
bs main 920 815 reduces to 88.58% of r-TuBounds

original WCET on ARM
b s 19140 775 65.5% of r-TuBound WCET on C167,

65.67% of r-TuBound WCET on ARM
minver main 167760 140920 unbound (no result) for oRange/Otawa

minver 910640 98905 unbound (no result) for oRange/Otawa

Table 2: WCET analysis using merged FFX files. Functions that did not change compared to the last table
are omitted. Improvements denote the improvements in the WCET estimate of the tool configuration that
performs better compared to the WCET of the original tool chain.

the program) of 48. On the other hand, oRange would calcu-
late a loop bound of 50 for the outer loop but find a tighter
loop bound of 4 for the inner loop. Thus, the totalcount

inferred is 200. In both cases, the totalcount is an over-
approximation of the actual totalcount. Merging the flow
facts allows to infer a safe and tighter totalcount: using
r-TuBounds loop bound for the outer loop together with oR-
anges loop bound for the inner loop, results in a totalcount

of 24!

6. CONCLUSIONS AND FUTURE WORK
Based on our experience with FFX we are confident that

FFX is a suitable open format to store, exchange and collect
flow fact information for later use in the WCET analysis of
systems.

One major advantage of FFX is, illustrated in our case
study, that source level analyzers supporting the FFX for-
mat can interchange WCET back-ends. At the same time
it offers a way of comparing WCET tools and it allows to
refine and possibly tighten WCET results by merging flow
facts from different tools. In future work, we will introduce
an order on flow facts and other FFX constructs that allows
to determine in which manner FFX files should automati-
cally be merged to gain better accuracy for WCET analysis.
At the same time one could introduce consistency rules for
relevant flow fact information. These rules can then be used
to check validity and precision of gathered flow facts.

FFX allows to specify flow facts in an unambiguous way,
therefore as future work, we propose to extend FFX in a way
that makes it possible to encode problems from the WCET
tool challenge, as this would allow for more exact problem
specifications and tool comparisons. Additionally, we plan
on investigating FFX for a larger experiment with additional
WCET and flow fact analyzers involved.

7. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. aiT.

http://www.absint.com, 2007.

[2] Clément Ballabriga, Hugues Cassé, and Marianne
de Michiel. A Generic Framework for Blackbox
Components in WCET Computation (regular paper).
In Workshop on Worst-Case Execution Time
Analysis, Dublin, 30/06/09, volume 252, pages
118–129, http://www.ocg.at, octobre 2009. Austrian
Computer society.

[3] Clément Ballabriga, Hugues Cassé, Christine
Rochange, and Pascal Sainrat. OTAWA: an Open
Toolbox for Adaptive WCET Analysis. In Proc. of
IFIP Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS), Austria,
October 2010. Springer.

[4] Hugues Cassé and Marianne De Michiel. FFX: Flow
Facts in XML. Rapport de recherche
IRIT/RR–2012-5–FR, IRIT, Université Paul Sabatier,
Toulouse, April 2012.

[5] Hugues Cassé, Marianne de Michiel, and Armelle
Bonenfant. FFX (Flow Fact in XML) format. Rapport
de recherche RR–2012-5–EN, IRIT, Université Paul
Sabatier, Toulouse, 2012.

[6] Melvin E. Conway. Proposal for an uncol. Commun.
ACM, 1(10):5–8, October 1958.

[7] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and
Björn Lisper. The Mälardalen WCET Benchmarks:
Past, Present And Future. In Proc. of 10th Int’l
Workshop on Worst-Case Exeuction Time Analysis
(WCET 2010), pages 136 – 146, Brussels, Belgium,
July 2010. Österreichische Computer Gesellschaft.

[8] Jan Gustafsson. SWEET. http:
//www.mrtc.mdh.se/projects/wcet/sweet.html,
2001.

http://www.absint.com
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html

[9] Raimund Kirner. Integration of Static Runtime
Analysis and Program Compilation. Master’s thesis,
Vienna University of Technology, Treitlstraße
3/3/182-1, 1040 Vienna, Austria, 2000.

[10] Raimund Kirner. User’s Manual – WCET-Analysis
Framework based on WCETC. Available at http:

//www.vmars.tuwien.ac.at/~raimund/calc_wcet/,
2001.

[11] Raimund Kirner. The WCET Analysis Tool
CalcWcet167. In Proc. 5th Int’l Symposium on
Leveraging Applications of Formal Methods,
Verification and Validation (to appear). Springer
Verlag, October 2012.

[12] Raimund Kirner, Albrecht Kadlec, Adrian Prantl,
Markus Schordan, and Jens Knoop. Towards a
Common WCET Annotation Language: Essential
Ingredients. In Proc. 8th Intl. Workshop on
Worst-Case Execution Time Analysis (WCET 2008,
2008.

[13] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus
Schordan, and Albrecht Kadlec. Beyond Loop Bounds:
Comparing Annotation Languages for Worst-Case
Execution Time Analysis. Software and System
Modeling, 10(3):411 – 437, 2011.

[14] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr.
Symbolic Loop Bound Computation for WCET
Analysis. In Proc. of PSI 11, pages 116 – 126,
Novosibirsk, Akademgorodok, Russia, 2011.

[15] Jens Knoop, Laura Kovaćs, and Jakob Zwirchmayr.
r-TuBound: Loop Bounds for WCET Analysis. In
Proc. of 18th Logic for Programming Artificial
Intelligence andReasoning (LPAR 18), volume 7180 of
LNCS, pages 435 – 444, Mérida, Venezuela, 2012.

[16] Marianne De Michiel, Armelle Bonenfant, Hugues
Cassé, and Pascal Sainrat. Static Loop Bound
Analysis of C Programs Based on Flow Analysis and
Abstract Interpretation. In Proc. 14th IEEE

International Conference on Embedded and Real-Time
Computing Systems and Applications, (RTCSA 2008),
Taiwan, 2008.

[17] Adrian Prantl. High-level Compiler Support for
Timing-Analysis. PhD thesis, Vienna University of
Technology, Argentinierstraße 8/4/185-1, 1040 Vienna,
Austria, 2010.

[18] Adrian Prantl, Jens Knoop, Markus Schordan, and
Markus Triska. Constraint Solving for High-Level
WCET Analysis. In Proc. of 18th Logic-based Methods
in Programming Environments, pages 77 – 88, 2008.

[19] Adrian Prantl, Markus Schordan, and Jens Knoop.
TuBound – A Conceptually New Tool for Worst-Case
Execution Time Analysis. In Proc. 8th International
Workshop on Worst-Case Execution Time Analysis
(WCET 2008), pages 141–148, Prague, Czech
Republic, 2008. Österreichische Computer
Gesellschaft. ISBN: 978-3-85403-237-3.

[20] Peter Puschner and Anton Schedl. A Tool for the
Computation of Worst-Case Task Execution Times. In
Proc. of 5th Euromicro Workshop on Real-Time
Systems, pages 224 – 229, June 1993.

[21] Rapita Systems Ltd. RapiTime Explained – White
Paper. http://www.rapitasystems.com/downloads/
rapitime_explained_white_paper.

[22] Tidorum Ltd. Bound-T.
http://www.tidorum.fi/bound-t, 2005.

[23] R. von Hanxleden, N. Holsti, B. Lisper,
E. Ploedereder, R. Wilhelm, A. Bonenfant, H. Casse,
S. Bünte, W. Fellger, S. Gepperth, J. Gustafsson,
B. Huber, N.M. Islam, D. Kästner, R. Kirner,
L. Kovacs, F. Krause, M. de Michiel, M. C. Olesen,
A. Prantl, W. Puffitsch, C. Rochange, M. Schoeberl,
S. Wegener, M. Zolda, and J. Zwirchmayr. WCET
Tool Challenge 2011: Report. In Proc. 11th

International Workshop on Worst-Case Execution
Time Analysis (WCET 2011), 2011.

http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.rapitasystems.com/downloads/rapitime_explained_white_paper
http://www.rapitasystems.com/downloads/rapitime_explained_white_paper
http://www.tidorum.fi/bound-t

	Introduction
	Related Work
	The FFX Annotation Language
	FFX Elements
	Location Attributes
	Context Elements
	Control Flow Elements

	FFX Support in oRange/Otawa and r-TuBound
	FFX in oRange/Otawa
	FFX in CalcWcet167/r-TuBound
	Immediate Benefits

	Experimental Comparison
	Conclusions and Future Work
	References

