
Symbolic Methods for the
Timing Analysis of Programs

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Jakob Zwirchmayr
Matrikelnummer 0155901

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Laura Kovács

Diese Dissertation haben begutachtet:

(Laura Kovács) (Jens Knoop) (Christine Rochange)

Wien, October 27, 2013
(Jakob Zwirchmayr)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Symbolic Methods for the
Timing Analysis of Programs

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Jakob Zwirchmayr
Registration Number 0155901

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Laura Kovács

The dissertation has been reviewed by:

(Laura Kovács) (Jens Knoop) (Christine Rochange)

Wien, October 27, 2013
(Jakob Zwirchmayr)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Jakob Zwirchmayr
Alliiertenstrasse 16/23, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

Today, embedded software systems (ESS) are “ubiquitous” technical devices used on a
daily basis by a vast number of people. We rely on these systems to work, that is to
be functionally correct, and thus to operate as expected. Therefore, time and effort is
invested to provide the expected quality for the ESS. For real-time ESS timing-properties
are of special importance: such systems need not only be functionally correct, but also
deliver results in time. In some applications, such as a video stream, timing violations
result in an acceptable, but probably bad quality of the service. For a hard real-time
system, results are useless once the expected timing behaviour is violated. A safety-
critical real-time system, such as air and car control devices, however, need not only
be functionally correct, but also has to ensure a correct timing behaviour. Missing
a deadline is not an option for safety-critical real-time ESS, since an error can have
disastrous economic and social consequences. Identifying and correcting such errors is
therefore a challenging research topic, both in academia and industry. In this thesis we
address this challenge and describe rigorous methods for the timing analysis of programs.

One of the most important ESS timing properties is the Worst-Case Execution Time
(WCET) of the system, that is the maximal running time of the program on the specified
hardware. WCET analysis needs to provide formal guarantees that the system under
analysis exhibits a proper timing behaviour. This requires computing safe and tight
bounds for the execution times of programs. State-of-the-art WCET analysis tools usu-
ally apply data-flow analysis, abstract interpretation and/or model-checking techniques
on the program in order to infer relevant WCET information. Though very sophisticated
and powerful, their results are sometimes not precise enough to conclude a safe and tight
timing-behaviour for the system under analysis. By design, none of the existing tools
is able to guarantee that a bound that corresponds to the execution time of a concrete
system execution is found: often, due to the employed abstractions, the WCET is ac-
tually computed for a spurious trace in the program, giving no hint whether the bound
is precise (i.e. a bound for an actual execution) or it is an over-estimation of a spurious
system execution.

In contrast to these state-of-the-art techniques, in this thesis we present a method
for proving WCET bounds precise. Our approach guarantees that the WCET bound
is actually computed for a feasible trace in the system. Moreover, our method is able
to improve the WCET analysis quality by reducing the required manual annotations
and the imprecision of WCET estimates, automatically tightening the WCET bound
until precise when necessary. For doing so, we apply and combine symbolic techniques

iii

from algorithmic combinatorics, computer algebra, automated theorem proving and for-
mal methods. Such symbolic techniques usually yield good analysis information but are
computationally expensive: symbolic execution, for example, requires path-wise execu-
tion of the whole program. In order to overcome the computationally expensive costs
of symbolic methods, our challenge is to identify and apply symbolic methods only on
relevant program parts. This way, the precision of symbolic techniques is fully exploited
while avoiding the computational costs of the underlying approaches.

The algorithm we propose to prove WCET bounds precise is an anytime algorithm,
that is, it can be stopped at any time without violating the soundness of its results. Ul-
timately, if run until termination, WCET bounds can be proved precise as the algorithm
iteratively refines the abstraction, resulting in tighter WCET bounds, until termination
of the approach. Then, any WCET over-estimation is due to the (imprecise) hardware
model used in the WCET computation. Our approach relies on an initial WCET analysis
and terminates fast if the supplied results of the initial WCET analysis are tight.

In order to improve performance of our approach, we combine our method with
an automatic technique for computing tight upper bounds on the iteration number of
special classes of program loops. These upper bounds are further used in the initial
WCET analysis of the programs. Our automatically inferred loop bounds reduce the
effort of manual annotations and increase the safety of the timing analysis of programs.
Even with exact loop bounds, the WCET computed by an analyzer is usually not tight,
leaving a gap between the actual and the computed WCET of a program. This gap
(over-estimation) is due to the abstraction that is used for the WCET computation as
well: it usually encodes numerous spurious paths due to infeasible branching decisions
for conditionals. A benefit of our approach is that we automatically infer additional
constraints from spurious traces that allow to further tighten the WCET bound. The
improved WCET derived by our work therefore significantly improves the precision of
the timing analysis.

To evaluate our symbolic techniques we implemented our approach in the r-TuBound
WCET toolchain. We tested and evaluated r-TuBound on a large number of benchmarks
from the WCET community. To make our algorithm available to other WCET analyzers,
we addressed the portability of our method and extended r-TuBound to support the XML
based intermediate flow fact format FFX. This way, analyzers supporting FFX can make
use of the underlying infrastructure of our work. To this end, we compared r-TuBound
with state-of-the-art WCET tools, including the TuBound and the OTAWA/oRange
toolchains. Our experimental results underline the advantage of using symbolic methods
for proving WCET bounds precise, at a moderate cost.

Contents

1 Introduction 1

1.1 Problem Statement . 4

1.2 Contributions . 6

2 Preliminaries 9

2.1 Programming Model . 9

2.2 Static WCET Analysis . 10

2.3 Symbolic Execution . 14

2.4 Algebraic Considerations. 14

3 Proof – WCET Squeezing as Proof Procedure 17

3.1 Example . 20

3.2 WCET Squeezing for Proving Precise WCET Bounds 21

4 Performance – Accelerating WCET Squeezing by Empowering WCET
Analyzers 33

4.1 Example . 35

4.2 Automated Generation of Loop Bounds for Empowering WCET Analyzers 36

5 Portability – Distributing WCET Squeezing by Enabling Interoper-
ability of WCET Analyzers 47

5.1 The FFX Annotation Language . 50

5.2 Interoperability via FFX . 55

6 Practice – Implementation & Experimental Results 61

6.1 r-TuBound: Overview and Implementation 61

6.2 SmacC: Selective Symbolic Execution in r-TuBound 67

6.3 Experimental Results using r-TuBound . 75

6.4 r-TuBound and the WCET Tool Challenge 86

7 Related Work 89

8 Conclusion & Perspectives 97

v

Bibliography 101

vi

CHAPTER 1
Introduction

Today, embedded software systems (ESS) are “ubiquitous” technical devices used on a
daily basis by a vast number of people. We rely on these systems to work, and thus
to operate as expected. Embedded software systems are usually composed from some
application-specific hardware device (i.e. a microprocessor) that has access to the world
via sensor data or some input system, and processes the input data by running software
tasks on the system. There are certain expectations that one can impose on such systems:
most importantly they should be functionally correct. Functional correctness means, on
the one hand, that the device does not crash, that is the underlying hardware is not
faulty and the software does not contain defects. On the other hand, it also means that
the device operates and functions as expected. For example, a GPS device in a car
is expected not only not to crash when turned on, but also to describe an acceptable
travel route for a supplied start- and endpoint, at least when the underlying hardware
is not faulty. Ensuring functional correctness and thus providing the expected quality
of an embedded software system is a challenging research topic, both in academia and
industry. Rigorous approaches based on formal methods have been developed to address
and solve this challenge, including for example extensive testing of systems until one is
sufficiently confident that no errors exist or formally verifying the underlying hardware
and software system for proving the absence of errors.

When it comes to real-time embedded software systems, additionally to functional
correctness, ensuring timing-properties of such systems are of utmost importance. That
is, such systems need not only be functionally correct, but also need to adhere to time
restrictions. Timing-properties are properties of the system that are not related to
the correctness or proper functioning of the system, but are additional constraints on
the time within which results of the system are expected. As a consequence, timing-
properties are usually dependent on the underlying hardware model. For example, the
timing behaviour of real-time embedded systems is influenced by the operating frequency
that the underlying processor is run at, the caches used in the hardware system and the
scheduling decisions made on the level of the real-time operating system.

1

Depending on the application context, the timing behaviour of real-time embedded
systems can be critical or not. An example of an uncritical real-time application is a
Voice-Over-IP application, i.e. an audio or video stream, where the order in which video
or audio packets arrive is important. That is, packets that were sent from the source
in some order are expected to arrive at the destination in a similar order. As different
packets might travel different routes through the system network, it might happen that
an earlier sent packet travels a route that makes it arrive later than a later sent packet.
This way, the packets arriving at the source arrive out of order, yielding a timing violation
enforcing the video or audio stream to suffer from artifacts, hang, lag or stutter. Such a
timing violation results in a bad quality of the service, but it can still be acceptable if the
timing violations are within certain limits (i.e. one is still able to see and understand the
person on the other end of the audio/video stream). However, such a timing behaviour
is absolutely unacceptable in the case of hard real-time systems. For a hard real-time
system, results are useless once the expected timing behaviour is violated. For example,
if too many packets arrive out-of-order in a video stream, at some point the video stream
will be unusable since very few required frames arrive in order. Nevertheless, a failing
video stream is usually not considered to be safety-critical, as most probably a failing
video call will not bring a disastrous social consequence. The situation is, however, very
different for safety-critical hard real-time systems upon which social safety, if not even
human lives, depend on. Examples of such ESS usually come from the avionics and
automotive industry, for example in fly-by-wire and drive-by-wire technologies where
there are no mechanical links between the control column and the steering gear of an
aircraft or car [45].

Safety-critical hard real-time systems need thus to be both functionally correct and
have a correct timing behaviour. Missing a deadline is not an option for safety-critical
real-time ESS, as an error can have tragical economic and social consequences. For
example, the system that is responsible for opening the airbags in a car in the case of an
accident needs to react within a time limit of around 40 ms. That is, when the sensor
data (e.g. from the accelerometer and pressure sensors) registers an accident condition,
the system must compute its required actions and supply the appropriate commands to
the respective actuators to open the airbag within the 40 ms time limit.

If under some circumstances the system requires longer to open the airbag, the sys-
tem can be considered erroneous (and therefore, dangerous): a user (car driver) could
already have been hurt severely, while the airbag is still inflating after more than 40
ms. Therefore, for such systems, ensuring functional correctness as well verifying the
timing behaviour is equally important. One of the most crucial research tasks in the
timing analysis of ESS is defined as the Worst-case Execution Time (WCET) problem:
the WCET problem is to find an upper bound on the maximal execution time of the
system under analysis. With a safe WCET analysis method yielding a WCET bound,
any execution of the system is guaranteed to be below the inferred WCET bound. In
the airbag example considered above, if a WCET analyzer derives a WCET bound of
30 ms, a safe timing behaviour of the system is ensured.

WCET analysis is typically performed using either static or dynamic approaches.

2

Static WCET analyzers inspect the program without running it, usually using abstrac-
tions of the program to ease analysis effort, often resulting in a WCET over-estimation.
Dynamic WCET analyzers on the other hand use concrete input data to run and mea-
sure systems executions. Finding a safe WCET bound using dynamic analysis tools
therefore requires to measure all program executions, which is an infeasible task in prac-
tice. Therefore, dynamic WCET analyzers only measure the execution time of some
subset of actual program runs, and usually under-estimate the WCET of the program.
By design, neither any of the dynamic approaches for WCET analysis nor any of the
static approaches is able to conclude a precise timing behaviour of the system, or even
more importantly, to prove or disprove that its computed WCET bound is precise. For
example, whenever an unsafe timing behaviour is reported, it is unclear whether this
behaviour results from a concrete but too high WCET, or whether the system is actu-
ally safe but the reported WCET bound is over-estimated. In such situations, a proof of
WCET precision would be especially useful. With such a proof at hand, we could either
(i) establish the precision of an overly high WCET bound, and hence conclude that a
required smaller WCET bound cannot be reached; or (ii) prove that the current WCET
bound is not precise, and hence might conclude system safety when an improved and
precise bound is finally derived.

In this thesis we address the WCET problem by making use of the advantages of
both static and dynamic WCET analysis. We describe an automated framework for
proving WCET bounds precise, by combining symbolic techniques from algorithmic
combinatorics, computer algebra, automated theorem proving and formal methods. The
results of our method are, by design, out-of-scope of traditional static WCET analyzers,
as static WCET methods cannot infer whether a computed WCET bound is an over-
estimation or a precise WCET of the program on a particular hardware model. Our
method proves the precision of a computed WCET bound, extending thus the state-of-
the-art in static WCET analysis.

Given an initial WCET bound computed by an arbitrary WCET bound approach,
our approach iteratively refines this bound until it proves it precise, as follows. As the
(initial) WCET bound is computed on an abstraction of the concrete program, program
paths exhibiting the WCET bound of the abstract program might become infeasible
once the concrete behaviour of the program is considered, yielding thus spurious WCET
program traces. Our method therefore maps the (initial) WCET bound to one or more
concrete program traces exhibiting this bound. Mapping the current WCET bound back
to a trace in the program allows us to use a decision procedure to check the feasibility
of this trace. If the trace inferred from the program abstraction is also feasible in the
concrete program, the computed WCET bound of the trace is precise and the timing
behaviour is indeed exhibited by the program. The proof of precision is given by a
satisfiable path feasibility check of the decision procedure, formulated as a satisfiability
modulo theory (SMT) problem in the theory of linear integer arithmetic, bit-vectors
and arrays. On the other hand, if the decision procedure reports the infeasibility of
the trace, we conclude that the current WCET bound describes a spurious program
behaviour which is exhibited only in the abstract program model but not in the concrete

3

one as well. In this situation, the WCET bound is thus an imprecise WCET over-
estimation, and our proof of this imprecision is given by the path infeasibility result of
the decision procedure.

Our approach allows to iteratively refine the WCET bound while searching for a
proof of precision. This means, if the WCET bound reported by a WCET analyzer is
over-estimated, our method will refine the WCET bound until it is proven precise. If
the initial WCET bound was highly over-estimated, then using our algorithm to achieve
WCET precision comes, in general, at a high cost as well. However, due to the maturity
of state-of-the-art WCET analyzers, such a scenario is quite unlikely to happen. State-
of-the-art WCET analyzers keep the over-estimation of WCET bounds low (around 25%
higher than measured execution times), even for complex architectures [64]. Hence, it
is safe to assume that the over-estimation of the initial WCET bound is low or almost
none, and therefore using our method to achieve proven precision of WCET involves a
moderate cost as well, as demonstrated by our experimental results.

1.1 Problem Statement

In this thesis we study the WCET problem from the timing analysis of embedded software
systems. Unlike other exsiting approaches, our work introduces a novel and automated
framework for proving precise WCET bounds. For doing so, the thesis addresses and
solves the following three research problems.

1. Proof – Precision of WCET bounds. We present an algorithm that allows to
decide whether a WCET bound reported by a WCET analyzer is precise. Our algorithm
can be used in conjunction with any static WCET analyzer implementing the implicit
path enumeration (IPET) techniques. The result of our method is either a proof of
precision or a counter-example, that is a proof of the infeasibility of the program path
exhibiting the current WCET bound. Our method, by design, is out-of-scope of state-
of-the-art WCET analysis tools, as current static and dynamic WCET analyzers are not
able to infer whether a computed WCET bound is precise or over-estimated.

WCET Squeezing as a Proof Procedure. Our method for proving precise WCET
bounds is called WCET Squeezing. WCET squeezing automatically tighten WCET
results by inferring additional constraints from infeasibility proofs of program paths. The
constraints derived by WCET Squeezing can be used in further WCET computations,
and thus proving precise WCET bounds.

Based on the WCET Squeezing algorithm, we define the pragmatic WCET problem
to be the following decision problem. It is the problem to decide whether an insufficient
WCET bound reported by a static analyzer can be refined and proved to be below some
required threshold. Solving the pragmatic WCET problem requires to decide whether a
WCET bound is precise: if the bound is precise and above the threshold, the answer to
the pragmatic WCET problem is “no”. If the bound can be tightened and hence proved
to be below the threshold, the answer to the pragmatic WCET problem is “yes”.

4

We propose WCET Squeezing as a decision procedure solving the pragmatic WCET
problem. WCET Squeezing can be run as an anytime algorithm, until the WCET bound
is below the required threshold, and thus allows to decide whether an insufficient WCET
bound reported by a static analyzer can be refined and proved below some required
threshold. WCET Squeezing iteratively refines WCET bounds and even a single iter-
ation of WCET Squeezing might allow to verify (user-supplied) WCET bounds, and
terminating WCET Squeezing at an arbitrary iteration still guarantees an improved
WCET bound. As tight initial WCET analysis results reduce the effort to prove preci-
sion of a WCET bound, in our quest to efficiently decide the pragmatic WCET problem,
we investigated the following problem in traditional WCET analysis.

2. Performance — Symbolic Methods in Proving Precise WCET bounds. In
our approach of proving precise WCET bounds, we rely on sophisticated techniques from
symbolic computation, automated theorem proving and formal methods. These methods
are used to derive better (initial) WCET bounds and hence to accelerate WCET Squeez-
ing for proving precise WCET bounds. In particular, we make use of recurrence solving
approaches from algorithmic combinatorics and combine these techniques with symbolic
execution and SMT procedures for analysing program loops and proving feasibility of
program paths in the theory of linear integer arithmetic, bit-vectors and arrays. While
the deployed symbolic techniques, especially those from symbolic computation and sym-
bolic execution, have in general a very high computational cost. We show that careful
application of these techniques can improve the quality of WCET analyzers at a moderate
cost. For example, instead of exploring all program paths, in WCET Squeezing we apply
symbolic execution only on those program traces that could exhibit the reported WCET
bound. On the other hand, instead of applying general recurrence solving algorithms, we
propose a computationally cheap pattern-based recurrence solving approach to improve
the performance of computing WCET bounds, as detailed below.

Loop bound computation for accelerating WCET Squeezing. As proving pre-
cise WCET bounds, and in particular WCET Squeezing, crucially depends on the quality
of the initial WCET bound, computing nice WCET bounds is a challenging task espe-
cially for programs with loops and/or recursion. We have addressed the performance of
our method of proving precise WCET bounds, and proposed an automated approach to
derive precise bounds on the number of loop iterations, called loop bounds, for certain,
yet general enough classes of program loops. For doing so, we model program loops
by algebraic relations expressing recurrence relations over program variables and loop
counters, and combine pattern-based recurrence solving with SMT-based reasoning over
linear integer arithmetic to derive loop bounds that cannot be obtained by other loop
bound analysis techniques used in WCET analysis. The class of programs our method
is able to handle implements non-trivial arithmetic and complicated control flow, for
example conditional updates to loop counters within a loop body. For such programs,
our method derives tight loop bounds which can be further uses as trusted annotations
for ensuring precision of WCET analysis.

5

3. Portability – Distributing WCET Squeezing by Enabling Interoperability
of WCET Analyzers. In this thesis we present an approach to make our proving pre-
cise WCET approach portable for immediate usage in arbitrary WCET tools. We achieve
portability by making tools of different WCET analyzers interoperable by means of in-
troducing a flexible and extensible intermediate language providing a common interface
for exchanging analysis information.

For doing so, we adapted an intermediate flow fact format employed in another
WCET analysis toolchain, FFX. Interoperability not only makes WCET Squeezing avail-
able to other WCET tools, adapting this common interface helps in our attempt to reduce
the overhead for finding a proof of precision for WCET bounds: we try to leverage ad-
vantages of available WCET tools, for example, tighter loop bounds for program loops
for which our loop bound computation method fails.

As different WCET analyzers perform better on different problems, our approach of
proving precise WCET bounds might benefit from using and exchanging results between
existing WCET tools. Moreover, a major problem in WCET analysis is the lack of
comparability and interoperability of WCET tools. Usually, WCET analyzers all “live
on their own islands”, with their own internal and intermediate formats. Additionally,
focus on certain types of program analysis often diverges the results of WCET analyzers
for different types of systems. WCET analysis, and hence our methods, would clearly
benefit from combining the advantages from different tools.

With the FFX extension at hand, we made the first attempt towards comparability
and interoperability between WCET analysis toolchains. Additionally, the common anno-
tation language format of FFX can be used to improve WCET Squeezing, by supplying
it with a more precise initial WCET bound derived by some existing WCET analyzer,
thus decreasing the effort to find a proof of precision.

4. Practice – Implementation and Experiments. The overall approach of proving
precise WCET bounds is implemented in the r-TuBound tool. Our implementation offers
an automated and uniform framework to refine WCET bounds by WCET Squeezing,
compute loop bounds by symbolic methods, and exchange timing analysis information
with other WCET toolchains using the FFX format. We have evaluated r-TuBound on a
large number of WCET benchmarks, and compared our results against the TuBound and
the oRange/Ottawa WCET analyzers. Our results show that exchanging information
between WCET tool chains gives much better results when applying WCET Squeezing,
and WCET Squeezing in conjunction with the automated computation of loop bounds
significantly improves the precision of WCET bounds.

1.2 Contributions

Summarizing, the present thesis brings the following contributions in the area of timing
analysis.

1. Proof – WCET Squeezing as Proof Procedure. We present an effective proce-

6

dure that is able to prove or disprove if the WCET bound computed by a state-
of-the-art WCET analyzer is precise, and, if not, to tighten the time bound it
delivers until eventually the tightened bound is proven precise. This procedure is
called WCET Squeezing and iteratively refines the WCET by excluding infeasible
program paths until the precise WCET is obtained or until an additional treshold
is reached.

2. Performance – Accelerating WCET Squeezing. To make WCET Squeezing
highly performant, it is essential to empower the used WCET analyzer. In this
thesis we focus on the use of symbolic methods for accelerating WCET Squeezing,
and describe an automated approach for static loop analyses, in particular for
computing tight bounds on loop iterations. To this end, we combine techniques
from symbolic computation, automated theorem proving and formal methods in a
restricted, yet efficient and powerful way.

3. Portability – Distributing WCET Squeezing among WCET Analyzers. We
describe a flexible and extensible approach to make our proof procedure portable
for immediate usage in arbitrary WCET analyzer toolchains. This is achieved
by making tools of different WCET analyzers interoperable by introducing and
extending a common annotation language, called FFX.

4. Practice – Implementation and Experiments. Our work has been implemented
in the r-TuBound WCET toolchain, and evaluated and compared against the
TuBound and oRange/OttawaWCET WCET analyzers.

7

CHAPTER 2
Preliminaries

This section contains a brief overview of the programming model, WCET analysis, sym-
bolic execution and algebraic techniques, relevant for the later chapters of the thesis. We
first present our programming model and fix some notation. We then overview static
analysis, IPET based WCET analysis and symbolic execution; these techniques are the
basis of our approach to prove WCET bounds precise. In order to improve the per-
formance of the approach, we introduce a pattern-based recurrence solving method to
compute loop bounds. To make our approach portable and available for other high-level
analyzers, we adapt a common intermediate flow fact format.

2.1 Programming Model

Throughout this thesis, N and R denote the set of natural and real numbers, respectively.
We rely on the work of [51] and represent programs as control flow graphs (CFG),

CFG := ((V,E), S,X), where V is the set of nodes, E is the set of directed edges
representing program blocks, S ∈ V is the start-node, and X ∈ V is the end-node. For
each edge e ∈ E an edge weight w(e) is assigned denoting the execution time of e, and
we have w : E → N. To ease readability, we will omit edge weights wherever possible.
Every node n, different than S and X, has incoming inc(n) and outgoing edges out(n);
the node S has only outgoing edges out(S) and no incoming ones; whereas the node X
has only incoming edges inc(X) but no outgoing ones. Conditional nodes C split the
flow depending on the runtime evaluation of a boolean condition c(C), where we refer
to c(C) as the path-condition. For simplicity, we sometimes write C instead of c(C).
Execution times for c(C) are assumed to be added to the successor edge weights. Edges
taken when the condition C evaluates to true are called true-edges (true-blocks) and
are denoted by t. Similarly, edges taken when the condition evaluates to false are called
false-edges (false-blocks) and are denoted by f . To make explicit that t and f result from
the evaluation of C, we write tC and fC to mean that these are the true-, respectively
false-edges of C. Further, tC and fC are called the conditional-edges of C.

9

A path in the CFG is a sequence of nodes and edges and a program execution trace is
a path from S to X. The evaluation of all path conditions in an execution trace defines
the branching behavior of the trace, i.e. the evaluation of all conditions along the trace.
It is thus a sequence of branching decisions that can be encoded as a sequence of bits,
where each bit bi represents the result of evaluating the ith branch condition in the trace:
b1 is 1 if the condition holds when executing the true-edge, and it is 0 if the false-edge
is executed. A program loop in the CFG is modeled by a loop header lh, loop body lb
and loop exit le node, with an edge from lb to lh. Each loop is annotated in the CFG
with a loop bound `. A valid path including a loop thus contains lb at most lh ∗ ` times,
each time lh is contained. The number of times an edge e is taken in a path is given by
its frequency freq(e), where freq : E → N and freq(e) gives the sum of executions of the
edge e in an execution trace.

2.2 Static WCET Analysis

Efficient and precise WCET analysis relies on program analysis and optimization tech-
niques. In this section we overview only those static WCET and program analysis tech-
niques on which our framework crucially depends on. A detailed survey about WCET
and program analysis techniques can be found in [28, 54].

By a WCET analysis toolchain of a WCET analyzer we mean the full collection
of tools used to analyze a program. Usually, a WCET analysis toolchain consists of
an architecture-independent high-level analyzers inferring information (i.e. flow facts)
about the program flow. This part of a WCET analysis tool chain is called as the
WCET front-end. As an example of WCET front-ends we only name here the oRange
[5] and the r-TuBound [44] tools. The parts of a WCET analysis toolchain that operate
on the architecture-dependent lower level are called WCET back-ends, for example the
Otawa [5] and the CalcWCET167 [40] back-ends.

Essential flow facts include loop bounds and execution frequencies (i.e. worst-case ex-
ecution counts) of conditional edges in the program. Both of these flow facts are required
to calculate the WCET of programs with loops. However, flow facts about programs
might not always be precise. For example, loop bounds are usually not tight but are
over-approximated, since they depend on the results of a so-called interval analysis that
is itself imprecise. Therefore, the abstraction used to compute a WCET bound usu-
ally encodes numerous spurious program paths, some of these spurious program paths
exhibiting high execution frequencies. As a consequence, the WCET bound computed
using these imprecise flow facts is only an over-estimation of the actual WCET. The
precision of static WCET analysis therefore crucially depends on the quality of the used
flow facts.

When computing WCET estimates, the underlying hardware architecture needs to be
analyzed for inferring execution times of program blocks. Additional hardware features,
such as cache-configuration and pipeline layout, also need to be taken into account. In
this thesis we are concerned with high-level WCET analysis only. In the sequel, we
overview the most important high-level analysis steps use in our method.

10

(1) Interval and points-to analysis implements a forward directed data flow interval
analysis, yielding variable values and aliasing information for all program locations.
Additionally, a (unification based) flow-insensitive points-to analysis helps dealing with
aliased pointer and array data.
(2) Counter-based loop analysis derives bounds for simple loops with incremented/decre-
mented updates, by constructing symbolic equations that are solved using pattern match-
ing and term rewriting. It is necessary to acquire concrete values for variables involved
in the loop initialization, condition and increment expression. Generally, if no values
are available for variables in the loop initialization, condition, and increment expression,
then the analysis fails in deriving loop bounds. Note that in certain cases variables with
unknown values can be discarded, and thus loop bounds can be derived even though
interval analysis failed to produce concrete variable values.
(3) Constraint-based loop analysis models and enumerates the iteration space of nested
loops. To this end, a system of constraints is constructed that reflects dependencies be-
tween iteration variables and thus yields better results than just multiplying the bounds
of nested loops. The solution to the constraint system is computed by a constraint logic
programming solver over finite domains.

It is not hard to argue that the techniques of (2) and (3) can fail on a large class
of programs, either because of unhandled loop updates, complex nesting of loops or the
arithmetic and data structures used in conditional expressions. One contribution of this
thesis addresses this problem and introduces an automated approach overcoming some
limitations of the methods of (2) and (3); based on this framework, we were even able
to automatically derive loop bounds for some complex loops that stem from search- and
sorting-algorithms.
(4) Implicit path enumeration technique (IPET) first maps the program flow to a set of
graph flow constraints describing relationships between execution frequencies of program
blocks. Execution times for expressions are evaluated by a low-level WCET-analysis.
The execution times are then summed up to get execution times for program blocks.
Finally, the longest execution path (exposing the WCET) of the program is found by
maximizing the solution of the constraint system. In other words, the path exhibiting
the WCET is derived by maximizing the executions times over program paths. This
maximization problem can naturally be formulated as an integer linear program, shortly
referred to as an ILP problem. We illustrate the IPET in Example 2.1 below.

Example 2.1 Consider the program given in Figure 2.1. Its program flow is given in
Figure 2.2. The dependency relations between execution frequencies of program blocks
are extracted from Figure 2.2 and are listed in Figure 2.3. The execution times of simple
program expressions are either inferred by a low-level timing analysis or are manually
supplied. For simplicity, we assume that all basic expressions take one time unit to
execute. Therefore, execution of one loop iteration takes at most 4 time units: 1 unit
to check each boolean condition b and c, and 1 unit to execute each statement d and e.
The longest path through the loop is the node sequence b → c → d → e. We consider1

1L can be either inferred by a loop analysis step or given as a manual annotation.

11

void func (void) {

a;

while (b) {

if (c)

d;

e;

}

f;

}

Figure 2.1: Abstracted ANSI- C program, where b and c are boolean expressions
and a, d, e, and f denote program statements. The WCET of a statement or a
block can be computed from the timing information of the expressions it consists of.
The timing information is acquired either by a low-level timing analysis that abides
the underlying architecture or supplied by hand (estimates).

x2

x4

x5

x6

x7

x1

x3

a

c

b

e

d

f

Figure 2.2: Graph representation of program flow. The execution frequencies
are listed on edges. Timing information from a low-level analysis on graph edges
is omitted. The node numbers correspond to the expression identifiers used in the
annotations of Figure 2.1.

the loop bound L to be 10. The WCET for func is further derived by maximizing the
sum of block costs in the process of satisfying the dependency relations of Figure 2.3.
As a result, the WCET of func is computed to be 42 time units.

As shown in Example 2.1, the tighter the loop iteration bounds are (i.e. L), the more
precise are the derived WCET. The accuracy of a WCET limit crucially depends on the
precision of the available loop bounds. It is necessary to compute bounds for loops as
exact as possible in order to get an accurate WCET. The difficulty of inferring precise
upper bounds on loop iterations comes from the presence of complex loop arithmetic
and control flow.

12

x1 = 1 (2.1)

x2 = x1 ∗ L (2.2)

x3 = x2− x5 (2.3)

x4 = x3 (2.4)

x5 = x2− x3 (2.5)

x6 = x5 + x4 (2.6)

x7 = 1 (2.7)

Figure 2.3: Execution frequencies of program expressions. Equations (2.1) and
(2.7) state that the program is entered and exited once. Equation (2.2) states that
the loop body is executed L times, where L denotes the number of loop iterations.
For this example, L is set to be 10. The maximum solution of the equations using
the appropriate timing information is the WCET of the program under analysis.

Our approach of proving WCET bound precise crucially relies on the IPET method,
and makes use of the following IPET steps. IPET first translates the CFG of a program
into an ILP problem. Next, it computes an ILP solution corresponding to the path with
the highest edge-weight. For doing so, the following constraints on the CFG are used:
(i) the program is entered and exited once, that is

∑
out(S) =

∑
inc(X) = 1; (ii) the

execution frequency of incoming edges is equal to the execution frequency of outgoing
edges, that is

∑
in(n) =

∑
out(n); (iii) for each loop, the loop body is executed `

times the loop header, that is
∑

in(lb) = ` ∗
∑

out(n). The maximum solution to
the above system of ILP constraints corresponds to the (estimation of the) program’s
WCET bound. Note that the ILP solution fixes the execution frequencies of program
blocks, resulting in an ILP branching behavior, induced by the ILP, that encodes one or
more execution traces in the CFG. The execution traces resulting from the ILP branching
behavior are called WCET candidates and if they are feasible, they exhibit the calculated
WCET.

A single ILP branching behavior can result in one or more execution traces in the
CFG, as information about the exact sequence of edge executions for edges in loops is
not available. Note that without additional constraints, IPET will always select the
maximum execution frequency for those edges of conditional nodes with higher edge-
weight. Thus, the solution of IPET in absence of additional constraints always encodes
a single execution trace.

Let us consider now an execution trace containing a loop with a conditional in the
loop body, such that the loop is executed ` times. Assume that the frequency of the false-
edge f is m, for some m ∈ N. Therefore, the frequency of the corresponding true-edge
t is constrained to `−m. The ILP branching behavior then encodes multiple execution
traces. For conditional-edges e, e′ ∈ {t, f}, we write ee′ to mean that the execution
of edge e is followed by the execution of e′. Then, the set of branching behaviors for

13

m = 1 is {(f1t2t3 . . . t`−1), (t1f1t2 . . . t`−1), . . . , (t1t2t3...t`−1f1)}, where ti (respectively,
f i) denotes that the true-edge t (respectively, false-edge f) which was taken in the ith
iteration of the loop. In the sequel, we will refer to the branching behavior describing
a single execution trace as a path-expression. A single element in a path-expression is
a branching decision for a conditional-node C. Note that traces given above are valid
execution traces in the CFG. They are however not necessarily valid execution traces in
the original program, where each condition is evaluated at runtime.

2.3 Symbolic Execution

We briefly overview the main ingredients of symbolic execution upon which our work
relies on, and refer to [20, 72, 10] for details.

Symbolic execution uses symbolic instead of concrete input data to symbolically
execute a program. To do so, (input) variables of the program are assumed to be “sym-
bolic”, which means that they can have an arbitrary value, conforming to the specified
data-type. The same notions of path, execution trace, branching behavior and path
expression defined for CFGs also apply for path-wise symbolic execution: a sequence of
CFG branching decisions at the same time encodes a symbolic execution trace. Note,
that a symbolic execution trace usually encodes multiple concrete execution traces.

If a conditional statement splits the control-flow of the program, symbolic execution
follows both successor edges of the conditional, restricting possible values of symbolic
variables according to the condition. For example, if a conditional executes the true-edge
of the condition only if a variable has a certain constant value, then symbolic execution
assumes the constant value for the variable when following this edge. Thus, symbolic
variable values are restricted by path conditions or assumptions involving the respective
variable. This allows to track complex constraints for each variable, and at the same
time rely on solvers that can reason about the constraints to infer analysis results.

Symbolic execution of programs with conditionals (and loops) leads to the problem
of path explosion, as the number of paths needed to be executed symbolically increases
exponentially with the number of conditionals in the program. Hence, full symbolic
coverage of larger applications is infeasible in practice. The problem of path explosion can
be addressed in different ways, for example, by using heuristics for computing only partial
symbolic coverage of the program, for instance in the context of test-case generation and
bug-hunting.

2.4 Algebraic Considerations.

This section overviews some algebraic methods from symbolic computation, in partic-
ular from algorithmic combinatorics. We rely on these methods in our approach of
automatically inferring loop bounds. A more detailed survey can be found in [28].

Let K be a field of characteristic zero (e.g. R) and f : N→ K a univariate sequence in
K. Consider a rational function R : Kr+1 → K. A recurrence equation for the sequence
f(n) is of the form f(n+ r) = R(f(n), f(n+ 1), ..., f(n+ r − 1), n), where r ∈ N is the

14

order of the recurrence. We denote by K[n] the polynomial ring with indeterminante n
and coefficients in K. Further, for n ∈ N, we denote by n! the factorial of n.

Given a recurrence equation of f(n), one is interested to compute the value of f(n)
as a function depending only on the summation variable n and some given initial vales
f(0), . . . , f(n − 1). In other words, a closed form solution of f(n) is sought. Although
solving arbitrary recurrence equations is an undecidable problem, special classes of recur-
rence equations can be effectively decided using algorithmic combinatorics techniques.

In our work of WCET analysis, we are interested in solving one particular class of
recurrence equations, called C-finite recurrences. An inhomogeneous C-finite recurrence
equation is of the form f(n+ r) = a0f(n) + a1f(n+ 1) + ...+ ar−1f(n+ r − 1) + h(n),
where a0, . . . , ar−1 ∈ K, a0 6= 0, and h(n) is a linear combination over K of exponential
sequences in n with polynomial coefficients in n. The C-finite recurrence is homogeneous
if h(n) = 0. C-finite recurrences fall in the class of decidable recurrences. In other
words, closed forms of C-finite recurrences can always be computed, as illustrated in the
example below.

Example 2.1 Consider the C-finite recurrence f(n+1) = 3f(n)+1 with initial values
f(0) = 1. By solving f(n), we obtain the closed form f(n) = 3

2 ∗ 3n − 1
2 .

15

CHAPTER 3
Proof – WCET Squeezing as

Proof Procedure

This section describes our approach to proving the precision of WCET bounds, which, to
the best of our knowledge, is out-of-scope of any other state-of-the-art WCET analyzer.
Our method, called WCET Squeezing, extends static approaches of WCET analysis by an
automated and novel algorithm that allows not only to tighten a WCET bound reported
by a static analyzer, but more importantly, it allows to conclude and proof that a WCET
bound computed by an analyzer is indeed the actual WCET of the program. That is,
any over-estimation of the bound is due to an imprecise modelling of the underlying
hardware and not due to an infeasible path being analyzed.

Our WCET Squeezing algorithm works by viewing the problem specification and the
results of an IPET-based WCET bound computation as an abstraction of the actual
program. As the abstract behaviour of the program might not be exhibited in the con-
crete program, the program abstraction applied in the IPET step of our method can
yield to an imprecise WCET bound: the computed WCET bound might be derived for
a program path that is feasible in the abstract program but not in the concrete one.
Therefore, in WCET Squeezing we map the abstract program path exhibiting the com-
puted WCET bound to the concrete program and check whether the abstract program
path is feasible in the concrete program. In other words, we check whether there exists a
concrete program path that corresponds to the execution of the abstract path. For doing
so, we propose a novel combination of symbolic execution with WCET analyis. If such
a concrete path does not exist, the computed WCET bound was derived for an infea-
sible program path, and infeasibility of the computed WCET bound is also concluded.
Therefore, we exclude the program trace exhibiting the infeasible WCET bound from
the program abstraction, and re-iterate the ILP WCET bound calculation, deriving this
way a new, and most importantly, refined (tightened) WCET bound. However, if the
abstract program path encodes a feasible path in the concrete program, we can conclude
that the WCET bound is exhibited by a concrete behaviour of the program (modulo

17

imprecision in the underlying hardware model). Thus, with a proof for the feasibility of
the path in the concrete program, we have a proof for the precision of the WCET bound.
For proving feasibility of program paths, we use satisfiability modulo theory (SMT) rea-
soning in the theory of linear integer arithmetic, bit-vectors and arrays. We believe that
the combination of symbolic execution, SMT reasoning and WCET analysis makes our
method novel and highly-efficient; we are not aware of any other WCET analyzer exploit-
ing the power of these techniques in a combination. Moreover, our approach overcomes
the computational limitations of symbolic execution as follows. WCET Squeezing does
not apply symbolic execution on every program path, usually resulting in the expensive
problem of path explosion. Rather than that, the WCET bound derived at an arbitrary
iteration of WCET Squeezing is used to apply symbolic execution selectively, that is
only on the program paths exhibiting the WCET bound.

Figure 3.1: WCET Squeezing illustrated: long-waved (crossed-out) arrows represent
infeasible paths with highly over-estimated WCET bounds. Short-waved arrows repre-
sent paths that exhibit an acceptably over-estimated WCET. The bold straight arrow
represents the actual WCET of the program. The goal of WCET Squeezing is to prove
infeasibility of the long-waved arrows and finding a WCET estimate for one of the accept-
able short-waved arrows. In the best-case scenario, when WCET Squeezing terminates,
the actual WCET of the program is found and proved.

To emphasize the advantage of WCET Squeezing in WCET analysis, let us consider
Figure 3.1 summarizing different execution times of some arbitrary program, as com-
puted by a WCET analyzer. The long-waved arrows represent executions that take much
longer to execute than other executions, for example, the short-straight and short-waved
executions. Due to an imprecise program analysis step, the WCET analyzer might only
find one of the long-waved arrows as WCET, which is clearly an over-estimation, as the
actual WCET of the program is much lower (represented by the bold short-straight ar-
row). WCET Squeezing automatically finds and excludes the long-waved over-estimated
WCET bounds, and hence tightens the WCET bound of the program to be the WCET
bound of one of the shorter-waved arrows.

18

In the traditional use of WCET analysis, one can only infer the WCET of a program.
The traditional WCET problem hence answers the question: “what is the WCET of the
program?”, but gives no hints or answers whether the derived WCET bound is precise or
over-estimated. By using our WCET Squeezing method, the precision of the computed
WCET bound can be however proved. In other words, WCET Squeezing allows us to
strengthen the traditional task of a WCET problem, by also answering the questions
of: “can the WCET of the program be tightened to a value X?” and “is the computed
WCET bound precise?”. Based on WCET Squeezing algorithm, we can therefore define
the pragmatic WCET problem as the decision problem of proving precise WCET bounds.
That is, we consider the pragmatic WCET problem as the problem to decide whether
an insufficient WCET bound reported by a static WCET analyzer can be refined and
proved to be below some required threshhold. WCET Squeezing solves the pragmatic
WCET problem by proving the precision of a WCET bound. In case the WCET bound
is precise, our approach comes up with a proof of precision. In case the bound is over-
estimated, our method returns a counterexample, proving the infeasibility of the WCET
bound. The counterexample can further be used to improve the WCET bound in a
next iteration of WCET Squeezing. WCET Squeezing can be iterated until either the
WCET bound is precise and still above some required threshhold, or until the required
thresshold has been reached.

WCET Squeezing is an anytime algorithm, meaning that it can be stopped at any
time without violating the soundness of its results. This anytime property allows one to
apply WCET Squeezing also when a program needs only be proven to be fast enough,
that is, to be below some required limit. If the (initially) computed WCET bound of
the program is above this limit, WCET Squeezing can be stopped when the refined
WCET bound is either below the imposed limit (proving that the program meets the
required timing constraint) or it is tight but above the considered limit (proving it can’t
meet the timing constraint). Moreover, WCET Squeezing can also be used until a given
time budget is exhausted to compute a tight(er) WCET bound for a program if there
is need to. WCET Squeezing therefore opens new venues in WCET analysis, by solving
WCET problems that are beyond the scope of other state-of-the-art approaches. These
problems, and hence our contributions by using WCET Squeezing in WCET analysis,
can be summarized as follows.

• WCET Squeezing is a method to automatically tighten the WCET estimate com-
puted by a state-of-the-art WCET analyzer. To this end, our algorithm combines
in a unique and novel way traditional IPET-based WCET analysis techniques with
(selective) symbolic execution.

• WCET Squeezing works on-demand and can be used in three different modes, each
of them being out of the scope of traditional WCET analyzers:

(i) Precision-controlled: Computing a WCET that comes as close as possible to
or even coincides with the actual WCET of a program.

19

(ii) Threshold-controlled: Squeezing the WCET as much as necessary in order to
prove or disprove that a program meets a pre-defined deadline.

(iii) Cost-controlled: Tightening a WCET estimate within a pre-defined time bud-
get allowed for WCET Squeezing.

One may argue that mode (i) is similar to the task of a traditional WCET problem,
however, unlike traditional WCET bound approaches, WCET Squeezing allows one
to also prove precision of the derived WCET bound. On the other hand, the tasks
formulated in modes (ii) and (iii) are along the goals of the pragmatic WCET
problem.

• WCET Squeezing addresses deadline-controlled and effort-controlled WCET anal-
ysis. We consider these two variants instances of the pragmatic WCET problem.
WCET Squeezing also addresses the traditional WCET problem by tightening,
and ultimately proving precise, some initially computed WCET bound.

• We present a new selective symbolic execution framework that is guided by WCET
Squeezing using WCET bounds and program paths exhibiting WCET bounds.

• WCET Squeezing is fully automatic and requires no a-priori specified WCET tem-
plates or predicates. We implemented our approach in the r-TuBound tool and
evaluated WCET Squeezing on the Mälardalen benchmarks of the WCET commu-
nity [34]. Our experiments demonstrate that WCET Squeezing can significantly
tighten the WCET estimates of programs, and often succeeds to compute a proven
tight bound, at moderate costs (see Chapter 6 for details).

In the rest of the section, we first illustrate our method on concrete example and
then formally introduce our WCET Squeezing algorithm.

3.1 Example

We illustrate WCET Squeezing on the example of Figure 3.2, taken from the lcdnum.c

example of the Mälardalen bencmark suite [34].

This example consists of a for-loop with a conditional statement calling a function
named num_to_lcd. An initial WCET analysis of this program infers a loop bound
of 10, and yields a WCET bound of 24320 cycles, with the execution frequency of 10
for the then-branch (true-block) of the conditional inside the loop. By mapping back
this WCET bound to a the concrete program, we only obtain the program path calling
num_to_lcd in each loop iteration. WCET Squeezing uses this initial WCET bound
and program path as a starting point for the first symbolic execution and concludes
the infeasibility of this program path. Therefore, in the next step (second iteration) of
WCET Squeezing, an IPET constraint excluding this infeasible program path is derived
and added to the IPET-based WCET analysis framework. This way, a new WCET bound

20

// ...

for(i = 0; i < 10; i++) {

if(i < 5) {

a = a & 0x0F;

OUT = num_to_lcd(a);

}

}

// ...

Figure 3.2: lcdnum.c, simplified.

of 23420 cycles is then derived, with an execution frequency of 9 for the true-block in
the loop, which constitutes a WCET tightening of 3.7%.

In the second iteration of WCET Squeezing, the new WCET bound 23420 is used.
This time, there are multiple program paths exhibiting the WCET bound in the

concrete program, since the else-branch (false-block) of the conditional can be also
taken in a loop iteration. By using symbolic execution, none of these program paths are
however found feasible. A third iteration of WCET Squeezing is therefore taken, ruling
out the infeasible program paths with a true-block frequency of 8. The WCET bound
of the program is hence tigthened to 22520 cycles. Note that, compared to the initial
WCET bound, an accumulated WCET improvement of 7.4% is obtained, after excluding
11 program paths.

The number of program paths explored by symbolic execution increases in the fol-
lowing iterations of WCET Squeezing. WCET Squeezing finally terminates in its sixth
iteration, when it finds a feasible program path with execution frequency of 5 for the
true-block. This feasible program path results in a precise WCET bound of 19820
cycles. Compared to the initial WCET estimate, the precise WCET bound yields an
improvement of 18.5%.

3.2 WCET Squeezing for Proving Precise WCET Bounds

We now describe our WCET Squeezing algorithm for proving precise, and if necessary
tightening, the WCET bound provided by some off-the-shelve WCET analyzer.

WCET Squeezing applies on-demand WCET feasibility refinement, and proceeds as
follows. It takes as input the result of an a-priori WCET analysis of the program and
refines, that is squeezes, this WCET bound by using symbolic execution [19, 18, 72] in
combination with the Implicit Path Enumeration Technique – IPET approach of [58],
where the IPET problem is ultimately encoded as an Integer Linear Program (ILP).
To squeeze the computed WCET bound of a program, we map the result of the IPET
analysis to a program trace and symbolically execute this trace to decide whether the
path is feasible or not. To this end, the following two steps are applied. (i) If the
program path is feasible, the computed WCET bound is tight: any remaining WCET

21

over-estimation is due to a conservative hardware model. (ii) If the program path is
infeasible, we extend the original IPET problem by a new constraint excluding the
infeasible path. The new IPET problem is again encoded as an ILP problem, which is
then solved, resulting in a tighter WCET bound. The new ILP problem yields a new
program path for the WCET bound, which is then used in the WCET Squeezing. These
two steps of WCET Squeezing can be iteratively run until termination, that is until a
feasible program path exhibiting the WCET bound is found. It can also be run with an
optional time-limit after which the algorithm might terminate without finding a feasible
trace.

WCET Squeezing avoids the short-comings of IPET and symbolic execution, namely
the lack of program knowledge beyond flow facts for IPET and the non-scalability of
symbolic execution for a fast growing number of paths. Even more, when evaluated on
examples coming from the Mälardalen benchmark suite [34], our experiments show that
WCET Squeezing is very efficient. For example, we achieved an improvement of WCET
bound of up to 9% after two iterations of WCET Squeezing. Improvements of up to 90%
are possible, if WCET Squeezing is run until termination.

WCET Squeezing has similarities to the Counter-example Guided Abstraction Re-
finement (CeGAR) approach of [24]. In the CeGAR method, an initial abstraction of
the program is analyzed for reachability of error states. If an error state is spurious,
that is reachable in the abstraction but not in the program, the abstraction is refined
to exclude reachability of the error state. The refined abstraction is used in the next
iteration of CeGAR. Similarly, in WCET Squeezing, we start with an initial abstraction
of the program, where the abstraction is encoded as an ILP problem. A solution of
the ILP problem represents a WCET program path of the program. This path might
however only be feasible in the considered abstraction and not in the concrete program.
Therefore, we next symbolically execute the path and, if found infeasible, the abstraction
is refined to exclude the path. This refined abstraction is used in the next iteration of
WCET Squeezing. Note that the used program abstraction gets more precise in each
iteration of our WCET Squeezing algorithm, yielding a more precise WCET estimate
for the program.

WCET Squeezing - The Algorithm

Our WCET Squeezing algorithm is given in Algorithm 3.1. Algorithm 3.1 takes as input
the result of an a-priori WCET analysis of the program. That is, Algorithm 3.1 takes as
input the ILP problem ilp_problem resulting from applying IPET on the CFG of the
program under study. Remember that a maximum solution of the ilp_problem gives an
(initial) WCET bound of the problem. Algorithm 3.1 then iteratively refines the WCET
bound of the program, in a precision-controlled mode, by reducing the control flow of the
program (i.e. excluding infeasible program paths). In addition to the ILP problem, an
optional parameter can also be supplied to guarantee termination of the algorithm within
a certain time-limit time, that is in a cost-controlled mode: if during that time a program
path exhibiting the current WCET bound is excluded, the WCET bound is improved,
unless another program path also exhibits the current WCET bound. Alternatively,

22

when running WCET Squeezing with a pre-defined threshold -value, our method allows
to solve the pragmatic WCET problem, that is to answer whether a pre-defined deadline
can be met by a program: WCET Squeezing is run until either the improvement in the
WCET bound reaches the required value, reporting then yes, or until it terminates due
to a feasible program path, reporting then no as the answer of the pragmatic WCET
problem. This mode of WCET Squeezing corresponds to a threshold-controlled mode.

Let us emphasize that WCET Squeezing is guaranteed to terminate, even without
using a pre-defined time- and/or threshold-limit. This is so because the ILP problems
during WCET Squeezing encode only a finite number of WCET trace candidates. In
the worst-case scenario, WCET Squeezing terminates after symbolically executing all
program traces. It is however important to note that the WCET bound is improved
at every iteration of Algorithm 3.1, and hence the WCET bound, reported upon the
termination of Algorithm 3.1, is improved and proved to be precise.

Algorithm 3.1 WCET Squeezing Algorithm
Input: ILP problem ilp_problem

Output: ILP solution ilp_solution

Assumption: threshold- or cost-limit limit

1 begin
2 do
3 ilp solution := ILPsolve(ilp problem)
4 wcet candidates := extractCandidates(ilp problem, ilp solution)
5 counter ex := symbolicExecution(wcet candidates)
6 if no counter ex then return ilp solution
7 ilp problem := encodeConstraint(ilp problem, counter ex)
8 forever or [optional] until limit is reached
9 return ilp solution
10 end

The main steps of Algorithm 3.1 are as follows. First, a solution ilp_solution

of the ILP problem ilp_problem is computed (line 3), by using an off-the-shelve ILP
solver [8]. Based on the computed ILP solution, the corresponding ILP branching be-
havior is mapped back to the CFG of the program and program paths as WCET trace
candidates are extracted (line 4), as presented further. These WCET trace candidates
are next symbolically executed (line 5), in a selective manner, as later discussed. The
result of symbolic execution on WCET trace candidates is stored in the counterexample
counter_ex: if a trace candidate is feasible, the ilp_solution corresponding to this
trace is returned (line 6) as the precise WCET bound of the program under study. If
all WCET trace candidates are infeasible, the ILP branching behavior is infeasible as
well. The WCET bound corresponding to the ilp solution is hence not exhibited by the
program and the infeasible ILP branching behavior is excluded by adding a constraint
to the ILP problem (line 7), as addressed in the later part of this section. A next itera-
tion of WCET Squeezing is further applied on the new ILP problem, yielding a tighter
WCET bound of the program (line 3). Algorithm 3.1 for WCET Squeezing terminates

23

when a feasible and refined WCET bound is derived (line 6). Even more, this WCET
bound is guaranteed to be precise, as a feasible WCET trace exhibiting the bound was
also identified.

In what follows, we overview the ingredients of Algorithm 3.1 in more detail. We de-
scribe our approach to extracting WCET trace candidates, selective symbolic execution,
and encoding of ILP constraints.

WCET Trace Candidates

To construct WCET trace candidates, a mapping from the ILP branching behavior to
program execution traces is needed. WCET trace candidates can be specified by a
branching behavior, i.e. a sequence of branching decisions. The ILP branching behavior,
denoted by ilp bb, is initially generated by mapping all executed edges, that is edges
with an execution frequency greater than 0, from the first ILP solution to a trace in
the CFG of the program and selecting all conditions executed in the trace. The ILP
branching behavior is represented as a sequence of executed conditions Ci, where Ci is
the ith condition of the trace, and it has the execution frequencies freq(tCi) and freq(fCi)
of its conditional-edges associated with it. The values of freq(tCi) and freq(fCi) are as
given in the first ILP solution.

From the ILP branching behavior ilp bb, WCET trace candidates are constructed
by specifying their branching behavior bb. A branching behavior bb forms an execution
trace, where the ith element of bb, denoted by bb[i], stores the evaluation of the executed
path-condition Ci. We refer to bb[i] as the ith branch decision of bb. Depending on
the execution frequencies of the conditional-edges e ∈ {tCi , fCi} of Ci in ilp bb, multiple
branching behaviors bb can be constructed from ilp bb, as follows.

Case 1. One conditional-edge of Ci is executed once. If only one of the conditional-
edges e of Ci is executed with freq(e), no interleaving among branch-conditions is pos-
sible. Therefore, a single WCET trace candidate is constructed whose freq(e) positions
are set either to t or f results. Assuming that the execution frequency of tCi (respectively,
fCi) is 1, the path-condition Ci is assumed to evaluate to true (respectively, false),
hence the branching behavior at position i is set to t (respectively, f). Using our previous
notation, in this case we have:

bb[i] =

{
t , if freq(tCi) = 1
f , if freq(fCi) = 1

Case 2. One conditional-edge of Ci is executed repeatedly. If the conditional-
edge e of Ci is executed with a frequency higher than 1, we need to encode the multiple
executions of e. To this end, multiple positions in bb are set to either t or f, as follows:

24


bb[i+ j] = t with 0 ≤ j ≤ freq(tCi),

if freq(tCi) > 0 and freq(fCi) = 0

bb[i+ j] = f with 0 ≤ j ≤ freq(fCi),
if freq(fCi) > 0 and freq(fCi) = 0

That is, a sequence of t (respectively, f) of length freq(tCi) (respectively, freq(fCi)) is set
starting from ilp bb[i]. Note that for multiple conditionals inside a loop, the values of bb
must be set such that their indices coincide with the corresponding branching-decision
in the trace.

Case 3. Both conditional-edges of Ci are executed repeatedly. If the ILP
branching behavior specifies the execution of both conditional-edges of Ci inside a loop,
the branching-decisions can interleave, and hence ilp bb encodes multiple WCET trace
candidates. The number of WCET trace candidates constructed from ilp bb is then given
by the number of all possible permutations over the set of edges
S = { t . . . t︸ ︷︷ ︸

freq(tCi
) times

, f . . . f︸ ︷︷ ︸
freq(fCi

) times

}. Using the results of [63], the number of permuta-

tions over S, and thus the number of loop branching behaviors is: p =

(
freq(tCi

)+freq(fCi
)
)
!

(freq(tCi
)!) ∗ (freq(fCi

)!) .

In this case, we take care of the multiple branching behavior as follows. We construct
p copies of the current bb, that is we take bb1, . . . , bbp branching behaviors where each
bbx is a copy of bb. Next, each bbx is continued by one loop branching behavior, as given
below:

bbx [i+ j] = permutationx{ t, . . . , t︸ ︷︷ ︸
freq(tCl

) times

, f, . . . , f︸ ︷︷ ︸
freq(fCl

) times

}

with 0 ≤ j ≤ freq(tCi) + freq(fCi) and 0 ≤ x ≤ l,
where permutationx{S} gives the xth permutation over S.
Note that for bb the correspondence between an index i and an executed condition Ci

is not one-to-one; previous conditions Ck with k < i might have already set multiple
positions, including bb[i], in bb.

Selective Symbolic Execution

Selective symbolic execution supports the analysis of a computable or measurable prop-
erty (i.e. WCET) of a program under study, while exploring only the relevant program
parts (i.e. trace candidate) for analyzing the property. Our goal with selective sym-
bolic execution is to minimize the number of symbolic executions required in order to
improve on analysis results. The WCET Squeezing approach combines a symbolic execu-
tion engine with a WCET analysis toolchain and uses WCET bounds to guide selective
symbolic execution, by symbolically executing only those traces that might exhibit the
WCET bounds.

Using the branching behavior bb of the WCET trace candidates, the symbolic ex-
ecution engine of Algorithm 3.1 directs the program execution along these traces and,

25

for each trace, checks the feasibility of the conditions on each branching point. A sym-
bolically evaluated execution trace is feasible if the conjunction of all path conditions is
satisfiable, meaning that the execution trace is a feasible program execution trace. As
the symbolic execution engine is precise, it serves as an oracle to decide whether the ILP
branching behavior is a feasible branching behavior in the concrete program.

For doing so, our symbolic execution step in line 5 of Algorithm 3.1 proceeds as
follows. It takes as input the source code of the program and the branching behavior bb
of one of the WCET trace candidates. The symbolic execution engine then constructs a
satisfiability module theory (SMT) representation [7] of the program execution, according
to the branching behavior together with the source. A branching behavior bb of length
n specifies the evaluations of n path-conditions, which can be analyzed for satisfiability
in the SMT representation provided by the symbolic execution engine. That is, if the
specified evaluation of the path-condition is unsatisfiable at some point, the trace π(bb)
is infeasible. Using our previous notations, we conclude that π(bb) is infeasible iff the
boolean expression:

symbolicEval(C0, bb[0]) ∧ symbolicEval(C1, bb[1]) ∧
. . . ∧ symbolicEval(Ci, bb[i]))

(3.1)

is unsatisfiable, for i ≤ n. To reason about the unsatisfiability of this condition, we
use SMT reasoning in the theory of linear integer arithmetic, bit-vectors and arrays (see
Chapter 6 for further details).

If the branching behavior bb gives a satisfiable evaluation of (3.1), the WCET trace
candidate corresponding to bb yields a successful symbolic execution. Hence, the WCET
trace candidate is feasible and exhibits the current WCET bound. Therefore, no further
WCET refinements are possible (line 6 of Algorithm 3.1).

Otherwise, if the symbolic execution of a trace candidate fails, some path-condition
Ci in (3.1) is unsatisfiable for some i. This condition Ci can be mapped to its con-
ditional nodes, resulting in an ILP encoding of an infeasible WCET trace candidate.
The encoding gives thus a counter-example that needs to be excluded from the ILP
branching behavior in the next iteration of WCET Squeezing (line 7 of Algorithm 3.1).
The constraint constructed from this counter-example involves all symbolically executed
conditions, as detailed in the next paragraph.

ILP Constraint Encoding

New ILP constraints are derived from infeasible WCET trace candidates. If a WCET
trace candidate induced by an ILP branching behavior is infeasible, the trace must
be excluded from from further WCET computations. This is done by adding an ILP
constraint to exclude the current maximum solution from the new ILP problem.

The construction of the ILP constraint is such that it decreases the total sum of execu-
tion frequencies of all conditional-edges that were symbolically executed until infeasibility
was inferred (including the unsatisfiable one). That is, for an infeasible WCET trace
candidate π, the ILP constraint constructed involves all conditional-edges corresponding
to Ci from (3.1). Using our above notation, recall that bb[i] gives the conditional-edge

26

void f () {

if (C1) ...

if (C2) ...

}

Figure 3.3: Conditions C1 and C2 are mutually exclusive.

(t or f) from the ith position of bb. bb[i]Ci is the conditional edge of Ci, denoted ti
or fi in the ILP. Then, the conditional-edges of (3.1) over which a new ILP constraint
is constructed are given by bb[0]C0 , bb[1]C1 , . . . , bb[i]Ci . To ensure that the execution
frequencies of these conditional-edges is decreased, the new ILP constraint we add to
the ILP problem is:

bb[0]C0 + bb[1]C1 + · · ·+ bb[i]Ci ≤
freq(bb[0]C0) + freq(bb[1]C1) + · · ·+ freq(bb[i]Ci)− 1.

We illustrate our approach to ILP construction on the example below.

Example 3.2 Consider Figure 3.3, where conditions C1 and C2 are mutually exclu-
sive. The (abstracted) CFG representation of Figure 3.3 is given in Figure 3.4(a). The
initial ILP solution yields a WCET trace candidate with branching behaviour tt, i.e. an
execution frequency that enables the execution of both t1 and t2 (both with execution
frequency 1). However, as conditions C1 and C2 are mutually exclusive, only one of
the conditions can be true. Therefore, symbolic execution will set C1 to true, execute
t1, and infer that the evaluation of C2 = true is unsatisfiable, hence execution of t2 is
infeasible. The constraint constructed from the result of symbolic execution will specify
in the resulting ILP problem that either C1 or C2 (but not both) is valid, by decreasing
the combined execution frequency of all conditionals edges executed, i.e. of t1 and t2.

In more detail, the new ILP constraint added to the ILP problem of Figure 3.3
specifies the following properties: (i) the entry-edge n and the exit-edge x of the CFG of
Figure 3.4(a) is executed at most once, that is n ≤ 1 and x ≤ 1; (ii) the conditional-edges
of Figure 3.4(a) are executed at most once, that is t1 + f1 ≤ n and t2 + f2 ≤ n; (iii)
the total execution frequency of the true-edges of C1 and C2 is restricted to 1, that is
t1 + t2 ≤ 1. The derived ILP problem is thus the conjunction of the afore-listed five
integer inequalities.

As illustrated in the example above, the ILP constraints constructed from infeasible
WCET trace candidates restricts the total sum of execution frequencies of all conditional-
edges involved in the trace. It therefore excludes the ILP branching behavior and an
ILP solution picks at least one conditional-edge differently, due to the semantic-based
encoding.

Alternatively, the syntactic-based encoding introduces additional ILP variables and
corresponds to a CFG transformation (Figure 3.4) that removes only the infeasible trace
from the CFG. On the graph representation of the CFG, the following two transforma-
tions are applied: (i) the branching decision is made explicit in the CFG by copying

27

(a) (b) (c)

Figure 3.4: (a) CFG representation of Figure 3.3; (b) Infeasible WCET trace candidate
(bold) with an unsatisfiable conditional edge (dotted); (c) Transformed CFG, excluding
the infeasible trace of (b).

and pulling up the unsatisfiable condition into the predecessor conditional node; (ii) the
unsatisfiable edge for the prefix of the infeasible WCET trace candidate is removed.

Example 3.3 Consider again the program code given in Figure 3.3 and the CFG
representation in Figure 3.4(a). Let t1 and t2 respectively denote the true-edge of C1

and C2. Assume that the ILP branching behavior for Figure 3.3 is initially tt, that is
a WCET trace candidate executing t1 followed by t2. This WCET trace candidate is
inferred infeasible by symbolic execution because the evaluation of condition C2 to true

(i.e. executing conditional edge t2) is unsatisfiable. Therefore, the trace is removed from
the CFG of the program: the conditional node of the unsatisfiable edge is copied pulled
up into the last conditional node and the true-decision edge is removed for the prefix of
the candidate.

Implementation Pragmatics of ILP Encodings in the Presence of Loops. The
difference between the syntactic- and the semantic-based encoding in the above exam-
ples only effects the number of ILP variables and constraints. In the presence of loops,
using the syntactic-based encoding also increases the number of ILP variables and con-
straints, while using the semantic-based encoding increases the number of WCET trace
candidates.

Remember that the execution frequencies of edges inside loops are constrained to
their execution frequency times the loop bound. That is, for an edge that is executed
m times inside a loop, the following constraint is generated: freq(e) ≤ ` ∗m, This needs

28

to be taken into consideration for both encodings when computing the total execution
frequency for edges inside loops, as illustrated in the following example.

void main () {

int i;

bool exec = false;

if (*)

exec = true; // t1

for (i = 0; i < 5; i++)

if (exec == false) {

expensive(); // t2

exec = false;

} else

exec = true; // f2

}

Figure 3.5: Executing the true-edge of
the first conditional restricts the execution
of the true-edge inside the loop. * denotes
non-deterministic choice, f1 is not execut-
ing t1

n <= 1;

c1 <= n;

t1 + f1 <= c1;

loopHead <= 1;

loopBody <= loopHead * 5;

loopBody <= t2 + f2;

loopExit <= loopHead;

x <= loopExit;

Figure 3.6: ILP problem after
WCET analysis of the example in
Figure 3.5. The branching behav-
ior imposed by the ILP solution is
tttttt.

Example 3.4 Consider Figure 3.5 and assume that the first true-block (edge t1,
marked as t1) has an execution time of 1, whereas the second true-block (edge t2,
marked as t2) has 10. All other costs are ignored. The initial ILP solution selects all
true-blocks to be executed, the t1 with frequency 1 and the t2 with frequency 5. The
reported WCET estimate amounts to 1 ∗ 1 + 5 ∗ 10 = 51, the branching behavior for the
trace is tttttt (i.e. t1t

1
2 . . . t

5
2).

Symbolically executing this trace yields the unsatisfiability of the second condition
(exec == false), in the first iteration of the loop. Thus, if the first branching decision
is t, the execution frequency of the true-edge in the loop is only 4. Just reducing the
frequency in the ILP problem to 4 yields an invalid result. The WCET estimate would
be restricted to 1 ∗ 1 + 4 ∗ 10 = 41, even though there exists a path exposing a higher
WCET: Executing the false-branch of the first conditional (branching behavior fttttt)
leads to a WCET of 0 ∗ 1 + 5 ∗ 10 = 50 and is allowed in the original problem.

We denote the situation illustrated in Example 3.4 as candidate-flip. If the prefix to
a loop flips, then the constraints about loop iterations need to be inferred again since
it increases the number of symbolically executed WCET trace candidates. Both the
syntactic- and the semantic-based encoding can handle candidate-flips, but based on our
experience, a combination of the two encodings handles them the best.

On CFG level, the syntactic-based approach peels-off a loop iteration [50] and in-
troduces a new conditional for the loop condition in the first iteration and children for
the loop body. Similar to Example 3.3, the last conditional is split, introducing copies

29

for all following edges, and then the infeasible trace is removed. On the ILP level, the
same technique is applied: additional variables for the copies of the condition and the
loop-peel are introduced in the ILP problem. At the same time, the number of WCET
trace candidates is smaller, as branching in different iterations is explicitly encoded.

The semantic-based encoding constructs, as before, a constraint that decrements
the total execution frequency of all conditional-edges up to the loop and the execution
frequency of the conditional-edge in the loop. Additionally to the original ILP problem
(Figure 3.6), the constraint restricts the combined execution frequency of the true-edge
(t1) of condition c1 and the true-edge (t2) of the condition in the loop body, i.e. t1

+ t2 <= 5. (Figure 3.7). This constraint introduces no new ILP variables, but the ILP
branching behavior encodes more WCET trace candidates.

The combined encoding uses the syntactic-based encoding to peel one loop itera-
tion and decrements the execution frequency of edges inside the loop. It does not split
conditional nodes, instead a semantic-based encoding is used to restrict the total exe-
cution frequency of the loop prefix and the peeled condition, such that the branching
decision in the first iteration of the loop is explicit for the loop prefix. The branching
decision in the first iteration of the loop is not restricted for other executions. Figure
3.8 depicts the resulting ILP problem where the solver will return the correct WCET
estimate, i.e. branching behavior fttttt, exhibiting a WCET of 50. The advantage of the
combined encoding is that it only introduces ILP variables and constraints for the peeled
loop iteration and, at the same time, it also makes explicit the branching behavior, thus
reducing the number of symbolically executed WCET candidates.

n <= 1;

c1 <= n;

t1 + f1 <= c1;

loopHead <= c1;

loopBody <= loopHead * 5;

loopBody <= t2 + f2;

loopExit <= loopHead;

t1 + t2 <= 5;

x <= loopExit;

Figure 3.7: Semantic constraint.

n <= 1;

c1 <= n;

t1 + f1 <= c1;

peelCond <= c1;

peelT + peelF<= peelCond;

t1 + peelT <= 1;

loopEntry <= peelCond;

loopBody <= loopEntry * 4;

loopBody <= t2 + f2;

loopExit <= loopEntry;

x <= loopExit;

Figure 3.8: Combined constraint.

Symbolic Execution Overhead and Benefits.

In contrast to formal symbolic techniques, such as model checking, that analyze the
program as a whole, symbolic execution reasons in a path-local manner. Symbolic exe-
cution is especially suited for automated testing but also found applications in program
verification and bug-hunting [19, 72]. It allows for precise analysis of programs but the

30

number of program paths that need to be analyzed increases exponentially with the
number of conditionals. Therefore, applications of symbolic execution often target only
partial symbolic coverage of the program, e.g. generating test-cases that achieve high
line coverage [18].

One of the major advantages of symbolic execution engines is the amount of infor-
mation they can infer about a program, as they implicitly carry all this information
along when they explore a program. Applications of symbolic execution for loop bound
refinement in WCET analysis is briefly addressed in our work presented in [44]. There,
symbolic execution is used to infer and validate arithmetic properties about program
loops, in some cases allowing to refine the computed loop bound.

Unlike these methods, our selective symbolic execution approach in WCET Squeezing
relies on the tight interaction between a traditional static WCET analysis toolchain
applying IPET and a symbolic execution engine that allows to select symbolic execution
traces for reasoning precisely about path-conditions. We exploit the fact that loop
bounds are implicitly supplied by the initial WCET analysis. Compared to traditional
flow-fact analysis, the symbolic execution component of WCET Squeezing infers precise
constraints for paths, that yield further WCET bounds. In each iteration of WCET
Squeezing, solving the new ILP problem allows to refine the WCET bound. Compared
to traditional symbolic execution engines, WCET Squeezing offers a way to identify
precisely which paths need to be symbolically executed in order to improve the analysis.

Limitations of WCET Squeezing

The current major limitations of WCET Squeezing include the following:

(1) WCET Squeezing requires a successful initial WCET analysis of the program. That
is, we assume that the program can be analyzed in a fully automatic way and
loop bound for every program loop are computed by an initial WCET. These
assumptions, especially the latter one, might to be too strong when it comes to
programs with complicated control flow, including loops and recursion. If for such
cases, no WCET analyzer cannot be used, our WCET Squeezing algorithm would
also fail.

(2) For checking feasibility of WCET trace candidates, we rely on SMT reasoning the
combined theory of linear integer arithmetic, bit-vectors and arrays. This means,
that programs handling more complicated arithmetic operations and/or other data
types cannot yet be handled by our method. For example, programs implement-
ing complex polynomial operations over integers or programs with floating point
operations are limitations to WCET Squeezing. Extending our method with more
sophisticate WCET analysis methods, for example by the work of Astree [13], is
an interesting task to be further investigated.

(3) We perform intra-procedural symbolic execution on the source level of the program.
It is therefore crucial that both the source and the binary code of the program

31

exhibit a compatible branching behaviour. While this assumption imposes limita-
tions on WCET Squeezing, we believe that overcoming them could be done, for
example, by performing symbolic execution on the binary level, or by prohibiting
compiler optimizations that introduce incompatible branching behaviours on the
source and binary code.

32

CHAPTER 4
Performance – Accelerating

WCET Squeezing by Empowering
WCET Analyzers

The WCET Squeezing algorithm described in Chapter 3 empowers state-of-the-art WCET
analyzers by a novel approach of proving precise the WCET bound computed by a WCET
analyzer. While effective, the performance of WCET Squeezing crucially depends on the
analysis strength of the used WCET analyzer, in particular on the ability of the WCET
analyzer to infer challenging and precise flow facts about virtual method calls, aliasing
of pointer or array variables, and upper bounds on the number of program loop execu-
tions. To make WCET Squeezing as proof procedure highly performant, it is therefore
important to improve WCET analysis with the ultimate goal of computing program flow
facts of high quality.

In this section we address this challenge and present a new kind of static loop anal-
ysis for inferring tight upper bounds, i.e. loop bounds, on the number of program loop
iterations. Our method relies on symbolic computation and automated theorem prov-
ing methods and introduces an efficient and automated framework for computing loop
bounds. To this end, our work addresses special classes of loops with assignments and
conditionals, where updates over program variables are linear expressions. For such
loops, we deploy recurrence solving and theorem proving techniques and automatically
derive tight iteration bounds, as follows.

(i) A loop with multiple paths arising from conditionals is first transformed into a loop
with only one path. We call a loop with multiple paths, respectively with a single
path, a multi-path loop, respectively a simple loop. To this end, the control flow of
the multi-path loop is analyzed and refined using SMT reasoning over arithmetical
expressions. The resulting simple loop soundly over-approximates the multi-path

33

loop. Iteration bounds of the simple loop are thus safe iteration bounds of the
multi-path loop.

(ii) A simple loop is next rewritten into a set of recurrence equations over those scalar
variables that are changed at each loop iteration. To this end, a new variable
denoting the loop counter is introduced and used as the summation variable. The
recurrence equation of the loop iteration variable captures thus the dependency
between various iterations of the loop.

(iii) Recurrence equations of loop variables are next solved and the values of loop vari-
ables at arbitrary loop iterations are computed as functions of the loop counter
and the initial values of loop variables In other words, the closed forms of loop
variables are derived. Our framework overcomes the limitations of missing initial
values by a simple over-approximation of non-deterministic assignments .

We note that solving arbitrary recurrence equations is undecidable. However, in
our approach we only consider loops with linear updates. Such loops yield C-finite
recurrences, and hence our method always succeeds in computing the closed forms
of loop variables.

For solving C-finite recurrences we deploy a pattern-based recurrence solving al-
gorithm. In other words, we instantiate unknowns in the closed form pattern of
C-finite recurrences by the symbolic constant coefficients of the recurrence to be
solved. Unlike powerful algorithmic combinatorics techniques that can solve com-
plex recurrences, our framework hence only solves a particular class of recurrence
equations. However, it turned out that in WCET analysis the recurrences describ-
ing the iteration behavior of program loops are not arbitrarily complex and can be
solved by our approach (see Chapter 6 for experimental results).

(iv) Closed forms of loop variables together with the loop condition are used to express
the value of the loop counter as a function of loop variables. The upper bound on
the number of loop iterations is finally derived by computing the smallest value of
the loop counter such that the loop is terminated. To this end, we deploy SMT
reasoning over arithmetical formulas. The inferred iteration bound is further used
to infer an accurate WCET of the program loop.

We believe that our work advances the state-of-the-art in WCET analysis by a con-
ceptually new and fully automated approach to loop bound computation. Moreover, our
approach extends the application of program analysis methods by integrating WCET
techniques with recurrence solving and SMT reasoning. We implemented our approach
in the r-TuBound toolchain [44] and evaluated it on a large number of examples coming
from the WCET community. Our results give practical evidence of the efficiency of our
method - we refer to Chapter 6 for details.

In what follows, we first give an example illustrating our approach to loop bound
computation, and then formally describe the main steps of our method.

34

4.1 Example

Consider the program in Figure 4.1 manipulating a two-dimensional array a, where
a[k][j] denotes the array element from the kth row and jth column of a. Between
the program lines 5-21 , the method func iterates texttta row-by-row and updates the
elements of a, as follows. In each visited row k, the array elements in columns 1, 4, 13,
and 53 are set to 1 according to the C-finite update of the simple loop from lines 6-9.
Note that the number of visited rows in a is conditionalized by the non-deterministic
assignment from line 2. Depending on the updates made between lines 6-9, the multi-
path loop from lines 10-14 conditionally updates the elements of a by -1. Finally, the
abrupt termination of the multi-path loop from lines 15-18 depends on the updates made
throughout lines 6-14.

1 void func()

2 {

3 int i = nondet();

4 int j, k = 0;

5 int a[32][100];

6 for (; i > 0; i = i >> 1) {

7 for (j = 1; j < 100; j = j * 3 + 1) {

8 a[k][j] = 1;

9 #pragma wcet_loopbound(4)

10 }

11

12 for (j = 0; j < 100; j++) {

13 if (a[k][j] == 1) j++;

14 else a[k][j] = -1;

15 #pragma wcet_loopbound(100)

16 }

17

18 for (j = 0; j < 100; j++) {

19 if (a[k][j] != -1 && a[k][j] != 1)

20 break;

21 #pragma wcet_loopbound(100)

22 }

23 k++;

24 #pragma wcet_loopbound(32)

25 }

26 }

Figure 4.1: Program loops annotated with the result of loop bound computation.

Computing a tight WCET bound of the func method requires thus tight loop bound

35

for the loops between lines 5-21. The difficulty in computing the number of loop iterations
comes with the presence of the non-deterministic initialization and shift updates of the
loop from lines 5-21; the use of C-finite updates in the simple loop from lines 6-9; the
conditional updates of the multi-path loop from lines 10-14; and the presence of abrupt
termination in the multi-path loop from lines 15-18. Our approach overcome these
difficulties as follows.

• We apply a pattern-based recurrence solving algorithm, and the iteration bound
of the loop from lines 6-9 is inferred to be precisely 4.

• We deploy SMT reasoning to translate multi-path loops into simple ones, and
derive 100 to be the over-approximated loop bound of the loop from lines 10-14,
as well as of the loop from lines 15-18.

• We over-approximate non-deterministic initializations, and infer the value 31 as
the upper bound of the loop from lines 5-21.

The loop bounds inferred automatically by our approach are listed in Figure 4.1,
using the program annotations]pragma wcet_loopbound(...).

4.2 Automated Generation of Loop Bounds for
Empowering WCET Analyzers

This section overviews our approach to automatically derive tight bounds on the number
of iterations for special classes of program loops. Automated generation of loop bounds is
a challenging research topic, which has received considerably attention both in program
and WCET analysis. One line of research closed to our method uses powerful symbolic
computation algorithms to derive loop bounds, see e.g. [12]), but makes very little,
if any, progress in integrating these loop bounds in the program analysis environment
of WCET. Another line of research makes use of abstract interpretation based static
analysis techniques to provide good WCET estimates; however, often loop bounds are
assumed to be a priori given, in part, by the user, see e.g. [57, 32, 49]. Unlike these
approaches, we compute loop bounds to be used in the WCET analysis of programs. Our
approach relies on recent advances in symbolic computation and automated reasoning
and is fully automated. That is, it requires no user guidance in providing loop bound
templates or additional poperties.

The loop bounds inferred by our method tightens the WCET bounds of programs,
and hence significantly improve the performance of WCET Squeezing in timing analysis.
Our method can be summarized as follows. We identify special classes of loops. We
over-approximate non-deterministic initializations of programs and translate multi-path
loops with abrupt termination and monotonic conditional updates into simple loops. We
then apply a pattern-based recurrence solving algorithm to infer precise loop bounds for
simple loops with linear arithmetic updates, computing this way tight loop bounds for
multi-path loops. The rest of this section describes the main steps of our method.

36

Loop Bound Computation of Simple Loops

We start presenting our approach to computing loop bounds by first considering a special
class of simple loops. The algebraic notions and notations used in this section are as
given in Chapter 2. The simple loops on which our method can be applied is described by
the following class of simple loops with linear updates and conditions given in Figure 4.2.

for (i = a; i < b; i = c * i + d)

Figure 4.2: Simple loops with linear updates and conditions, where a, b, c, d, with c 6= 0,
are constants from the field K and do not depend on i.

Note that for loops described by Figure 4.2, the loop iteration variables (i.e. i)
are bounded by symbolic constants and updated by linear expressions over iteration
variables. Observe that, when it comes to the WCET analysis of Figure 4.1 discussed
in Section 4.1, the inner loop given between lines 6-9 of Figure 4.1 is an instance of the
class of loops defined by Figure 4.2

Given a loop as in Figure 4.2, we derive a precise upper bound on the number of
loop iterations using pattern-based recurrence solving, as follows.
(i) We model the loop iteration update as a recurrence equation over a new variable
n ∈ N denoting the loop counter. To do so, we write i(n) to denote the value of variable
i at the nth loop iteration. The recurrence equation of i corresponding to Figure 4.2 is
given below.

i(n+ 1) = c ∗ i(n) + d with the initial value i(0) = a. (4.1)

Note that (4.1) is a C-finite recurrence of order 1 as variable updates of Figure 4.2
are linear.
(ii) Next, the recurrence equation (4.1) is solved and the closed form of i as a function
over n is derived. More precisely, we use pattern-based recurrence solving depending on
the value of c and compute the closed form of i(n) as given below.

i(n) = α ∗ cn + β, if c 6= 1

where{
α+ β = a
α ∗ c+ β = a ∗ c+ d

and

i(n) = α+ β ∗ n, if c = 1

where{
α = a
α+ β = a+ d

(4.2)

(iii) The closed form of i(n) is further used to derive a tight upper integer bound on the
number of loop iterations of Figure 4.2. To this end, we are interested in finding the
value of n such that the loop condition holds at the nth iteration and is violated at the
n+ 1th iteration. We are thus left with computing the (smallest) positive integer value
of n such that the below formula is satisfied:

n ∈ N ∧ i(n) < b ∧ i(n+ 1) ≥ b. (4.3)

37

for (j = 1; j < 100;

j = j * 3 + 1) ;

Figure 4.3: Loop with C-finite up-
date.

for (i = nondet(); i > 0;

i = i >> 1) ;

Figure 4.4: Loop with non-deterministic
initialization.

The smallest n derived yields a tight upper bound on the number of loop iterations
of Figure 4.2. This upper bound is further used in the WCET analysis of programs
containing a loop matching Figure 4.2.

Example 4.1 Consider Figure 4.3, which is a simplified version of the loop between
lines 6-9 of our motivating example from Figure 4.1. Updates over j describe a C-finite
recurrence, whereas the loop condition is expressed as a linear inequality over j. Let
n ∈ N denote the loop counter. Based on (4.2), the value of j at arbitrary loop iteration
n is j(n) = 3

2 ∗3n− 1
2 . Using (4.3), the upper bound on loop iterations is further derived

to be 4 – we consider 0 to be the starting iteration of a loop.

Let us note that, instead of adapting our pattern-based recurrence solving approach,
the recurrence equation (4.1) can also be done by using more powerful symbolic com-
putation packages, such as [52, 37]. These packages are implemented on top of com-
puter algebra systems (CAS), for example the Mathematica system [70]. Integrating
a CAS with program analysis tools is however problematic due to the complexity and
closed-source nature of CAS. Moreover, the full computational power of CAS algorithms
is hardly needed in applications of program analysis and verification. Therefore, for
automatically inferring exact loop bounds for Figure 4.2 we designed a pattern-based
recurrence solving algorithm which is not based on CAS. Our method relies on the cru-
cial observation that in our approach to WCET analysis we do not handle arbitrary
C-finite recurrences. We only consider loops matching the pattern of Figure 4.2, where
updates describe C-finite recurrences of order 1. Closed forms of such recurrences are
given in (4.2). Therefore, to compute upper bounds on the number of loop iterations
of Figure (4.2) we do not deploy the general C-finite recurrence solving algorithm given
in [28], but instantiate the closed form pattern (4.2). In other words, whenever we en-
counter a loop of the form Figure 4.2, the closed form of the iteration variable is derived
by instantiating the symbolic constants a, b, c, d, α, β of (4.2) with the concrete values of
the loop under study. Hence, we do not make use of general purpose C-finite recurrence
solving algorithms, but handle Figure 4.2 by pattern-matching C-finite recurrences of
order 1. However, our approach can be further extended to handle loops with more
complex linear updates than those in Figure 4.2.

Finally let us make the observation that while reasoning about Figure 4.2, we consider
the iteration variable i and the symbolic constants a, b, c, d, α, β to have values in K. That
is, when solving recurrences of Figure 4.2, the integer variables and constants are safely
approximated over K. However, when deriving upper bounds of Figure (4.2), we restrict
the satisfiability problem (4.3) over integers.

38

for (i = nondet();

i > d; i >>= m) ;

(a)

for (i = nondet();

i < d; i <<= m) ;

(b)

Figure 4.5: Simple shift-loops, where d ∈ K does not depend on i and m ∈ N.

Program Flow Refinement for Loop Bound Computation of Simple
Loops with Non-Deterministic Behaviour

In this case we describe a small generalization of the class of simple loops presented in
Figure 4.2, for which our method succeeds to automatically infer loop bounds. We call
a loop a shift-loop if updates over the loop iteration variables are made using the bit-
shift operators � (left shift) or � (right shift). Let us recall that the operation i� m
(respectively, i� m) shifts the value of i left (respectively, right) by m bits. Note that
the outermost loop between lines 5-21 of our motivating example given in Figure 4.1 is
a shift-loop.

Consider now a simple shift-loop with iteration variable i, where i is shifted by m bits.
Hence, updates over i describe a C-finite recurrence of order 1. Upper bounds on the
number of loop iterations can thus be derived as described for Figure 4.2, whenever the
initial value of i is specified as a symbolic constant. However, the initial value of i might
not always be given or derived by interval analysis. A possible source of such a limitation
can, for example, be that the initialization of i uses non-deterministic assignments, as
given in Figure 4.5(a) and (b).

For shift-loops matching Figure 4.5, our approach described in the previous section
for simple loops with linear updated and conditions would thus fail in deriving loop
upper bounds. To overcome this limitation, we proceed as below.
(i) We soundly approximate the non-deterministic initial assignment to i by setting
the initial value of i to be the integer value that allows the maximum number of shift
operations within the loop (i.e. the maximum number of loop iterations). To this end,
we distinguish between left and right shifts as follows.

• If i is updated using a right-shift operation (i.e. Figure 4.5(a)), the initial value of i
is set to be the maximal integer value, yielding a maximum number of shifts within
the loop. The initial value of i is hence assumed to have the value 2147483647,
that is 010 . . . 0 in a 32-bit binary representation (the most significant, non-sign,
bit of i is set).

• If i is updated using a left-shift operation (i.e. Figure 4.5(b)), we assume the
initial value of i to be the integer value resulting in the maximum number of shift
operations possible: i is set to have the value 1, that is 0 . . . 01 in a 32-bit binary
representation (the least significant bit of i is set).

(ii) The upper bound on the number of loop iterations is then obtained by first computing
the difference between the positions of the highest bits set in the initial value of i and

39

d, and then dividing this difference by m. If no value information is available for m, we
assume m to be 1.

Example 4.2 Consider the shift-loop of Figure 4.4 with right shift updates. The
initial value of i is set to INT_MAX. The upper bound on the number of loop iteration is
then derived to be 31.

Let us note that the treatment of non-deterministic initial assignments described
above is not only restricted to simple shift-loops, but can be also extended to the more
general class of Figure 4.2. For doing so, one would however need to investigate the
monotonic behavior of C-finite recurrences in order to soundly approximate the initial
value of loop iteration variables.

Program Flow Refinement for Loop Bound Computation of
Multi-Path Loops

We now describe our method in the presence of multi-path loops. As paths of multi-path
loops can interleave in a non-trivial manner, deriving tight loop upper bounds, and thus
accurate WCET bound, for programs containing multi-path loops is a challenging task.
In our approach to WCET analysis, we identified special classes of multi-path loops with
only conditionals which can be translated into simple loops by refining the control flow
of the multi-path loops. Loop bounds for the obtained simple loops are then further
derived as discussed in the previous sections, yielding thus loop bounds of the original
multi-path loops. In what follows, we detail the class of multi-path loops our approach
can automatically handle and overview the flow analysis techniques deployed in our work.
For simplicity, in the rest of this chapter we only multi-path loops with only 2 paths,
arising from conditionals.

Multi-path loops with abrupt termination. One class of multi-path loops that can
automatically be analyzed by our framework is the class of linearly iterating loops with
abrupt termination arising from non-deterministic conditionals, as given in Figure 4.6
(a)–(c).

int a;

for (; i < b;

i = c * i + d)

if (nondet())

break;

(a)

int i = nondet();

for (; i > e;

i = i >> m)

if (nondet())

break;

(b)

int i = nondet();

for (; i < e;

i = i << m)

if (nondet())

break;

(c)

Figure 4.6: Multi-path loops with abrupt termination, where a, b, c, d, e ∈ K, with
c 6= 0, do not depend on i and m ∈ N.

Note that we are interested in computing the worst-case execution time of a loop
from Figure 4.6. Therefore, we safely over-approximate the number of loop iterations of

40

for (j = 0; j < 100; j++)

if (nondet())

break;

Figure 4.7: Loop with abrupt ter-
mination.

for (j = 0; j < 100; j++)

if (nondet())

j++;

Figure 4.8: Loop with monotonic
conditional update.

for (i = a; i < b; i = c * i + d)

if (B) i = f1(i);

else i = f2(i);

Figure 4.9: Multi-path loops with monotonic conditional updates.

Figure 4.6 by assuming that the abruptly terminating loop path is not taken. In other
words, the non-deterministic conditional statement causing the abrupt termination of
Figure 4.6 is ignored, and we are left with a simple loop as in Figure (4.2) or Figure 4.5.
Upper bounds on the resulting loops are then computed as previously described, from
which an over-approximation of the WCET bound of Figure 4.6 is derived.

Example 4.3 Consider Figure 4.7. Assuming that the abruptly terminating loop path
is not taken, we obtain a simple loop as in Figure 4.2. We thus get the loop bound 100.

Multi-path loops with monotonic conditional updates. By analyzing the effect
of conditional statements on the number of loop iterations, we identified the class of
multi-path loops as given in Figure 4.9, with the following constraints. The symbolic
constants a, b, c, d, with c > 0, are elements of K and do not depend on i, whereas B
is a boolean condition over loop variables. Further, we impose that f1, f2 : K → K are
monotonically increasing function such that:{

i < c ∗ i+ d andi ≤ f1(i) and i ≤ f2(i) if i ≥ a
i > c ∗ i+ d andi ≥ f1(i) and i ≥ f2(i) if i ≤ a.

We refer to the assignments i = f1(i) and i = f2(i) as conditional monotonic assign-
ments (or updates), as their execution depends on the truth value of B.

We refer to the assignments i = f1(i) and i = f2(i) of Figure 4.9 as conditional
monotonic assignments (or update), as their execution depends on the truth value of B.
Let g : K → K denote the function i 7→ c ∗ i + d describing the linear updates over i
made at every iteration of Figure 4.9. Note that the monotonic behavior of g depends
on c and coincides with the monotonic properties of f1 and f2.

To infer loop bounds for Figure 4.9, we aim at computing the worst-case iteration
time of Figure 4.9. To do so, we ignore B and transform Figure 4.9 into a simple loop
by safely over-approximating the multi-path behavior of Figure 4.9, as given below. In

41

what follows, let ∆ = |g(i+1)−g(i)|, ∆1 = |f1(i+1)−f1(i)|, and ∆2 = |f2(i+1)−f2(i)|,
where |x| denotes the absolute value of x ∈ K.

(i) If c is positive, let m = min{∆ + ∆1, ∆ + ∆2}. That is, m captures the minimal
value by which i can be increased during an arbitrary iteration of Figure 4.9.

Alternatively, if c is negative, we take m = max{∆ + ∆1, ∆ + ∆2}. That is,
m captures the maximal value by which i can be decreased during an arbitrary
iteration of Figure 4.9.

(ii) The multi-path loop of Figure 4.9 is then over-approximated by the simple loop
(4.4) capturing the worst-case iteration time of (4.9).


for (i =a; i<b; {i=c*i+d;i=f1(i)}), if c > 0 and m = ∆ + ∆1

for (i =a; i<b; {i=c*i+d;i=f2(i)}), if c > 0 and m = ∆ + ∆2

for (i =a; i<b; {i=c*i+d;i=f1(i)}), if c < 0 and m = ∆ + ∆1

for (i =a; i<b; {i=c*i+d;i=f2(i)}), if c < 0 and m = ∆ + ∆2

(4.4)

Hence, the control flow refinement of Figure 4.9 requires checking arithmetic con-
straints over f1 and f2. We automatically decide this requirement using arithmetic
SMT queries.

(iii) We are finally left with computing loop upper bounds of (4.4). To this end, we
need to make additional constraints on the monotonic functions f1 and f2 of (4.9)
so that the approach used for Figure 4.2 can be applied. Namely, we restrict f1
(respectively, f2) to be a linear monotonic function i 7→ u ∗ i + v, where u, v ∈ K
do not depend on i and u > 0. As linear monotonic functions are closed under
composition, updates over the iteration variable i in (4.4) correspond to C-finite
recurrences of order 1. Upper bounds on loop iterations of (4.4) can thus be derived
as presented for the simple-loop of Figure 4.2.

Note that the additional constraints imposed over f1 and f2 restrict our approach
to the following multi-path loops with linear conditional updates.

for (i=a; i<b; i=c*i+d)

{
if (B) i=u1*i+v1;
else i=u2*i+v2;
}

(4.5)

where a, b, c, d, u1, u2, v1, v2 ∈ K do not depend on i, and c, u1, u2 6= 0,

B is a boolean condition over loop variables, and{
u1 > 0 and u2 > 0, if c > 0
u1 < 0 and u2 < 0, if c < 0

42

for (fcode = (long) hsize;

fcode < 65536L; fcode *= 2L)

hshift++;

Figure 4.10: Loop using multiplica-
tion in the update expression.

while (tries_left > 0) {

...

tries_left--;

if (confirm_hit_result == 0)

tries_left = 0;

}

Figure 4.11: health.c program from
the Debie benchmark suite, loop with a
conditional update to the loop counter.

Loops (4.5) form a special case of Figure 4.9. Let us however note, that extending
the simple loop approach of Figure 4.2 to handle general (or not) C-finite recur-
rences with monotonic behavior would enable our framework to compute upper
bounds for arbitrary loops in Figure 4.9.

Example 4.4 Consider Figure 4.8. The conditional update over j is linear, and hence
the multi-path loop is transformed into the simple loop for (j = 0; j < 100; j++).
The loop bound of Figure 4.8 is therefore derived to be 100.

Challenging Examples and Benchmarks

In this section we address further extension of our method for loop bound computation.
For doing so, we give examples of some loops taken from various benchmarks, which
illustrate the main ingredients and advantage of our symbolic loop bound computation
technique.

Figure 4.10 lists a loop with a C-finite update. It can be characterized by the following
linear recurrence relation:

fcode(n+ 1) = 2 ∗ fcode(n), where n ≥ 0 denotes the loop iteration counter.

Hence, the value of fcode at an arbitrary iteration n can be derived by instantiating
the closed form solution of Figure 4.2. As a result, the value of fcode is expressed
as a function of n. Note that the loop condition fcode < 65536L holds at any loop
iteration, and therefore fcode(n) < 65536L is a valid formula. A precise loop bound
for Figure 4.10 is then derived by computing the smallest value of n such that the loop
terminates. In other words, the (smallest) value of n is inferred such that the formula
(fcode(n) < 65536L) ∧ (fcode(n+1) ≥ 65536L) is satisfiable. Let us note that the closed
form representation of i(n) in equation 4.3 involves, in general, exponential sequences
in n. Therefore, to compute the value of n such that 4.3 holds, we make use of the
logarithm, floor and ceiling built-in functions of Prolog.

Consider the loop from Figure 4.11. This loop fits the loop pattern given in Fig-
ure 4.6(b). Deriving a tight loop bound for Figure 4.11 requires reasoning about the
conditional update to tries left . To this end, the loop iterates over tries left either by

43

monotonically decreasing the value of tries left , or by setting the value of tries left to
0. As in both cases the value of tries left decreases1, the conditional statement of Fig-
ure 4.11 is omitted and Figure 4.11 is approximated by a simple loop of Figure 4.2.
Further, a precise loop bound for the simple loop is computed, yielding thus a tight loop
bound for Figure 4.11.

Figure 4.12 lists an abruptly terminating loop. The loop fits the loop pattern given
in Figure 4.6(a). The difficulty in deriving a tight loop bound for Figure 4.12 comes
from the presence of the conditional statement yielding an abrupt termination of the
loop. To this end, the control flow of Figure 4.12 is refined by abstracting away the
break statements. This way, Figure. 4.12 is approximated by a simple loop with C-finite
updates. A precise loop bound of the simple bound is next derived, from which a tight
loop bound for Figure 4.12 is obtained.

for (i = 0; i < M; i++) {

...

if (A[i] == 0) {

failed = 1;

break;

}

}

Figure 4.12: Loop with
abrupt termination, from ar-

ray.c in the Scimark bench-
mark suite.

while (i > 0) {

int p = (i - 1) / 2;

if (nondet())

break;

i = p;

}

Figure 4.13: Abruptly
terminating loop with C-
finite update.

while (i < size) {

int j = 2 * i + 1;

if (nondet())

j++;

if (nondet())

break;

i = j;

}

Figure 4.14: Abruptly
terminating loop with
C-finite and conditional
updates.

The examples given so far described loops matching exactly one of the loop patterns
from Figures 4.2, 4.6(a), and 4.6(b). Our experiments show however that these loop
patterns are used in their combination (see Chapter 6). To this end, let us consider
Figure 4.13 and Figure 4.14.

The loop from Figure 4.13 requires reasoning about abrupt termination and C-finite
updates. A tight loop bound for Figure 4.13 is inferred by first applying flow refinement
to transform Figure 4.13 into a simple loop with C-finite update, and then derive a
precise loop bound for the obtained simple loop.

The program from Figure 4.14 implements an abruptly terminating loop with C-finite
and conditional linear updates. After flow refinement and establishing the monotonicity
property of the conditional update, Figure 4.14 is rewritten into a simple loop with only
C-finite updates. A precise loop bound of the simple loop is next computed by applying
our pattern-based recurrence solving approach, and a loop bound of Figure 4.14 is finally
inferred.
Limitations. We investigated examples on which our approach fails to derive loop
bounds. We list some of the failing loops in Figure 4.15. Note that the arithmetic used

1note that the loop condition assumes that tries left is a positive non-zero symbolic scalar

44

while (abs(diff) >= 1.0e-05) {

diff = diff * -rad * rad /

(2.0 * inc) *

(2.0 * inc + 1.0);

inc++;

}

while (k < j) {

j -= k;

k /= 2;

}

while (((int)p[i]) {

i++;

(a) (b) (c)

Figure 4.15: Limitations of r-TuBound.

in the simple loop Figure 4.15(a) requires extending our framework with more complex
recurrence solving techniques, and deploy SMT solving over various numeric functions,
such as the absolute value computations over floats or integers. The complex arithmetic
update cannot be captured by the C-finite updates of Figure 4.2 and would require
solving recurrences with non-constant polynomial coefficients in the loop variables. Al-
gorithmic methods are available for solving such recurrences – see e.g. [61, 37]. On the
other hand, Figure 4.15(b) suggests a simple extension of our method to solving blocks
of C-finite recurrences, as the evaluation of the loop condition depends on a loop vari-
able that is modified in each iteration of the loop. Finally we note that Figure 4.15(c)
illustrates the need of combining our approach with reasoning about array contents, as
the loop condition depends on array values. To this end, we plan to extend our method
with support for arrays by using SMT or first-order reasoning in the array theory.

Further, extending our method does not yet support multi-path nested loops. How-
ever, we believe that using our current flow refinement approaches in a combined manner
would yield interesting results for the study of nested loops. We also plan to investigate
our approach in conjunction with the technique of [12], where a large number of nested
loops are handled using symbolic computation techniques over loop indexes.

45

CHAPTER 5
Portability – Distributing WCET

Squeezing by Enabling
Interoperability of WCET

Analyzers

Static WCET analysis relies on various flow fact information about the program under
analysis, e.g. loop bounds. Such information may be given manually by the developer
or inferred automatically by a flow fact analyzer. Well-known WCET tools, such as
aiT [2], Bound-T [67] or SWEET [32], use so-called annotation languages in order to
carry gathered information. In [41] the authors define and summarise ingredients of an
annotation language in order to classify the information needed by the WCET analysis
performed by various WCET tools. Following this line, the work of [42] emphasizes the
need of a common annotation language for comparing various WCET tools.

In this chapter we address this problem and propose a flexible and extensible interme-
diate language that provides a common interface for exchaning flow facts between WCET
analyzers. For doing so, we adapt a portable annotation language, called Flow Facts in
XML, shortly referred to as FFX. Our work relies on the FFX format proposed in [21] as
the internal format of the OTAWA WCET analyzer, and extends FFX with additional
features needed for making it available for other state-of-the-art WCET analyzers. In
particular, we address the interopality between the OTAWA [5] and r-TuBound [44]
WCET toolchain by using FFX as an intermediate annotation format.

To understand the advantage of a common intermediate annotation languages, let
us consider Figure 5.1. Figure 5.1(a) illustrates the difference between The traditional
workflow of WCET analyzers relying on an internal format to exchange information
between their front- and back-end is illustrated in Figure 5.1(a). On the other hand,
the workflow of WCET analyzers proposed by our work using a portable annotation

47

(a) (b)

Figure 5.1: (a) shows the traditional workflow of WCET analyzers using different
internal formats. (b) shows the abstract setup of the FFX experiment for an arbitrary
number of WCET analysis toolchains. It depicts toolchain 1 translating its internal
format to the intermediate format, toolchain 2 supporting it natively and toolchain n
dropping its internal format in favor of the intermediate format.

format is presented in Figure 5.1(b). As WCET analyzers might support different archi-
tectures, Figure 5.1 suggests that a portable annotation language allows one to extend
the usage of various WCET tools to different platforms and architectures. This way, a
fair comparison between WCET tools can be made and results and different methods
between WCET analysis toolchains can be shared. A benefit of such a sharing can, for
example, be identified for WCET Squeezing, by making WCET Squeezing available for
various high-level WCET analyzers via FFX. As WCET Squeezing is implemented in
our r-TuBound WCET toolchain supporting now also the FFX format, any other WCET
analysis toolchain understanding FFX can supply its high-level results to the r-TuBound
back-end – see Figure 5.2. Hence, the results of high-level analyzers supporting FFX can
be used to infer further program flow facts about, whose precision can be then proved by
WCET Squeezing on any WCET back-end implementing the FFX format. Moreover, by
representing results of different WCET analyzers in the FFX format, the quality of initial
WCET bounds used in WCET Squeezing can be improved, turning WCET Squeezing
into a more efficient proof procedure. The situation illustrated in Figure 5.2 can be
extended to any other WCET technique which can be applied after a high-level WCET
analysis. Even more, sharing the entire WCET analysis back-end to apply results of
WCET analyzers on other platforms can also materialize using a common annotation
language.

Our intermediate FFX annotation language hence supports interoperability of WCET
analyzers, by providing a common interface for exchanging analysis information. The
main advantages of FFX, together with our contributions, are summarized below.

• We propose the FFX format as an open portable and expandable annotation for-

48

Figure 5.2: Portability of the WCET Squeezing proof procedure by a common (FFX)
interface.

mat, and use FFX as an intermediate format for WCET analysis. Such an annota-
tion format is needed for a fair comparison of various WCET results. For instance,
during the WCET tool challenge [69] almost all participants had problems anno-
tating the benchmarks with the supplied flow constraints: the restrictions, often
formulated in a natural language, can be hard to be correctly understoof and it is
even harder to annotate them in a given flow fact language. We believe that with
FFX at hand, it is easier to tackle the WCET tool challenge and possibly open the
opportunity for other tools to participate.

• The FFX format allows combining flow fact information from different high-level
tools. WCET analysis is usually two-fold: the timing analysis part is architecture-
dependent, whereas the flow fact analysis is not. For this reason one cannot com-
pare results from tools that do not support a common architecture, e.g. ARM or
PowerPC, in the WCET tool challenge. By using the FFX format, we believe tools
have the opportunity to extend their flow fact analysis to other architectures that
are not supported by their original toolchain.

• FFX decreases the implementation effort when integrating different WCET analy-
sis toolchains. One could argue that integration of two WCET analysis toolchains
by supporting the native format of the other toolchain has the same implemen-
tation effort. Nevertheless, when using the intermediate format FFX, the effort
decreases with a higher number of toolchains involved. Consider Figure 5.1 again.
Adding another tool, that is Tool n+1, to Figure 5.1(a) requires to implement
n translations to the native formats of the other tools. Using Tool n+1 in Fig-
ure 5.1(b), with FFX as intermediate format, reduces the implementation effort
to exactly 2 translations. Moreover, the FFX intermediate format comes with the

49

advantage that a change in the internal format of a specific tool does not require
all the other tools to update their translation. Because of this decoupling, it is
only necessary to update the translation from FFX to the modified internal format
for one tool [25].

• Introducing a common annotation language is important in order to tighten and
compare WCET results. FFX allows to perform the timing analysis by using an
annotation file from arbitrary source, for example provided by users or inferred by
a flow fact analyzer. To improve the WCET accuracy, a tool could use annotations
provided by another flow fact analyzer. It is possible to merge the results of several
flow fact analyzers in order to obtain the most accurate information available. This
approach is already used partially in the OTAWA tool in order to collect and merge
analysis information from several sub-analyzers.

• FFX can be used for quality assurance to test and validate new analysis techniques
and tools against. This is achieved by using FFX as a flow fact storage or knowl-
edge base about benchmarks. Therefore, we believe that having the same FFX
annotation language also helps real-time systems developers. They will be able to
adapt their choice of WCET tool to their targeted architecture or type of programs
without learning a new format or tool.

• We introduce an FFX support for the r-TuBound tool and perform experiments
with FFX using both r-TuBound [44] and oRange/Otawa [49, 5] . To this end, we
instantiate Figure 5.1(b) with the r-TuBound tool and the oRange tool as high-
level tools, and use FFX as intermediate format. OTAWA [5] and CalcWCET167
[40] serve as WCET back-ends for the toolchains. We thus get two sets of com-
parable FFX flow facts and two WCET estimates for each of the architectures
supported by the two tool chains. Additionally, it is possible to combine the flow
facts gathered by the tools to get a more accurate WCET estimate. Our experi-
ments emphasize the practical and theoretical benefits of using the FFX common
format for exchanging flow facts and back-ends in the WCET analysis of systems
(see Section 6.3 for experimental details).

In the rest of this section we first overview the basic constructs and principles of
the FFX annotation language. We then present our approach and extensions to FFX,
making it feasible to various WCET analyzers, in particular to the OTAWA and r-
TuBound toolchains.

5.1 The FFX Annotation Language

In this section we present the most relevant FFX elements, for more details about the
format we refere to [21]. We use EBNF notation to present the format and focus on
high-level flow fact elements, omitting low-level elements (for example, FFX elements
used to describe cache or other hardware configurations).

50

At the current state of development, FFX permits to address interesting program
parts and to express information to resolve complex control structures, e.g. indirect
branches due to switch statements that are compiled to function tables or function
pointer calls. An FFX file may include only the code parts for which flow facts have
been derived.

Location Attributes

Location attributes (Figure 5.3) allow to identify code either in the binary or in the
source representation of the program. This is done using different sets of attributes
depending on the constructs used.

LOCATION-ATTRS ::=

| IDENTIFICATION

| ADDRESS-LOCATION

| LABEL-LOCATION

| SOURCE-LOCATION

Figure 5.3: FFX Location Attributes

IDENTIFICATION: Instead of identifying concrete locations in the program, it allows
to make references to parts in the code represented by the other location attributes.
A typical usage is to annotate the execution count of a piece of code inside a control
constraint.

ADDRESS-LOCATION: Location by an address is the simplest scheme. A target location
is represented as an address stored in an attribute. The drawback is that the location
may be invalidated each time the application is compiled.

LABEL-LOCATION: The label location provides more flexibility. It encodes locations
either by a label, or by a label and an offset. This scheme does not support recompilation
but relinking of libraries, as the code is not modified. It only requires the translation of
the label address from one position to another.

SOURCE-LOCATION: Source locations support recompilation and relinking but not
source modifications. It defines the location as a source file name together with a line
number in the file. To be applicable, it requires either a source representation or a
binary representation embedding debugging information. It is preferable to have only
one statement per line, otherwise ambiguity can emerge between locations in certain
circumstances. It is necessary to obtain an XML tree corresponding to the call graph,
which is guarantied if there is only one statement per line.

Context Elements

A context element (Figure 5.4) defines a condition on the information it contains. In-
formation embedded in unsatisfied contexts is not considered, i.e. only information con-
tained in valid contexts is used in further analysis.

51

CONTEXT ::=

<context name="TEXT">

TOP-LEVEL-ITEM*

</context>

Figure 5.4: FFX Context Element

<context name="arm">

<function name="f">

<loop maxcount="10"/>

</function>

</context>

<context name="arm">

<context name="task_1">

<function name="f">

<loop maxcount="5"/>

</function>

</context>

</context>

Figure 5.5: FFX Context Example

Consider, for example, Figure 5.5: if the only valid context is arm, the loop bound
will be 10. If both context arm and task_1 are valid, the bound 5 will be used for further
analysis.

Note that context names may be classified and prefixed using the following con-
structions below: hard:TEXT for hardware contexts, task:TEXT for task contexts and
scen:TEXT for scenario contexts.

A hardware context represents different behavior of an application, depending on the
underlying hardware. For example, the number of possible iterations of a loop counting
the number of one-bits in a word depends on the size of the word. It will be 32 on 32-bit
machines and 64 on 64-bit machines.

Functions composing an application may be called from different tasks that make up
the real-time system. Depending on the task calling the functions, some flow properties
may have different values. One could just take the worst-case behavior to characterize
the functions, independent of the context. Nevertheless, this would come at the price of
a loss of precision and an overestimation of the WCET.

Finally, flow information may depend on a chosen scenario. For example, an execu-
tion configuration chosen by the user, or a system that exhibits state variables controlling
the running mode of the application. These might bring the application to a “running
state”, “failure state” or “critical state”. It may be interesting to examine the different

52

properties of a task according to the running mode, as the scheduling decisions can also
change accordingly. In addition, the properties defined in a scenario may also be used
to force the behavior of the task, for example, by fixing the value of the state variables.

Control Flow Elements

A function element (Figure 5.6) represents the static code location for the given function.
It can contain statements and thus allows to identify and access dynamic locations inside
the function.

FUNCTION ::=

<function LOCATION-ATTRS INFORMATION-ATTRS >

STATEMENT*

</function>

Figure 5.6: FFX Functions

The LOCATION-ATTRS identify the static location of the function in the code.
INFORMATION-ATTRS represent generic hooks where any flow information can be
attached to (frequency, execution time, etc.).

Different statements are supported inside functions (Figure 5.7) and represent the
flow structure of the code. They can be composed to express dynamic locations that
depend on a specific context.

STATEMENT ::= BLOCK | CALL | CONDITION | LOOP

Figure 5.7: FFX Statements

BLOCK: A block element identifies a piece of code, possibly composed of several exe-
cution paths, but with a single entry point only.

CALL: A call element identifies the call to a function. Its location represents the caller
and it must contain a function element representing the callee. Multiple call elements
that embed functions allow to represent call-chain locations.

CONDITION: A condition element represents a condition with several alternatives. In
the C language, it applies to both if statements and switch statements.

LOOP (Figure 5.8): A loop element matches a loop construct in the code. It may
contain iteration elements in order to represent properties that are valid only during
certain iterations of the loop.

The iteration number i can be positive, identifying the ith iteration, or negative,
identifying the ith iteration counted from the last iteration. A Loop bound attribute is
an INFORMATION-ATTRIBUTE but is limited to loop elements (Figure 5.9).

The attribute executed is set to false if the element is never executed. maxcount

and totalcount, attributes of loop elements, denote the maximum number of loop

53

LOOP ::=

<loop LOCATION-ATTRS INFORMATION-ATTRS >

STATEMENT*

</loop>

| <loop LOCATION-ATTRS INFORMATION-ATTRS >

<iteration number="INT">

STATEMENT*

</iteration>

</loop>

Figure 5.8: FFX Loops

LOOP-ATTR ::=

| maxcount="INT|NOCOMP"?

| mincount="INT|NOCOMP"?

| totalcount="INT|NOCOMP"?

| exact="BOOL"?

| executed="BOOL"?

| expmaxcount="TEXT"?

| exptotalcount="TEXT"?

Figure 5.9: FFX Loop Attributes

iterations for each loop entry and the maximum number of loop iterations in relation
to the outer loop scope. Those attributes can either be integer values, NOCOMP (not
computable) or parameterized expressions. The loop attribute exact is set to true if
the totalcount attribute is exact, i.e., no overestimation. expmaxcount, respectively
exptotalcount, is a formula computing the value of maxcount, respectively totalcount,
if no concrete value can be inferred for maxcount, respectively totalcount. These
attributes represent the iteration count as a formula, using a syntax similar to that of C
arithmetic expressions.

The power of FFX comes with the fact that it is expandable. One could add custom
tags in order to make a certain tool more efficient. The custom tags will simply be ignored
by tools that do not support them. As an example, consider a WCET back-end that
relies on the Implicit Path Enumeration Technique (IPET) that usually only handles
linear constraints, whereas FFX could introduce arbitrary constraints. Nevertheless,
the back-end can just ignore these non-linear constraints and find a solution for the
remaining constraints. A similar situation is the iteration construct: it is unused,
and hence not written, by both (static analyzers) oRange [49] and r-TuBound [44], but
emitted by the measurement based analyzer rapiTa [60], where it is much more valuable
to inspect single iterations of loops.

54

5.2 Interoperability via FFX

The FFX format has been introduced for and with the oRange/Otawa WCET analysis
tool chain [21]. FFX is an XML-based file format that is used to represent flow facts.
Such information is either used to help to achieve the computation, or to exhibit WCET
in particular situations. The main concepts and ideas that drive the design and the devel-
opment of FFX include – freedom: tools using FFX do not need to support all features.
In the worst-case, unsupported features induce a loss of precision but never invalidate
information; expandability : the use of XML allows to easily insert new elements or new
attributes without breaking the compatibility with other tools; soundness: all provided
information must be ruled by a precision order, ensuring that, at least, information in
most generic cases must not be more precise than in particular cases.

One of the goals of FFX is to have an annotation language that can be extended
by constructs that yield improvements in the WCET computation, e.g. flow facts (loop
bounds, exclusive paths, indirect function calls, control flow constraints, etc.), platform
configuration (I/O, caches, etc.), target processor, tasks or entry points, configurations
of analyzers, data domain information and more.

Another motivation for FFX is to have the capability to merge the result files of
different tools, allowing the tools to interchange information, e.g. between the cache
analyzer and the flow fact analyzer. The choice to carry all that information in a single
file is made in order to take into account the enormous number of paths and context
sensitive information in a program. Carrying all this information directly in the source
would clutter the source under analysis. Obviously this comes with a drawback, storing
the information external to the source file could lead to divergence between code and
information. This however, is a matter of bookkeeping, as one can, e.g. use version
strings or source hashes to avoid divergence. FFX offers means to store that information,
for example, in constructs comparable to the already mentioned platform configuration
part. Additionally it eases communication between tools that apply the analysis results
on different representations, be it on source or binary level.

The XML nature of the format allows to collect information provided by different
tools1. XML is standardized, easy to read and write for the developer as XML is a textual
format and it offers great tool and library support. Its tree structure is particularly
interesting when representing control flow graphs, as it can implicitly represent a call
graph.

In what follows, we describe our contribution in making FFX as a common annotation
language used in the WCET analyzers oRange/Otawa and r-TuBound. We also illustrate
the use of FFX on concrete examples.

FFX in oRange/Otawa

oRange [49] is the flow fact analyzer for OTAWA. It performs a static analysis based on
flow analysis and abstract interpretation of C programs. Currently oRange does not use

1XInclude http://www.w3.org/TR/xinclude/

55

http://www.w3.org/TR/xinclude/

FFX as input but produces FFX files as output. It generates flow fact information for
functions, calls, conditions and loops starting from a supplied entry point.

Figure 5.10 shows an excerpt of a typical FFX file generated by oRange for the anal-
ysis of the bs.c benchmark from the Ml̈ardalen suite [34]. As mentioned, the structure
of the FFX file represents the structure of the C program, as it is comparable to a call
graph representation of the program.

<loop loopId="1" line="67" source="bs.c" exact="false" maxcount="5"

totalcount="5"

maxexpr="floor((log(14-0)-log(ceil(0+epsilon)))/log(1/0.5)+1)+1"

totalexpr="floor((log(14-0)-log(ceil(0+epsilon)))/log(1/0.5)+1)+1">

<conditional>

<condition varcond="IF-1" line="85" source="bs.c"

isexecuted="true" expcond=""

expcondinit="(data[mid]).key==x"></condition>

<case cond="1" executed="true"></case>

<case cond="0" executed="true">

<conditional>

<condition varcond="IF-2" line="79" source="bs.c"

isexecuted="true" expcond=""

expcondinit="(data[mid]).key>x">

</condition>

<case cond="1" executed="true"> </case>

<case cond="0" executed="true"> </case>

</conditional>

</case>

</conditional>

</loop>

Figure 5.10: FFX flow facts output by oRange

Some elements defined in FFX are currently not supported by oRange, others that
are supported by oRange are not supported by OTAWA. Due to the composable na-
ture of FFX, OTAWA combines analysis results of different sub-tools prior to WCET
computation.

FFX in CalcWcet167/r-TuBound

r-TuBound extends the WCET analysis tool TuBound [57, 56] by combining symbolic
computation techniques with the timing analysis of programs (see Section 6.1 for imple-
mentation details). Inputs are arbitrary C/C++ programs. The r-TuBound toolchain
consists of a high-level source analyzer, a WCET-aware compiler and a low-level WCET
analyzer. The low-level WCET analyzer relies on flow facts inferred by the high-level
source analyzer. The high-level source analyzer implements interval analysis, points-to

56

for (i = 1;

i < 100;

i = i*2+1)

...

for (i = 1; i < 100;

i = i * 2 + 1) {

#pragma wcet_marker location1

#pragma wcet_loopbound (4..4)

...

}

for (i = 1; i < 100;

i = i * 2 + 1)

maximum 4 iterations {

marker location1

...

}

(a) (b) (c)

Figure 5.11: C program analysed for WCET.

analysis and loop bound computation using abstract interpretation, symbolic computa-
tion and a model checking extension. The flow facts derived during the high-level source
analyses are further used as source code annotations in the low-level WCET analysis, in
the form of #pragma declarations. The WCET analysis of the system is performed for
the Infineon C167 microprocessor. The WCET-aware compiler and the low-level WCET
analyzer of r-TuBound are using the WCETC language [39]. WCETC is similar to the
ANSI C, extending it by constructs for WCET path annotations. These annotations in
WCETC allow one to specify loop bounds and to use markers to express restrictions in the
runtime behavior of the program, e.g., relational constraints on the execution frequencies
of program blocks. This is illustrated in Figure 5.11. The loop bound computation step
derives the loop bound of the program fragment in Figure 5.11(a) to be 4. Figure 5.11(b)
shows the loop bound as a pragma annotation in the source. The annotated source code
is then transformed to the WCETC program given in Figure 5.11(c). This WCETC code
is finally compiled and statically analysed using CalcWCET167.

As mentioned for OTAWA/oRange, also r-TuBound/CalcWCET167 does not sup-
port all constructs offered by FFX. Nevertheless, this is not an obstacle, as unsupported
constructs can be ignored by tools in further analysis. An example are loop attributes:
FFX allows to annotate the totalcount of loop iterations, i.e., the maximal number of
iterations of the loop during the whole execution of the program, as well as the maximum
number of iterations each time the loop is entered. r-TuBound only supports the latter,
but can just ignore the other attribute.

Immediate Benefits of FFX

Implementing FFX support for r-TuBound allows us to use OTAWA as WCET back-
end for r-TuBound and to use CalcWCET167 as WCET back-end for oRange. This
way, both tools are able to analyze code for a new architecture. Further, it is possible to
compare flow facts in a common format and to compare WCET estimates on different
platforms in a unified way.

In particular, for r-TuBound we overcome this way a major hurdle when partici-
pating in the WCET tool challenges. This is due to the WCET back-end used in the
r-TuBound toolchain that does not support the ARM and the PowerPC platform used
in the challenge, see [69].

57

While updating the WCET back-end to support a new platform usually requires
heavy engineering effort, the approach we followed here, i.e., introducing in r-TuBound
the WCET annotation language FFX, turned out to be very light-weight.

In fact, extending r-TuBound with an FFX support required only modest effort, as
r-TuBound outputs annotated source code after each analysis step. We extract from
the annotated source code all necessary analysis results and store the results in FFX
format to an FFX file. The tree-like nature of FFX supports this approach, allowing
for the construction of the XML representation as yet another layer in the cascade
of high-level analyses, executed before the low-level WCET analysis. No changes to
either the high-level analyzer nor the low-level back-end are necessary. This advantage
extends to other toolchains when using FFX as an intermediate format: developers of
WCET tools only need to implement a translation from their internal format to FFX,
without changing the internal format of their tools. Another benefit of exporting to FFX
instead of directly translating to a specific tool format emerges when additional tools
participate in such a tool-cooperation: Using FFX reduces the implementation effort to
two transformers, one for the high level to translate flow facts to FFX and one for the low
level to translate from FFX to the back-ends native format, no matter how many tools
participate. Nevertheless, one gains, for each high-level tool, support for all platforms
supported by any of the back-ends. Using the direct translation would require to write
a transformer for each of the back-ends. Additionally, such a decoupling from the tools
native formats results in robustness towards changes in native formats, as only one FFX
translator needs to be adapted.

Flow facts annotated as pragmas are translated to the following list of FFX elements:
flowfacts, functions, loops, calls and conditionals.

Further, the following FFX attributes are required for successful WCET analysis: the
line attribute which is used to specify the source location of constructs. r-TuBound uses
#pragma wcet_marker that need to be translated to line numbers. The most important
flow information that r-TuBound infers are loop bounds. The maxcount attribute of
the loop tags is used to encode those. The totalcount and the exact attribute are
currently unsupported by r-TuBound. The elements and attributes are extracted from
the annotated source that r-TuBound emits after each analysis step.

The following constructs are not used in the pragma translations; they could, how-
ever, be used to refine the flow information and thus tighten the WCET estimate: the
executed attribute allows to constrain the execution of paths and/or calls. It could be
used to encode #pragma wcet_constraint of a specific form. The numcall attribute
could be extracted using r-TuBounds static profiler but is currently not considered (it
encodes the total number of calls to a function). Some WCETC constructs cannot yet be
translated to FFX, for example the #pragma wcet_constraint construct which limits
the execution count of a program block.

The example in Figure 5.12 presents a snippet of code from the Mälardalen [34]
benchmark bs.c, annotated with flow information as used in r-TuBound, and its repre-
sentation in FFX format. In r-TuBound #pragma wcet_marker is used to identify blocks

58

and associate analysis information with them (e.g. the #pragma wcet_loopbound). FFX
represents locations as FFX elements with line number attributes associated with them
instead of markers. The loop bound is annotated as maxcount attribute of the loop

element. Most of the additional information (source, condition, extern) can be ex-
tracted from the source. Expressing flow facts not only in WCETC but also in FFX offers
numerous advantages: most important, we can compare WCET tools on multiple levels.
Further, it allows to specify flow facts in an unambiguous way for different tools and
to keep analysis information persistent. It offers the possibility of merging FFX files
from different tools, i.e. acquiring a tighter WCET estimate by using the most exact
information available, e.g., the tightest loop bounds.

...

// main calling

// binary_search

int binary_search(int x) {

#pragma wcet_marker(label30)

...

while (low <= up) {

#pragma wcet_marker(label23)

mid = ((low + up) >> 1);

if (data[mid].key == x) {

#pragma wcet_marker(label18)

up = (low - 1);

fvalue = (data[mid].value);

} else {

if ((data[mid].key) > x) {

#pragma wcet_marker(label21)

up = (mid - 1);

} else {

#pragma wcet_marker(label22)

low = (mid + 1);

}

}

#pragma wcet_loopbound(8..8)

}

return fvalue;

}

...

<call name="binary_search" numcall="1"

line="54" source="bs.c" executed="true"

extern="false">

<function name="binary_search"

executed="true" extern="false">

<loop loopId="0" line="67" source="bs.c"

exact="false" maxcount="8">

<conditional>

<condition varcond="IF-1" line="70"

source="bs.c" isexecuted="true"

expcond="data[mid].key==x;" />

<case cond="1" executed="true" />

<case cond="0" executed="true">

<conditional>

<condition varcond="IF-2"

line="79" source="bs.c"

isexecuted="true"

expcond="data[mid].key>x;"/>

<case cond="1"executed="true"/>

<case cond="0"executed="true"/>

</conditional>

</case>

</conditional>

</loop>

</function>

</call>

...

Figure 5.12: Part of the Mälardalen benchmark s.c: on top, the original annotations
as output after high-level analysis by r-TuBound, on bottom, the FFX translation.

Based on our experience with FFX we are confident that FFX is a suitable open
format to store, exchange and collect flow fact information for later use in the WCET

59

analysis of systems.
One major advantage of FFX is, illustrated in our case study, that source level

analyzers supporting the FFX format can interchange WCET back-ends. At the same
time it offers a way of comparing WCET tools and it allows to refine and possibly
tighten WCET results by merging flow facts from different tools. In future work, we
will introduce an order on flow facts and other FFX constructs that allows to determine
in which manner FFX files should automatically be merged to gain better accuracy for
WCET analysis. At the same time one could introduce consistency rules for relevant
flow fact information. These rules can then be used to check validity and precision of
gathered flow facts.

FFX allows to specify flow facts in an unambiguous way, therefore as future work,
we propose to extend FFX in a way that makes it possible to encode problems from the
WCET tool challenge, as this would allow for more exact problem specifications and tool
comparisons. Additionally, we plan on investigating FFX for a larger experiment with
additional WCET and flow fact analyzers involved.

60

CHAPTER 6
Practice – Implementation &

Experimental Results

Our overall approach to proving precise WCET bounds is implemented in the r-TuBound
WCET tool chain [43, 44]. That is, our implementation in r-TuBound offers automated
support for WCET Squeezing, selective symbolic execution, loop bound computation,
and interoperability among WCET analyzers using FFX annotations.

In the following, we describe the r-TuBound tool, present its overall workflow, give
implementation details and illustrate the usage of r-TuBound via examples. We then
present our experimental evaluation of using r-TuBound in the timing analysis of pro-
grams, by using a large number of challenging WCET benchmakrs. To this end, we
report on our experimental results by using r-TuBound for WCET Squeezing, selec-
tive symbolic execution, and loop bound computation. We also evaluated r-TuBound
in comparison with the Otawa/oRange WCET analysis tool chain, by using the FFX
annotation languages. Finally, we summarize our results from using r-TuBound in the
WCET Tool Challenge 2011.

6.1 r-TuBound: Overview and Implementation

We have implemented the work reported in this thesis in the WCET analysis toolchain
r-TuBound. Our implementation uses the general WCET framework of the TuBound
tool [56], and extends TuBound with automated techniques for proving precise WCET
bounds, computing tight loop bounds and annotating flow facts based on the FFX for-
mat. The mains steps of r-TuBound are illustarted in Figure 6.1, and detailed below.

r-TuBound uses a C/C++ source-to-source transformer based on the ROSE com-
piler framework [47]. It also uses the static analysis libraries of SATIrE [62] and TER-
MITE [53] for implementing a forward-directed data flow interval analysis, a points-to
analysis and a simple constraint-based loop bound analysis. Further, r-TuBound relies on

61

Figure 6.1: Overall workflow of the r-TuBound WCET toolchain.

a WCET-aware C compiler, based on the GNU C compiler 2.7.2.1 ported to the Infineon
C167CR architecture with added WCET analysis functionality, and the CalcWCET167
static WCET analysis tool [56] which supports the Infineon C167CR as target processor.

Inputs to r-TuBound are arbitrary C/C++ programs The input program is parsed
and analysed. As a result all loops and unstructured goto statements of the input code
are extracted. To this end, an initial WCET analysis supported by CalcWCET167 is
applied, such as parsing the EDG C/C++ frontend, building the abstract syntax trees
and the control-flow graph of the program, interval analysis over program variables, and
points-to analysis. Next, loop bounds are inferred by r-TuBound using pattern-based
recurrence solving in conjunction with SMT solving, as presented in Chapter 4. These
loop bounds are then used by the CalcWCET167 static analyzer and an initial WCET
bound is derived. Further, r-TuBound applies WCET Squeezing to tighten and prove
precision of the WCET bound, as discussed in Chapter 3. As a result, r-TuBound
outputs a precise WCET bound for its input program.

Our implementation is available at www.complang.tuwien.ac.at/jakob/tubound/.
To invoke r-TuBound, one uses the following command:

Command: rTuBound program.c

Input: C/C++ program
Output: precise WCET of functions in program.c

Example 6.1 Consider the test.c program given in Figure 6.2. By running r-
TuBound on this example, the precise WCET bound of the function is computed.

Loop Bound Computation in r-TuBound

After the initial CFG construction and interval and points-to analysis step, r-TuBound
proceeds to the automated computation of loop bounds. The loop bound computation

62

www.complang.tuwien.ac.at/jakob/tubound/

void test() {

int i = 0, a[16];

while (i < 100) {

if (a[i] > 0)

i = i * 2 + 2;

else

i = i * 2 + 1;

i = i + 1;

}

}

Figure 6.2: Input C program test.c

void test() {

int i, a[16];

for (i = 0; i < 100; i = i + 1)

if (a[i] > 0)

i = i * 2 + 2;

else

i = i * 2 + 1;

}

Figure 6.3: C program test.c

step of r-TuBound is summarized in Figure 6.4. The extracted loops and goto statements
are rewritten, whenever possible, into the format given in Chapter 4– Figure 4.5. Doing
so requires, among others, the following steps: rewriting while-loops into equivalent
for-loops, rewriting if-statements into if-else statements, translating multi-path loops
with abrupt termination into loops without abrupt termination, and approximating non-
deterministic variable assignments. The aforementioned steps for parsing, analysing
and preprocessing C/C++ programs are summarized in the loopExtraction part of
Figure 6.4. If a program loop cannot be converted into Figure 4.5 by the loopEx-

traction part of r-TuBound, step of loopRefine, the flow refinement in loopRefine

fails. As a further result, r-TuBound does not compute a loop bound and hence the
WCET computation step of r-TuBound will fail. Next, the loops extracted in the format
given in equation (4.5) are analysed and translated into equation (4.4) of Section 4.2,
required by the loop bound computation engine of r-TuBound. This step is performed
in the loopRefine part of Figure 6.4. As a result of loopRefine, the multi-path loops
of equation (4.5) are translated into the simple loops presented in equation (4.4).

Figure 6.4: Loop bound computation in r-TuBound.

63

for (i = 0; i < 100;

i = i + 1) {

if (a[i] > 0)

i = i * 2 + 2;

else

i = i * 2 + 1;

}

Figure 6.5: Multi-
path loop from test.c

(mpath1.c)

for (i = 0; i < 100;

i = 2 * i + 3) {

}

Figure 6.6: Over-approx-
imation (simple1.c)

for (i = 0; i < 100;

i = 2 * i + 3) {

#wcet_loopbound(6)

}

Figure 6.7: Annotated
with loop bound
(annot1.c)

For deriving loop bounds in the loopBounds step of Figure 6.4, each loop is analysed
separately and bounds are inferred using recurrence solving. The computed loop bounds
are added as annotations to the loops and are further used by the wcetComputation

engine of Figure 6.4 to calculate the WCET of the input program, as illustrated in
Figure 6.1 and detailed later.

Example 6.2 Consider again the test.c program of Figure 6.2. The while-loop of
Figure 6.2 is first translated into equation (4.5), as given in Figure 6.3. The multi-
path loop of Figure 6.3 is then over-approximated by a simple loop with linear updates
and conditionals, over which pattern-based recurrence solving is applied. As a result,
r-TuBound derives the (over-approximated) loop bound of Figure 6.2 to be 6 iterations.

Given a multi-path loop (4.5), the loopRefine part of r-TuBound translates (4.5)
into a simple loop, such that the loop bound of the simple loop is also a loop bound of
the multi-path loop (4.5). To this end, the multi-path behavior of (4.5) is safely over-
approximated by using the minimal conditional update m in (4.4). The task of choosing
m such that, it yields the minimal increase over i, is encoded in r-TuBound as a set of
SMT queries. For doing so, we interfaced loopRefine with the Boolector SMT solver
[17]. To this end, for each variable in the program, a bit vector variable is introduced
by loopRefine. An array is used to model the values of the variables involved. This
representation allows loopRefine to capture the loop behavior in a symbolic manner,
by using symbolic values to model the updates to the loop counter.

Example 6.3 For translating the multi-path loop given in Figure 6.5, loopRefine

infers that the conditional update corresponding to the else-branch of the conditional
statement of mpath1.c yields the minimal update over i. The multi-path loop of Fig-
ure 6.5 is thus rewritten into the simple loop given in Figure 6.6, for which loop bounds
are then further inferred. Figure 6.7 shows the result of loop bound computation for Fig-
ure 6.6, where the annotation #wcet_loopbound(6) specifies that loopBounds computed
6 as the loop bound of Figure 6.6.

The pattern-based recurrence solving algorithm and the satisfiability checking of
SMT formulas for computing tight loop bounds in r-TuBound are implemented in loopBounds

on top of Prolog.

64

loopBounds operates on the TERM representation offered by the Termite library
[53]. Let us note that the closed form representation of loop iteration variables involve, in
general, exponential sequences in the loop counter. Therefore, to compute the smallest
value of the loop counter yielding tight loop bounds (i.e. satisfying equation (4.3)),
loopBounds makes use of the logarithm, floor and ceiling built-in functions of Prolog.

The program analysis framework loopExtraction, the loop refinement step loopRefine

and the WCET computation part wcetComputation of r-TuBound are written in C++.
The loop bound computation engine loopBounds of r-TuBound is implemented on top
of the Termite library of Prolog. The loopRefine part of r-TuBound comprises about
1000 lines of C++ code, whereas the loopBounds engine of r-TuBound contains about
350 lines of Prolog code. The loopRefine and loopBounds parts of r-TuBound are glued
together using a 50 lines shellscript code.

WCET Squeezing in r-TuBound

After the loop bound computation step, a WCET estimate is derived using CalcWCET167.
Running CalcWCET167 on the annotated assembly of a function produces an IPET
problem specification formulated as ILP problem. An ILP solver is used to infer an ILP
solution that yields the WCET bound and execution frequencies of program blocks.

WCET Squeezing is then applied to prove the computed WCET bound precise:
the ILP problem specification and solution and the annotated assembly are supplied to
a modified version of CalcWCET167. The modified CalcWCET167 then extracts the
branching behaviour from the assembly and the ILP. The branching behaviour is used
to construct WCET candidates (c.f. Sect.3).

unsigned char IN;

unsigned char OUT;

void main () {

int i;

unsigned char a;

for(i = 0; i < 10; i++) {

#pragma wcet_marker(labelFOR)

a = IN;

if(i < 5) {

#pragma wcet_marker(labelIF)

a = a & 15;

OUT = a;

}

}

}

Figure 6.8: WCET Squeezing example, lcdnum.c

65

l_LP_int = f3; 1 = f3; f3 = f4;

f4 = f5; f5 = mlab13; f5 = f6;

f6 = f7; f7 = mLOOP_MRK_0;

f7 + t19 = f8 + t8; t9 = f20;

f8 = t9; t8 = f10; f10 = f11;

f11 = mLOOP_MRK_1; f11 = f12;

f12 = mlab11; f12 = f13;

f13 = mlabFOR; f13 = f14 + t14;

f14 = f15; f15 = mlab10;

f15 = f16; f16 = mlabIF;

f16 = f17; f17 + t14 = f18;

f18 = t19; p14 <= t14;

p8 <= t8; p19 <= t19;

p19 <= p14+p8+mLOOP_MRK_0;

mLOOP_MRK_1 <= 10mLOOP_MRK_0;

f20 = t22; t22 <= 1;

Figure 6.9: The ILP problem.

Value of objective function: 21680

mLOOP_MRK_0 1 mLOOP_MRK_1 10

f3 1 f4 1

f5 1 f6 1

f7 1 f8 1

p8 9 t8 10

t9 1 f10 10

f11 10 f20 1

f12 10 f13 10

f14 10 f15 10

f16 10 f17 10

f18 10 p14 0

p19 10 t22 1

t14 0 t19 10

mlabFOR 10 mlab10 10

mlab11 10 mlab13 1

l_LP_int 1 mlabIF 10

Figure 6.10: The ILP solution: a
WCET bound (21680) and block exe-
cution frequencies.

Example 6.4 Consider for example the program given in Figure 6.8 and its IPET
problem specification and the ILP solution acquired by the initial WCET analysis step in
Figure 6.10. The branching behaviour specified by the ILP yields the WCET candidate
TtTtTtTtTtTtTtTtTtTtF (for readability, uppercase letters represent loop conditions,
lowercase letters conditionals). The specified trace executes the true-branch of the
conditional in every iteration. This candidate trace is the checked for feasibility using
selective symbolic execution, as described later in the SmacC engine of r-TuBound.

Command: smacc lcdnum.c -sp ttttttttttttttttttttf

Input: C file and branching behaviour to be checked
Output: Feasibility result in Figure 6.11

[IF] @ (19,4) [IF] @ (25,8) [IF] @ (19,4) [IF] @ (25,8)

[IF] @ (19,4) [IF] @ (25,8) [IF] @ (19,4) [IF] @ (25,8)

[IF] @ (19,4) [IF] @ (25,8) [IF] @ (19,4) [IF] @ (25,8)

[UNREACHABLE] abandoning path.

Figure 6.11: Feasibility check of branching behaviour ttttttttttttttttttttf. The
path is infeasible, the output therefore a counterexample.

66

TfTfTtTtTtTtTtTtTtTtF, TtTtTtTtTtTfTfTtTtTtF, TtTfTfTtTtTtTtTtTtTtF,

TtTtTtTtTtTtTfTfTtTtF, TtTtTfTfTtTtTtTtTtTtF, TtTtTtTtTtTtTtTfTfTtF,

TtTtTtTfTfTtTtTtTtTtF, TtTtTtTtTtTtTtTtTfTfF, TtTtTtTtTfTfTtTtTtTtF,

TfTtTtTtTtTtTtTtTtTfF

Figure 6.12: WCET trace candidates in the second iteration of WCET Squeezing.

If the trace that exhibits the WCET estimate is infeasible, WCET Squeezing infers
an additional constraint from the counterexample. We currently rely on a manually
verified mapping between source and assembly, therefore we need to manually encode
the resulting counterexample in the ILP, by adding mlabelIF <= 9 to the ILP problem.
The relevant part of the mapping is [IF] @ (19,4) = mlabelIF in this case. Solving
the ILP again yields a tighter WCET bound and new block execution frequencies that
are used in the next iteration of WCET Squeezing. In the second iteration of WCET
Squeezing, the extracted branching behaviour specifies a set of trace candidates to be
checked for feasibility, listed in Figure 6.12.

We omit here further iterations of WCET Squeezing but note that in the 5th iteration
the WCET bound is proven precise.

The changes required to support WCET Squeezing in r-TuBound/CalcWCET167
were minor modifications, i.e extracting the branching behaviour from the ILP solution.
Currently, we are working on ROSE source-to-source transformers to automatically con-
struct the mapping between assembly and source code. We further note that, To achieve
portability of WCET Squeezing, we use the annotation language FFX. To this end, we
use the TinyXML [66], a C++ XML parser, and ROSE source-to-source transformers,
as well.

6.2 SmacC: Selective Symbolic Execution in r-TuBound

In this section we describe the selective symbolic execution engine of r-TuBound, which
is used in WCET Squeezing for proving precise WCET bounds. Selective symbolic
engine of in r-TuBound in implemented in C, yielding a standalone tool, called SmacC,
which can be also used independently of r-TuBound. This section overviews the main
ingredients of SmacC.

SmacC is a retargetable symbolic execution engine for C programs and is an acronym
for SMT Memory-model and Assertion Checker for C. Retargetability, a term borrowed
from [29] which inspired the front-end implementation of SmacC, refers to its capability
of being retargetable to conceptually quite different applications in program analysis.
SmacC applies path-wise symbolic execution of a supplied C program that lies in the
supported subset of (ANSI) C. SmacC derives verification conditions for program state-
ments and expressions, expressed as satisfiability modulo theory (SMT) formulas in the
logic of bit-vectors with arrays. This allows bit-precise reasoning about the program,

67

Figure 6.13: Architecture of SmacC: path-wise execution leads to partial symbolic
coverage if there are more paths to be executed. Exhaustive execution of all paths yields
full symbolic coverage.

including reasoning about memory accesses and arithmetic overflow. The generated
verification conditions precisely captures the memory-model of the program. Proving
them to hold guarantees that the supported runtime- and memory-errors cannot occur.
Violations in the symbolic representation constitute actual violations.

Beside WCET Squeezing in r-TuBound, SmacC can be applied in a number of pro-
gram analysis settings. It can prove absence of runtime-errors if full symbolic coverage is
achieved. Further, it allows to perform bounded model checking by exhaustive symbolic
execution up to a provided bound. Functional correctness, e.g. equivalence checking, is
supported via assertions. Generated verification conditions can be dumped to files and
used as SMT benchmarks for testing or performance evaluation of SMT solvers.

SmacC: Architecture and Overview

Figure 6.13 shows the architecture of SmacC. SmacC reads a C program as input file,
which is then tokenized (Lexer) and parsed to abstract syntax trees according to the
C expression grammar (Parser). The abstract syntax trees are stored as elements of a
code-list. Paths through the program are extracted (PathGen) and symbolically executed
(BtorGen), which consists of updating the symbolic representation of the executed path.
This symbolic representation is used to generate verification conditions in form of SMT
formulas, which express runtime-safety of statements occurring on the path. We use the
SMT solver Boolector [17] for checking these SMT formulas in the quantifier-free logic of
bit-vectors with arrays. In the sequel, we overview briefly overview the main ingredients
of SmacC, give a usage example and then present the architecture and capabilities in
more details.

In the path-generation phase (PathGen), in order to remove loops, the code-list is flat-
tened, by unwinding program loops up to a certain bound. This way, for each program
path, a code-list is constructed. Conditionals, which require to split the control-flow,
will produce two paths to explore both branches of the condition. Each fully extracted
path is then symbolically executed in BtorGen. This step constructs a symbolic SMT
representation of the memory used in the program, faithfully covering the semantics
of each statement on the program path. Additionally, verification conditions are con-
structed as SMT formulas. The program memory is a collection of symbolic values and

68

modeled by a contiguous array. The memory layout, e.g. the set of declared addresses,
is represented by bit-vector variables indexing the memory array. Additional bit-vector
variables symbolically track allocated memory regions. Unwritten memory is treated
as uninitialized. Verification conditions supported by SmacC include reasoning about
return statements (check if the program can or returns a specified value), path conditions
(check satisfiability of conditionals), division by zero, and overflow of arithmetic oper-
ations. Our bit-precise memory-model allows us to construct verification conditions for
memory accesses as follows: an access is considered out-of-allocated if the address can
evaluate to an unallocated array index, i.e. outside the region constrained by global beg ,
global end , heap beg , heap end , stack beg and stack end .

SmacC produces as output a textual report for each statement symbolically executed
along all analyzed paths. For each verification condition, the tool reports whether the
property is safe or violated on a specific path. If a verification condition is violated on
at least one path, then the corresponding property can be violated by an actual run. If
the verification condition holds on all paths, then the corresponding program property
cannot be violated by any actual run.

Front-End and Supported C Subset by SmacC

Programs supplied to SmacC must compile with an ANSI C compatible compiler, er-
roneous programs cannot be handled. Gcc was used as compiler to build SmacC and
to compile C examples against which the behaviour of SmacC was tested. In general,
a program supplied to SmacC should compile with gcc without warnings, with extra
warning flags enabled. The following listing summarizes supported constructs:

• A valid translation unit may only contain global variable declarations of the sup-
ported types and one function declaration

• if-else, for, assert, malloc, free, sizeof, return, #include

• Non-augmented assignment statements, compound statement, valid C expressions
(some restrictions)

The front-end gets as input a C file that contains a translation unit which lies in the
supported subset of C. The lexer tokenizes the input stream and the parser creates ASTs
according to the expression grammar, organizing them as statement elements stored in
a code list.

Back-End of SmacC

The back-end gets as its input the code list that was generated by parsing the translation-
unit. It extracts and executes paths through the program symbolically by writing to and
reading from the BTOR array representing the memory of the program. It generates
SMT formulas for the memory layout and verification conditions for statements. These
SMT formulas are further used in the SMTSolver Boolector [17]. Figure 6.14 illustrates
the BTOR format and basic usage of Boolector.

69

Example 6.1 Boolector prints a (partial) model in the satsifiable case of formulas,
when supplying -m, while -d enables decimal output. In line 1 an array with element
width 8 bit and index width 32 bit is constructed. Line 2 declares a 32 bit bit-vector
variable named index. Line 3 declares an 8 bit bit-vector constant with value 0 that is
written to array 1 on position index (2) in line 4, constructing a new array. Line 5 states
that array 1 is equal to array 4. Line 6 sets line 5 as root node such that the formula can
be checked with Boolector stand-alone version. Boolector returns ’satisfiable’ because it
is possible that the element at index index of array 4 has the same value as the element
at index index in array 1.

$> cat example . btor
1 array 8 32
2 var 32 index
3 const 8 00000000
4 wr i t e 8 32 1 2 3
5 eq 1 1 4
6 root 1 5
$>

$> b o o l e c t o r example . btor −m −d
sat
index 0
1 [0] 0
$>

Figure 6.14: BTOR file example.btor and output of invoking Boolector.

First, the Path-Generation phase extracts paths from the code list by unrolling loops
up to a supplied bound, splitting the path on branching points (i.e. conditionals) and
adding an assumption about the evaluation of the branching condition.

For supporting WCET Squeezing, we extended the Path-Generation phase by a
method to selectively execute paths through the program, by supplying a set of branching
decisions to SmacC. That is, at branching points, SmacC will follow only one evaluation
of the conditional, as specified by the branching decisions, instead of following both.
This way, WCET path candidates that are extracted from the IPET solution as a set
of branching decisions, can directly be supplied to SmacC for symbolic execution. For
example, supplying the branching behaviour ’t’ to SmacC in 6.15 would result in exe-
cuting only path 0 instead of executing both paths.

Second, the Btor-Generation phase constructs the BTOR representation for state-
ments, the memory and verification conditions.

Example 6.2 Consider the C Program in Figure 6.16. The BTOR instance for the
return statement return 0; is depicted on the right: line 2 represents the constant 0,
line 4, 5 and 6 represent the BTOR variables necessary to construct the memory model.
The BTOR formula for the return statement is constructed in line 7. The rest of the
lines form the constraints for the memory layout and are conjuncted with line 7 and
selected as root in line 18. Lines 8 to 10 are used negated in line 13 to 15 to formulate
the properties that the end of stack, global and heap area must be greater or equal
to the beginning of stack, global and heap area. Initially the addresses that represent
the end of the memory areas are equal to the addresses that represent the begin of the

70

int main () {

int cond;

if (cond)

return cond;

return 0;

}

path 0 : path 1 :
CSENTER @ (1 ,10) CSENTER @ (1 ,10)

CSENTER @ (1 ,12) CSENTER @ (1 ,12)
CDECLL @ (2 ,8) CDECLL @ (2 ,8)
CIF @ (4 , 0) CELSE @ (5 ,0)
CBBEG @ (4 ,0) CRET @ (5 ,8)

CRET @ (4 ,11) CSEXIT @ (6 ,0)
CBEND @ (5 ,0) CSEXIT @ (6 ,0)

CRET @ (5 ,8)
CSEXIT @ (6 ,0)

CSEXIT @ (6 ,0)

Figure 6.15: Translation-unit and both paths through the program.

int main () {

return 0;

}

2 const 32 0 0 0 . . . 0 0 0 11 u l t 1 5 6
4 var 32 s tack beg 12 u l t 1 6 4
5 var 32 g l oba l beg 13 and 1 7 −8
6 var 32 heap beg 14 and 1 13 −9
7 eq 1 2 2 15 and 1 14 −10
8 u l t 1 5 5 16 and 1 15 11
9 u l t 1 4 4 17 and 1 16 12

10 u l t 1 6 6 18 root 1 17

Figure 6.16: A C Program and the BTOR representation of the return statement.

memory areas. Line 10 and 11 establish the general memory layout which requires that
the highest global address is smaller than the lowest heap address which is smaller than
the last lowest stack address. Line 17 is the conjunction of the properties mentioned and
the formula specifying the return value to be equal to zero.

The Memory Model is inspired by the memory model usually used in UNIX systems.
It is established by an SMT formula that constrains the array variable which models the
memory of the program. This allows to check whether memory accesses in the program
are valid. If a memory access is invalid for the SMT representation it is also invalid for
the real program. The UNIX memory model divides memory for a process into three
segments [65]:

• Text Segment: machine instructions, executable code

• Global / Data Segment: global variables, constant strings, but also dynamic mem-
ory

• Stack Segment: local variables, parameter variables, grows from high address to
low address

71

Figure 6.17: Simplified view of the UNIX memory-model of a C program and its
representation in SmacC. In the left example no variables are declared. In the right
example the program has integers i and j declared as global variables, integer pointer
x and character array c as local variables and 4 bytes allocated on the heap by a call to
malloc.

SmacC simplifies the UNIX memory model, there is no text segment, the data seg-
ment is called global area and is only used for global variables. Memory that is allocated
in the data segment by calls to malloc is modeled by the heap area.

The left-hand side of Figure 6.17 is a visualization of the memory layout right after
initialization, no variables declared, represented by the following formula:

global beg ≤ global end ∧ global end < heap beg ∧ heap beg ≤ heap end ∧
heap end < stack end ∧ stack end ≤ stack beg ∧ global beg = global end ∧

stack beg = stack end ∧ heap beg = heap end

When variables are declared or dynamic memory is allocated the memory-model
needs to be updated to include constraints about the variable. Consider the right-hand
side of Figure 6.17, visualizing the memory model after a few variables were declared,
represented by the following updates to the memory model:

i = global beg ∧ j = global beg + 4 ∧ global end = global beg + 8

heap v1 = heap beg ∧ heap end = heap beg + 4

p = stack beg − 4 ∧ c = stack beg − 4− (4 ∗ 1) ∧ stack end = stack beg − 8

SmacC considers the following memory accesses invalid:

• Access out of valid memory: an access is considered out of valid memory if it
accesses indices that are not indices representing stack area, global area or heap
area. Invalid regions are marked grey in Figure refmem.

72

void main () {

int i;

assert (i);

}

btor vars =
{
global beg , global end ,
heap beg , heap end ,
stack beg , stack end ,
mem, i
}

layout := global beg ≤ global end ∧
global end < heap beg ∧
heap beg ≤ heap end ∧
heap end < stack end ∧
stack end ≤ stack beg ∧
global beg = global end ∧
heap beg = heap end ∧
i = stack beg − 4 ∧
stack end = stack beg − 4
assert := read(mem, i) = 00000000 ∧
read(mem, i+ 1) = 00000000 ∧
read(mem, i+ 2) = 00000000 ∧
read(mem, i+ 3) = 00000000 ∧

Figure 6.18: On the left: assertion statement in a C program and declared Boolector
variables. On the right: assumptions about memory layout and the formula representing
the assertion.

• Access out-of-bounds: an access is considered out-of bounds if it crosses boundaries
of data elements, for example when data from two valid regions is read or written.
Out of bounds access can happen at all addresses.

SmacC constructs and verifies the following additional verification conditions:

• Assertion statement: verify that assertion statement cannot fail,

• Return statements: check if the program returns a specified value in all cases or
check if a specified return value is possible,

• Path conditions: check if an if / else condition is unsatisfiable

• Division by zero: checks if division by zero is possible,

• Overflow: checks for overflow on arithmetic operations,

• Arithmetic Properties about conditional updates.

In the following we will illustrate verification conditions for assertions, memory safety
and for verifying arithmetic properties about conditional updates in loops.

Assertions.

Variations of assertion checks are used to verify program return values and to check for
division by zero. Consider the example in Figure 6.18.

The conjunction of formulas layout ∧ assert must be unsatisfiable, otherwise the
assertion might fail.

73

abf invalid :=
abf > stack beg ∧
abf > global end ∧
abf < heap beg ∧
abf > heap end ∧
abf < stack end ∧
abf < global beg

abf freed :=
abf ≥ free vari ∧
abf < free var i + free vari size

check :=
abf = addr

Figure 6.19: Basic Memory Check: constraining a variable to be outside valid memory
or equal to a freed address.

Memory Safety: access out of valid memory.

Checks whether a memory access can reference undeclared memory. This is done by
constraining a symbolic address abf to reference undeclared memory and asserting that
the referenced address addr is different from abf .

Clearly, because of the constraints on abf , if the SMT formula (abf invalid ∨
abf freed)∧ check is satisfiable for any byte of addr , then invalid memory is accessed.

Arithmetic Properties of Conditional Updates.

The loop bound computation step in r-TuBound relies on the assumption that the loop
counter is not modified in the body of the loop. If the loop counter is modified, loop
bound computation fails to compute a loop bound. This is an overly restrictive as-
sumption and a safe loop bounds can actually be computed when updates only increase
(decrease) the loop counter. In some cases, the updates can be merged to a minimal up-
date. In order to verify this property, we use SmacC to verify whether (i′ = upd(i)) ≥ i.

Applications of SmacC

We have successfully applied SmacC to verify C programs and generate SMT benchmarks
using our precise memory-model [72]. We illustrate the bit-precise memory-model and
generation and proving of verification conditions using the examples in Figure 6.20(a)
and (b) below. We also integrated SmacC with r-TuBound to support timing analysis,
and show its use on Figure 6.20(c).

Example 6.3 The variable declarations in the program of Figure 6.20(a) in lines 1 and
3 (a:1,3), result in the following SMT variable declarations, where variables that do not
occur in the source are used to track allocated memory: global beg , global end , heap beg ,
heap end , stack beg , stack end , mem, i, x, a, where mem is an array and models mem-
ory. Symbolic execution of a path tracks declared memory constructing the formula
(a = global beg) ∧ (global end = global beg + 16) ∧ (heap end = heap beg) ∧ (i = stack beg) ∧
(stack end = stack beg − 4), while (read(mem[i]) < 0 . . . 100) is the verification condition
for the assertion (a:8). The assertion holds for any variable assignment valid on the cur-
rent path if the conjunction of the formulas is unsatisfiable. Figure 6.20(b), taken from

74

int a[4];

int main () {

int i;

a[0] = 1;

for(i = 0; i < 4; i++)

if (a[i] > 0)

i = i + 1;

assert(i >= 4);

}

int main () {

int x, y;

if (x > 0) {

y = x * x;

if (y == 0)

assert(0);

}

}

int main() {

int i, flag;

for(i = 0; i < 5; i++)

if(i == 4 && flag) {

i = 0;

flag = 0;

}

}

(a) (b) (c)

Figure 6.20: (a) a program with an assertion and a conditional update; (b) a pro-
gram with a reachable, failing, assertion; (c) SmacC finds the loop bound, CBMC keeps
unwinding the loop.

[11], illustrates the need for a bit-precise memory-model: both conditions (b:3,5) must
evaluate to true to reach the failing assertion (b:6). When reasoning about unbounded
integers the assertion is unreachable due to unsatisfiable path conditions. SmacC infers
overflow for the multiplication and thus a satisfiable path condition guarding the failing
assertion, therefore the failing assertion is reachable.

SmacC has successfully been used in a number of applications, ranging from program
verification to high-level WCET analysis. A key feature of SmacC is its bit-precise
symbolic execution which enables it to find a number of typical and important program
errors and to functionally verify programs via assertions. Verification conditions that
exhibit high solving time can be dumped and used as regression and performance tests
for SMT solvers. High-level WCET analysis turned out to be a another promising
application field of SmacC and we successfully retargeted SmacC and the underlying
memory-model towards integration into a WCET analysis toolchain, improving high-
level analysis results. SmacC is implemented in 10Klocs of C and is available at http:

//www.complang.tuwien.ac.at/jakob/smacc/

6.3 Experimental Results using r-TuBound

In the following we report on our experimental evaluation of symbolic methods for WCET
analysis. We first present the results of WCET Squeezing on a number of examples,
followed by an evaluation of our loop bound computation techniques. We then evaluate
the use of FFX as a common annotation language in r-TuBound and OTAWA/oRange.
Finally, we present the results of applying SmacC as a stand-alone program analysis
tool.

75

http://www.complang.tuwien.ac.at/jakob/smacc/
http://www.complang.tuwien.ac.at/jakob/smacc/

WCET Squeezing Experiments

We evaluated WCET Squeezing on 10 examples taken from the Mälardalen WCET
benchmark suite in detail. We summarize our results in Table 6.1. Column 1 of Ta-
ble 6.1 reports the benchmark’s name and Column 2 lists the relevant functions in the
benchmark. Column 3 gives the initial WCET estimate as reported after WCET analysis
by r-TuBound. Column 4 describes the WCET estimate obtained after running WCET
Squeezing. Column 5 lists how many iterations of WCET Squeezing were executed and
Column 6 gives the number of execution traces that were excluded. Columns 7 and 8 re-
port on the obtained WCET improvements, as follows: Column 7 describes the achieved
improvement, whereas Column 8 denotes the maximum improvement, i.e., the improve-
ment necessary for a precise estimate. Column 9 describes whether the WCET estimate
for the function of Column 2 is proven precise.

For the functions prime, cl_block, and icrc1 the initial WCET candidate is fea-
sible, hence the initial bound is proved to be precise, which was unknown before, and
no improvement is possible. For the functions adpcm, duff, expint, and fibcall con-
tinuous improvement is achieved until WCET Squeezing terminates, this time proving
precision of the squeezed WCET. For the functions expint and janne_complex, both
can be improved by more than 90%, we report the impact of a single iteration of WCET
Squeezing to demonstrate the different impacts of excluding a single WCET trace can-
didate: while the impact amounts to roughly 1% for the first program, it amounts to
almost 6% for the second. This reflects the fact of how much the excluded conditional
block contributes to the WCET estimate of the function. Similarly, this holds for lcdnum
and nsichneu: executing two iterations of WCET Squeezing results in an improvement
of more than 7% for lcdnum and less than 0.5% for nsichneu. For expint, the high over-
estimation of the WCET is due to the fact that the WCET toolchain initially assumes
the inner loop to be executed in every iteration. Squeezing reveals that the inner loop is
only executed in the last iteration. Similarly, in janne_complex over-estimation is due
to a complex interleaving of nested loops, ultimately inferred by WCET Squeezing.

Loop Bound Computation Experiments

We evaluated the loop bound computation part of r-TuBound on examples coming from
the WCET community [59], the SciMark scientific repository [1], and from industrial
applications of Dassault Aviation. We report on our results, as follows.

In the following tables, column 1 (“BM”) denotes the name of the benchmark file/pro-
gram, and column 2 gives the number of loops in the corresponding file (“#L”). Column
3 lists how many of those loops were successfully analyzed by TuBound (“TB”), whereas
column 4 lists how many loops were analyzed by the symbolic loop bound computation
technique of r-TuBound(“r-TB”). Column 5 (“G”) shows which loop pattern (cf. the
notation used in Table 6.6) that could only be handled by r-TuBound1. In the sequel we
give a detailed analysis of our experiments.

1Subtracting column 5 from column 4 yields the number of simple loops with constant incre-
ments/decrements (i.e. c = 1 in Figure 4.2)

76

BM function WCET squeezed #iters #π %imp %prec note

prime prime 784860 784860 1 0 0 0 PPO

compress cl block 8440 8440 1 0 0 0 PPO

crc icrc1 18060 18060 1 0 0 0 PPO

adpcm logsch 5560 5380 1 1 3.24 3.24 PPW
uppol2 12260 12040 2 2 9.87 9.87 PPW

duff duffcopy 85940 79949 5 5 7.5 7.5 PPW

fibcall fib 79840 75040 2 2 6.39 6.39 PPW

expint expint 1.24E7 1.22E7 1 1 0.94 93 I

janne-cmp complex 694980 653380 1 1 5.9 93.3 I

lcdnum main 24320 22520 2 11 7.4 18.5 I

nsichneu main 4.95E6 4.94E6 2 2 0.28 - *I

Table 6.1: Proving precision of WCET estimates by running WCET Squeezing until
termination. The lower part focuses on the impact of only a few iterations. PPO
stands for “precision proved without refinement”, PPW denotes “precision proved with
refinement”, “I” denotes an imprecise WCET bound and “*” denotes that the actual
WCET is unknown.

WCET Benchmarks. We investigated two benchmark suites that originate from the
WCET community: the Mälardalen Real Time and the Debie-1d benchmark suites [36].

From the Mälardalen suite we investigated 31 files, containing 207 loops. Table 6.2
reports on these experiments. r-TuBound derived loop bound for 165 loops, whereas
TuBound was able to analyze 163 loops. The two additional loops analyzed by r-
TuBound required recurrence solving and control flow refinement. By analyzing our
results, we observed that 120 out of these 121 loops involved only incrementing/decre-
menting updates over iteration variables, and 1 loop required more complex C-finite
recurrence solving as described in Section 4.2. When compared to TuBound [56], we
noted that TuBound also computed bounds for the 120 Mälardalen loops with incre-
ment/decrement updates. However, unlike r-TuBound, TuBound failed on analyzing the
loop with more complex C-finite behavior.

Table 6.3 shows the performance of r-TuBound on examples from the Debie bench-
mark used in the WCET tool competition. Altogether, we used 8 example files containing
75 loops. TuBound was able to compute loop bounds for 58 loops. In addition to these
58 loops, r-TuBound also inferred loop bound to one additional shift-loop. By analyzing
the results of r-TuBound, we conclude the following. r-TuBound successfully analyzed 59
loops. These 59 loops can be classified as follows: 57 simple loops with increment/decre-
ment updates, 1 shift-loop with non-deterministic initialization, and 1 multi-path loop
with conditional update. When compared to TuBound, we observed that TuBound could
analyze the 58 simple loops and failed on the multi-path loop. Moreover, r-TuBound
derived a tighter loop bound for the shift-loop than TuBound.
Scientific Benchmarks. Table 6.4 gives the performance of r-TuBound on 34 loops

77

BM #L TB r-TB G BM #L TB r-TB G

adpcm 18 17 17 - qurt 1 1 1 -

bs 1 0 0 - select 4 0 0 -

bsort100 3 3 3 - statemate 1 0 0 -

cnt 4 4 4 - sqrt 1 1 1 -

cover 3 3 3 - fft1 11 6 6 -

crc 3 3 3 - lms 10 6 6 -

duff 2 1 1 - whet 11 11 11 -

edn 12 12 12 - ludcmp 11 11 11 -

expint 3 3 3 - compress 7 2 3 CF

fibcall 1 1 1 - fir 2 1 1 -

janne cmp 2 0 0 - minver 17 16 16 -

nsichneu 1 0 0 - qsort exam 6 0 1 AT

insertsort 2 0 0 - fdct 2 2 2 -

jfdctint 3 3 3 - lcdnum 1 1 1 -

matmult 5 5 5 - ndes 12 12 12 -

ns 4 4 4 - sum 207 163 165 2

Table 6.2: Evaluation of r-TuBound on the Mälardalen benchmarks.

BM #L TB r-TB G

class 2 2 2 SH

debie 1 0 0 -

harness 45 34 34 -

health 11 9 10 CU

hw if 3 2 2 -

measure 6 4 4 -

tc hand 3 3 3 -

telem 4 4 4 -

sum 75 58 59 1

Table 6.3: Evaluation of r-TuBound on the Debie benchmarks.

from the SciMark scientific benchmark suit. Among other arithmetic operations, Sci-
Mark2 makes use of fast Fourier transformations and matrix operations. r-TuBound
derived loop bounds for 26 loops, whereas TuBound could analyze 24 loops. The 2 loops
which could only be handled by r-TuBound required reasoning about abrupt-termination
and C-finite updates.
Industrial Benchmarks. We also evaluated r-TuBound on 77 loops coming from
Dassault Aviation, as summarized in Table 6.5. Out of the 77 loops, r-TuBound derived
loop bounds for 46 loops, whereas TuBound analyzed 39 loops. The 7 loops that could
only be analyzed by r-TuBound included 4 loops with C-finite and conditional updates,

78

BM #L TB r-TB G BM #L TB r-TB G

array 6 5 6 AT scimark 0 0 0 -

fft 8 4 5 CF sor 3 3 3 -

kernel 9 4 4 - sparsecomprow 3 3 3 -

montecarlo 1 1 1 - stopwatch 0 0 0 -

random 4 4 4 - sum 34 24 26 2

Table 6.4: Evaluation of r-TuBound on the SciMark2 examples.

for (i = x; i < 65536;

i = i * 2) ;

(a) Loop with C-finite update.
Iteration bound is 12.

int s = x;

while (s)

s >>= 1;

(b) Shift-loop.
Iteration bound is 31.

Figure 6.21: Examples from[36] (1).

while (i > 0)

if (i >= c)

i = -c;

else

i -= 1;

(c) Loop with conditional updates.
With no initial value information on
i, the bound is INT_MAX

int M, N;

M = 12;

for (i = 0; i < M; i++) {

A[i] = malloc (N);

if (!A[i])

break;

(d) Abruptly terminating loop.
Iteration bound is 12

Figure 6.22: Examples from[36] (2).

2 abruptly terminating loops with C-finite and conditional updates, and 1 abruptly
terminating loop with C-finite updates. When compared to TuBound, the success of
r-TuBound hence lies in its power to handle abrupt termination, conditional updates,
and C-finite behavior.
Summary of Experiments. Altogether, we ran r-TuBound on 4 different benchmark
suites, on a total of 393 loops and derived loop bounds for 296 loops. Out of these 296
loops, 286 loops were simple and involved only C-finite reasoning, and 10 loops were
multi-path loops which required the treatment of abrupt termination and conditional
updates. TuBound could handle 284 simple loops only. Figures 6.21 and 6.22 show
examples of loops that could be analyzed by r-TuBound, but not by TuBound.

Table 6.6 lists a summary of the experimental results obtained by using r-TuBound on
the aforementioned four benchmark suites. Column 1 lists the benchmark suite, column
2 the number of loops contained, columns 3 and 4 list respectively the number of loops

79

BM #L TB r-TB G BM #L TB r-TB G

all zeros 3 1 1 - min sort 2 2 2 -

array ptr 3 3 3 - m sort 2 2 2 -

asmmset2 2 1 1 - muller 2 2 2 -

behavior 1 1 1 - nb occ 1 1 1 -

b s o 1 0 0 - negate 1 1 1 -

break 3 1 1 - octvspoly 1 0 0 -

bresenham 1 1 1 - permsrch2 1 0 0 -

bsearch 1 0 0 - permsrch 1 0 0 -

bts-bis 3 3 3 - r strcpy 1 0 0 -

bts 3 3 3 - strconst 1 0 0 -

continue 3 0 3 CU,CU,CU structhack 3 0 0 -

copy 1 0 0 - sum1 1 1 1 -

count bits 1 0 0 - sum2 2 2 2 -

dillon4 1 1 1 - t5 floats 1 0 0 -

division 1 0 0 - trace 2 2 2 -

dowhile 1 1 1 - vamos 2 0 0 -

fs253 1 0 0 - vieira1 2 2 2 -

fs256 1 1 1 - vieira2 1 0 0 -

fs350 1 1 1 - weber1 1 1 1 -

ghost lbl 1 1 1 - weber3 1 0 0 -

heap 2 0 2 AT, weber4 1 0 0 -
CF-AT-CU

heapsort 3 1 2 CF-AT-CU weber5 1 0 0 -

inv p min 2 1 1 - weber6 1 0 0 -

loop eq 1 0 0 - weber8 1 0 0 -

loop inv 1 0 1 CU weber9 1 1 1 -

malloc 1 1 1 -

sum 77 39 46 7

Table 6.5: Evaluation of r-TuBound on examples sent by Dassault Aviation.

analyzed by TuBound and r-TuBound. Column 5 describes the type of loop and why
they could only be analyzed by r-TuBound. To this end, we distinguish between simple
loops with C-finite updates (CF), shift-loops with non-deterministic initializations (SH),
multi-path loops with abrupt termination (AT), and multi-path loops with monotonic
conditional updates (CU). Column 5 also lists, in parenthesis, how many of such loops
were encountered. For example, among the loops sent by Dassault Aviation 4 multi-path
loops with monotonic conditional updates, denoted as CU(4), could only be analyzed by
r-TuBound. Some loops require combinations of the proposed techniques, for exampe,
multi-path loops with C-finite conditional updates and abrupt termination; such loops

80

BM #Loops TuBound r-TuBound Types

Mälardalen 207 163 165 AT, CF

Debie 75 58 59 SH, CU

Scimark 34 24 26 AT, CF

Dassault 77 39 46 AT, CF-CU-AT (2), CU(4)

Total 393 284 296 AT (3), SH, CU (5), CF (2),
CF-CU-AT (2)

Table 6.6: Experimental results and comparisons with r-TuBound and TuBound.

are listed in Table 6.6 as CF-CU-AT.
Table 6.6 shows that 75.31% of the 393 loops were successfully analyzed by r-

TuBound, whereas TuBound succeeded on 72.26% of the 338 loops. That is, when
compared to TuBound, the overall quality of loop bound analysis within r-TuBound has
increased by 3.05%. This relatively low performance increase of r-TuBound might thus
not be considered significant, when compared to TuBound.

Let us however note that the performance of r-TuBound, compared to TuBound, on
the WCET and scientific benchmarks was predictable in some sense. These benchmarks
are used to test and evaluate WCET tools already since 2006. In other words, it is
expected that state-of-the-art WCET tools are fine tuned with various heuristics so that
they yield good performance results on loops occurring in ”classical”WCET benchmarks,
including Debie-1D, Mälarden, or even Scimark.

The benefit of r-TuBound wrt TuBound can be however evidenced when consid-
ering new benchmarks, where loops have more complicated arithmetic and/or control
flow. When compared to TuBound, the overall quality of loop bound analysis within
r-TuBound has increased by 3% (72% to 75%). However, TuBound already performed
well on Mälardalen and Debie, and therefore the increase given by r-TuBound is only of
1% (78% to 79% in Mälardalen and 77% to 78% in Debie). For the SciMark2 and the
examples from Dassault, the increase in performance given by r-TuBound is of 6% (70%
to 76%) and 9% (50% to 59%), respectively. The practical importance of r-TuBound can
thus be better evidenced on examples with more complex arithmetic and/or control-flow.

The programs which can only be handled by r-TuBound require reasoning about
multi-path loops where updates to scalars yield linear recurrences of program variables
(in many cases, with c 6= 1 in (4.2)). These recurrences cannot be solved by the simple
variable increment/decrement handling of TuBound. Moreover, TuBound fails in han-
dling multi-path loops. Based on the results obtained on these new benchmark suite,
we believe that our pattern-based recurrence solving approach in conjunction with SMT
reasoning for flow refinement provides good results for computing bounds for complex
loops with r-TuBound.

We note that in our experiments we did not use r-TuBound in conjunction with the
software model checking extension of [55]. The results reported below were obtained by
only deploying the symbolic loop bound computation framework of Section 4.2 imple-
mented in r-TuBound.

81

FFX Experiments

Figure 6.23: Current use of FFX as intermediate format for r-TuBound/CalcWCET167
and OTAWA/oRange. The experiments were performed for the ARM and C167 archi-
tecture.

Our experimental case study described in this section focuses on the aspect of compa-
rability, information exchange and extending WCET results to previously unsupported
platforms by translating the most important flow facts to FFX and WCETC, respectively.
Extensions to this work could focus on using a larger subset of FFX to also allow other
tools to participate in information and WCET back-end interchange.

The translation from WCETC to FFX and vice versa allows to investigate differences
in flow facts derived from the high-level (e.g. loop bounds) and to study their effect on
the tightness of the WCET calculation for a specific platform.

In our case study about FFX-based WCET analysis, we use and compare r-Tu-
Bound/CalcWCET167 and oRange/Otawa. Figure 6.23 illustrates the concrete setup of
the experiments: the leftmost and the rightmost arrows represent the default workflow
and flow of information for each toolchain. Arrows crossing from one toolchain to the
other correspond to flow fact translation, either from FFX to WCETC or from pragmas
to FFX. There exist multiple locations where the tools can exchange information and
where the output of the tools can be compared. On flow facts level, depicted in the
top left of the diagram, one can compare the FFX output of oRange with the FFX
output translated from r-TuBound pragmas. Similarly, on WCETC/pragma level. On
the low level, at the bottom of the diagram, one can compare the WCET estimates
for architectures supported by OTAWA and CalcWCET167 by supplying them with
translated r-TuBound and oRange flow facts, respectively.

We will present a synthetic example to illustrate the precision gain from combin-
ing flow facts from different analyzers. Additionally, we perform experiments on three
WCET benchmarks taken from the Mälardalen [34] benchmark family, bs.c, cnt.c and

82

minver.c. All of them are small enough to manually inspect and compare the tool
outputs. We choose benchmark bs.c because oRange performs better flow fact analysis
than r-TuBound, cnt.c because oRange and r-TuBound infer the same flow facts and
minver.c because r-TuBound performs better flow fact analysis on the benchmark than
oRange. We summarize our results in Table 6.7. The columns X+Y denote the WCET
obtained using X as the flow fact analyzer (r for r-TuBound and o for oRange) and the
Y back-end (C167 for CalcWCET167 and ARM for ARM Otawa back-end). Therefore,
only columns with same Y back-end (columns 2 and 3 or 4 and 5) are meaningful to
compare.

BM Fct r+C167 o+C167 r+ARM o+ARM Notes

bs main 920 920 1220 815

b s 29220 19140 1180 775 bound 8 vs. 5

cnt Init 216020 216020 13175 13175

InitS 920 920 45 45

main 1120 1120 31620 31620

RandI 1840 1840 35 35

Sum 39700 39700 18265 18265

Test 12360 12360 31530 31530

ttime 920 920 35 35

minver main 167760 167760 140920 -

minver 910640 - 98905 - bound for while

mmul 474880 474880 39145 39145

mfabs 7500 7500 250 250

Table 6.7: BM denotes the benchmark, Fct lists functions in the benchmark, the
next 4 columns denote the WCET result on different platforms using the given flow fact
analyzer and WCET back-end. The last column points out the difference in the flow
facts.

(a) The WCET resulting from oRange flow facts on the C167 platform for function
b_s is tighter than the WCET for r-TuBound flow facts (19140 vs. 29220). The WCET
when using r-TuBound flow facts is tighter for function minver (910640 vs. unbound).
(b) The WCET estimate on ARM is tighter when using oRange flow facts for the analysis
of function b_s (775 vs. 11890), and tighter for function minver when using r-TuBound
flow facts (98905 vs. unbound). Thus, in this case, one can merge the flow facts to
achieve a better WCET than with the original toolchain (Table 6.8). The difference in
WCET in this case is only due to differences in the loop bounds. We are currently in-
vestigating whether and how much the WCET result will diverge for larger benchmarks
with additional differences in the FFX files (e.g. differences in flow information about
infeasible paths).

The piece of code from Figure 6.24 shows the gain from combining flow facts ex-
tracted by different flow fact analyzers. The example is synthetic and its only purpose

83

struct DATA { int key; int value; };

struct DATA data[15] = {

{1, 100}, {5,200}, {6, 300},

{7, 700}, {8, 900}, {9, 250},

{10, 400}, {11, 600}, {12, 800},

{13, 1500}, {14, 1200}, {15, 110},

{16, 140}, {17, 133}, {18, 10}

};

void main (void) {

int i, nondet;

int mid, up, low, x;

for (i = 1; i < 100; i++) {

if (nondet)

i = i * 2 + 1;

else

i = i * 2 + 2;

low = 0;

up = 14;

while (low <= up) {

mid = (low + up) >> 1;

if (data[mid].key == x)

up = low - 1;

else if (data[mid].key > x)

up = mid - 1;

else

low = mid + 1;

}

}

}

Figure 6.24: A synthetic example where r-TuBound helps oRange to infer a tighter
bound on the total number of loop iterations. The example is constructed partly from
the bs benchmark (inner loop) and examples presented in [43] (outer loop).

to illustrate the theoretical capabilities of merging flow facts: When analyzing the exam-
ple, r-TuBound can make use of its loop refinement capabilities, thus refining the loop
bound of the outer loop to 6. For the inner loop, r-TuBound infers an over-approximated
loop bound of 8. Using these loop bounds for further analysis, a totalcount (the max-
imal number of executions of the inner loop when running the program) of 48. On the

84

BM Fct r/o+C167 r/o+ARM Improvement

bs main 920 815 reduces to 88.5% of r-TuBounds
original WCET on ARM

b s 19140 775 65.5% of r-TB WCET on C167,
65.6% of r-TB WCET on ARM

minver main 167760 140920 unbound for oRange/Otawa

minver 910640 98905 unbound for oRange/Otawa

Table 6.8: WCET analysis using merged FFX files. Functions that did not change
compared to the last table are omitted. Improvements denote the improvements in
the WCET estimate of the tool configuration that performs better compared to the
WCET of the original toolchain.

other hand, oRange would calculate a loop bound of 50 for the outer loop but find a
tighter loop bound of 4 for the inner loop. Thus, the totalcount inferred is 200. In both
cases, the totalcount is an over-approximation of the actual totalcount. Merging the
flow facts allows to infer a safe and tighter totalcount: using r-TuBounds loop bound
for the outer loop together with oRanges loop bound for the inner loop, results in a
totalcount of 24!

Symbolic Execution Experiments with SmacC

We analyzed a memcopy and a stringcopy implementation for bounded runtime-and
memory-safety (with bounded array-size 50, respectively 40), verified the functional cor-
rectness of a palindrome check and checked equality of two power-of-3 implementations.
Path-wise verification of the memcopy implementation up to bound 50 takes approxi-
mately two hours. Functional correctness for the palindrome check (bounded by word
length 16) exhibits high run-times (4.5h), and complete equality checking of two power-
of-3 implementations (with 32bit int) times out (10h). Varying the bound of the input
problems and dumping a conjunction of the verification conditions thus allows to gener-
ate SMT benchmarks with varying runtime.

We also integrated the memory-model of SmacC in r-TuBound and extended verifi-
cation conditions to express arithmetic properties about conditional updates to the loop
counter. This allows us to compute loop bounds in cases where the loop bound compu-
tation step of r-TuBound would fail. For example, the loop counter i in Figure 6.20(a) is
conditionally updated, therefore no safe loop bound can be computed initially. Verifying
that the conditional update can never decrease the loop counter allows us to use the
constant increment in the loop header to compute a safe over-approximation. For the
conditional update i′ = upd(i), e.g. i = i + 1 in Figure6.20(a), (a:7), we verify that
executing it can only increase the loop counter for the next iteration i′, i.e. i′ < i must
be unsatisfiable for arbitrary values of i, as for example in Figure 6.20(a) where a loop
bound of 4 can be computed using the update i++ (a:5) in the loop header.

Figure 6.20(a) illustrates another usage of SmacC for loop bound detection. Here,

85

Benchmark Bound Boolector SmacC CBMC

memcpy.c, array size 30 30 287s 1496s 0.25s

memcpy.c, array size 40 40 565s 5595s 0.33s

memcpy.c, array size 50 50 1114s 7350s 0.34s

palindrome check, n 11 11 639s 3718s 0.18s

palindrome check, n 15 15 1614s 13406s 0.22s

palindrome check, n 16 16 3344s 16220s 0.26s

strcpy array, n 20 20 231s timeout 0.11s

strcpy array, n 30 30 1430s timeout 0.15

strcpy array, n 40 40 7684s timeout 0.20s

power 3 equality 3 timeout timeout timeout

Table 6.9: Benchmarks were run on an Intel R©CPU at 2.66GHz with 2GB main memory.
Time was measured using the UNIX time command. The table compares Boolector
stand-alone version to library usage in SmacC and to CBMC.

SmacC is called with an initial loop bound. If it reports that the negation of the loop
condition is satisfiable along a path, the bound is increased. Upon termination, no exe-
cution of the program exhibits a higher loop bound. The loop counter i in Figure 6.20(c)
is reset in iteration 5 (c:5), therefore the loop is executed 4 more times. SmacC infers
the exact loop bound 9, while a WCET analysis using the model checker CBMC [23]
without SmacC does not terminate and keeps unwinding the loop.

The following C files and algorithms were transformed to a BTOR representation,
and can be used as benchmarks, timing results are presented in Tab. 1.

• Memcopy: A simple memcpy implementation, copying memory from the source
buffer to the destination buffer. Assert that destination buffer contains the same
elements as the source buffer after copying.

• Palindrome: implements algorithm to check if a string is a palindrome. If the
algorithm concludes that a string is a palindrome, assert that the string fulfills
palindrome properties.

• Stringcopy: Similar to memcpy but omitting the third parameter, the number of
bytes that must be copied. The loop terminates if null character is read in source
buffer which is then copied to the target buffer.

• Power of 3 equality: Compares if a method to compute n3 using a loop always
yields the same result as a method without a loop.

6.4 r-TuBound and the WCET Tool Challenge

This section reports on our results obtained by participating with r-TuBound in the
WCET Tool Challenge 2011. From this tool challenge competition, we gained valuable

86

insight for the further development of r-TuBound, and we also hit typical problems
in WCET analysis: the Tool Challenge 2011 offered two categories to perform in, a
simple architecture (ARM) and the complex architecture (PowerPC). At the time of the
challenge, r-TuBound was not able to infer WCET bounds for any of the architectures.
Nevertheless, we participated in the Challenge, analyzing the software for the supported
C167 platform. This flaw was an important inspiration to implement FFX support, as it
allows to use the r-TuBound high-level analyzers but acquire WCET bounds for all back-
end supported platforms. Other issues in the challenge included that in some cases it was
not possible to annotate the input constraints, because there is no support for them in
r-TuBound. For example, r-TuBound does neither support path annotations specifying
”the first run” (or in general the xth run), or constraints that specify that ”function f is
executed once before g”. Additionally, the interval analysis does not support arbitrary
user supplied value annotations. Some of the input constraints we could, nevertheless,
annotate manually. For the cases where the input constraints could not be annotated
fully, we reported the worst-case result. Therefore, for example, when the WCET of
”the first run” of a function is asked, we calculate the WCET of the function and use it
as result. If there are constrained inputs that we cannot model, we again compute the
(general) WCET of this function and report it as an over-approximation of the WCET
of the run in question.

Another difficulty stems from the supplied assembler code: we cannot perform WCET
calculation for the assembler code, because we do not support the target architec-
ture. Therefore we could not, for example, find out the WCET of interrupt routine
__vector_10. One important feature r-TuBound is currently missing is floating point
support: interval analysis does not consider float values, those are used, for example,
in parts of the PapaBench inputs. The upper loop bound problems in PapaBench all
involved floats, which we don’t handle in our interval analysis, even though basically the
loops could be bound by our loop analyzers.

We gained valuable experience from the benchmarking part of the challenge, that
took place at Daimler Germany. Even though r-TuBound does not entirely support the
target architecture of these benchmarks, our managed to infer flow information from
some of the sources. This experiments performed at Daimler showed the need for a
shippable binary version of r-TuBound, a task we plan to address as a future work.

87

CHAPTER 7
Related Work

The WCET analysis of embedded systems is a challenging and actively studied research
field. In this section we overview only those approaches that are directly related to the
the research directions carried out within this thesis.

Proving WCET bounds Precise

To the best of our knowledge, our WCET Squeezing method is the first approach which
refines and improves the WCET bound of a program after an initial WCET analysis in an
anytime-manner. WCET Squeezing makes use of both symbolic execution and WCET
analysis, and is different from state-of-the-art approaches for the following reasons.

Symbolic execution originally was used for test-case generation but recently found
more and more applications in program verification or automatic exploit generation for
applications. Symbolic execution has been successfully applied for test-case generation
for programs in [18] and [19], where, for example, the work of [19] describes a symbolic
execution engine for bug-hunting. In these approaches the focus lies on speeding up
symbolic execution by optimization and caching of queries discharged to the underlying
solver or tracking only currently relevant information. In contrast, symbolic execution
in WCET Squeezing offers little optimizations and tracks as much information as pos-
sible. In general, precise information needs high run-times, a problem we counteract by
applying selective symbolic execution only.

Static WCET analysis is performed using timing analysis tools which need flow- fact
information about the program under analysis. Such information may be given manually
by the developer or inferred automatically by a flow fact analyzer and includes informa-
tion about execution frequencies of blocks and loop bounds for program loops. Modern
static WCET analyzers, see e.g. [44, 5, 32], typically rely on the IPET technique [58]
to calculate a WCET estimate. IPET usually over-estimates the WCET bound, as the
constructed ILP problem encodes numerous spurious program executions that are infea-

89

sible in the program. WCET Squeezing can be used in addition to IPET-based WCET
analysis, overcoming this deficiency.

Our WCET Squeezing approach has similarities to the counterexample guided ab-
straction refinement (CeGAR) of [24]. It is an anytime-algorithm [14] that allows to
refine or prove precise a WCET estimate after an initial IPET-based WCET analysis. A
related idea is presented in [6], where an ILP encoding of the program is used to check
whether partial solutions of a specific size to the ILP problem yield infeasible program
paths. Feasibility of solutions is checked using model checking. In contrast to our ap-
proach that applies path-wise symbolic execution, [6] encodes the feasibility check as
program assertions in the original program, thereby losing the advantage of path-local
reasoning.

In general, inferring precise program information comes with high computational
costs, a problem which we avoid by using selective symbolic execution: WCET Squeez-
ing applies symbolic execution only when information about the program is too coarse
or when other analysis methods fail. A similar idea is presented in [15] where symbolic
execution is used to refine spurious def-use results via a path feasibility analysis. In [15]
branching decisions are determined at compile time and used to identify and remove in-
feasible paths. This method can be seen as a light-weight on-demand symbolic execution
of conditional nodes, whereas symbolic execution in WCET Squeezing always executes
single paths.

Symbolic execution for WCET analysis is also used in [38] and avoids some typical
pitfalls of symbolic execution. For example, loops are not unfolded and hence multiple
executions of the same block are omitted. We note that [38] analyses each program
block whereas our selective symbolic execution approach only analyses relevant program
blocks and paths.

Measurement-based timing analysis techniques can be seen complementary to static
WCET analysis tools. Measurement-based tools require test inputs that cover a sufficient
portion of the program executions to results with high confidence. In [71] the authors
present a tool that systematically generates test data using techniques like heuristics
and model checking. In contrast to this technique that generates test-cases for arbitrary
executions of the program the approach we propose in WCET Squeezing generates test-
cases that lead to executions along the WCET candidate path(s).

A different approach to WCET analysis [22] relies on segment- and state-based ab-
stract interpretation [26], and is denoted quantitative abstraction refinement. The state-
based approach has some similarities to counter-example encoding in WCET Squeezing,
which makes control-flow decisions explicit in loop iterations. Related, though conceptu-
ally different is the approach of [16]. Here, irrelevant program parts are identified via the
criticality of basic blocks, which denotes the relation between the longest path through
the basic block and the WCET bound of the program. Eliminating the irrelevant parts
from the program allows usage of a more precise but computationally more expensive
WCET analyzer that then might come up with a more precise WCET bound. Another
related approach is the abstract execution framework of [33], where context-sensitive
abstract interpretation is applied to analyse loop iterations and function calls in separa-

90

tion. Instead of applying a fix-point analysis, abstract operations on abstract values are
used in [33], where an abstract value can, e.g. , be represented as an interval. When ab-
stract values prevent the evaluation of a conditional, both branches need to be followed.
Abstract states can be merged at join points to prevent the path explosion problem. As
a result, a single abstract execution can represent execution of multiple concrete paths.
This is not the case in the traditional use of symbolic execution. Compared to WCET
Squeezing, abstract execution in [33] analyses the entire program, whereas our method
applies more costly symbolic execution only to relevant parts of the program.

In [68] the authors construct parameterized formulas to model the WCET of program
functions or loops. To this end, closed form formulas that depend only on the number
of loop iterations are generated. Unlike our approach, the inferred closed forms are
evaluated at run-time to improve the performance of the system under analysis, by
allowing optimized scheduling decisions and task selections.

Loop Bound Computation

Our work is closely related to the invariant generation and loop bound computation of
program loops. Loop invariants describe loop properties that are valid at any, and thus
also at the last loop iteration. Invariant generation techniques therefore can be used to
infer bounds on program resources, such as time and memory – see e.g. [30, 31, 3, 12, 35].

WCET analysis is usually two-tiered. A low-level analysis estimates the execution
times of program instructions on the underlying hardware and computes a concrete time
value of the WCET. On the other hand, a high-level analysis is, in general, platform-
independent and is concerned, for example, with loop bound computation. In [57] iter-
ation bounds are obtained using data flow analysis and interval based abstract interpre-
tation. However, state-of-the-art WCET analysis tools, including [32, 49, 57], compute
loop bounds automatically only for loops with relatively simple flow and arithmetic [36].
For more complex loops iteration bounds are supplied manually in the form of auxiliary
program annotations. procedures manually. Unlike these approaches, we require no
user guidance but automatically infer iteration bounds for special classes of loops with
non-trivial arithmetic and flow.

In [48] a framework for parametric WCET analysis is introduced, and symbolic ex-
pressions as iteration bounds are derived. Instantiating the symbolic expressions with
specific inputs yields then the WCET of programs. The approach presented in [49] auto-
matically identifies induction variables and recurrence relations of loops using abstract
interpretation [4]. Recurrence relations are further solved using precomputed closed form
templates, and iteration bounds are hence derived.

The work described in [30] instruments loops with various counters at different
program locations. Then an abstract interpretation based linear invariant generation
method is used to derive linear bounds over each counter variable. Bounds on counters
are composed using a proof-rule-based algorithm, and non-linear disjunctive bounds of
multi-path loops are finally inferred. The approach is further extended in citerbp to
derive more complex loop bounds. For doing so, disjunctive invariants are inferred us-
ing abstract interpretation and flow refinement. Next, proof-rules using max, sum, and

91

product operations on bound patterns are deployed in conjunction with SMT reasoning
in the theory of linear arithmetic and arrays. As a result, non-linear symbolic bounds
of multi-path loops are obtained. Abstract interpretation based invariant generation is
also used in [3] in conjunction with so-called cost relations. Cost relations extend re-
currence relations and can express recurrence relations with non-deterministic behavior
which arise from multi-path loops. Iteration bounds of loops are inferred by constructing
evaluation trees of cost relations and computing bounds on the height of the trees. For
doing so, linear invariants and ranking functions for each tree node are inferred. Unlike
the aforementioned techniques, we do not use abstract interpretation but deploy a recur-
rence solving approach to generate bounds on simple loops. Contrarily to [30, 31, 3], our
loop bound computation method is limited to multi-path loops that can be translated
into simple loops by SMT queries over arithmetic.

Recurrence solving is also used in [12, 35]. The work presented in [35] derives loop
bounds by solving arbitrary C-finite recurrences and deploying quantifier elimination over
integers and real closed fields. To this end, [35] uses some algebraic algorithms as black-
boxes built upon the computer algebra system (CAS) Mathematica [70]. Contrarily to
[35], we only solve C-finite recurrences of order 1, but, unlike [35], we do not rely on
computer algebra systems and handle more complex multi-path loops. Symbolic loop
bounds in [12] are inferred over arbitrarily nested loops with polynomial dependencies
among loop iteration variables. To this end, C-finite and hypergeometric recurrence
solving is used. Unlike [12], we only handle C-finite recurrences of order 1. Contrarily
to [12], we however design flow refinement techniques to make our approach scalable to
the WCET analysis of programs.

In [9] the authors suggest algebraic techniques to construct a symbolic formula that
characterizes the WCET of a function. For doing so, powerful computer algebra systems
(CAS) are used to construct and simplify symbolic formulas. The described approach
could be extended by symbolic summation in order to derive loop bounds and handle
nested loops. The work presented in [9] relies on annotated programs and deploys a CAS,
whereas we use a pattern-based recurrence solving approach to symbolic summation
and deploy pre-computed closed form solutions. Unlike these method, we reduce the
computationally expensive techniques of a CAS, by deploying pattern-based recurrence
solving for computing loop bounds.

Common Annotation Format

The majority of existing WCET tools come with their own annotation language to carry
flow facts. For example, the SWEET tool [32] uses a flow information format called
“context-sensitive valid-at-entry-of flow facts”, the aiT tool uses the “aiS” format [2], and
the Bound-T tool uses the “Bound-T Assertion Language” [67].

SWEET offers “value annotations” to specify constraints on possible input values of
a program, and allows to annotate flow facts in both local and global contexts. Ad-
ditionally, flow information can be marked to hold only in certain function call-string
contexts [32]. On the other hand, aiT understands both source level annotations as well
as binary annotations, using the aiS format. It uses program points to identify source

92

locations as addresses, routine and file names, and it combines so-called atoms to con-
struct more complex flow facts. Bound-T uses source-code mark positions and carries
additional assertions in a text file. Assertions are statements about the program that
bound certain aspects of the behaviour, e.g. loop bounds or information about the stack
usage. Bound-T assertions are then valid flow information at certain program points,
identified by the markers.

Basic annotations, e.g. loop bounds, are supported by all aforementioned annotation
languages. Nevertheless, the formats of deployed annotations are quite different. In
what follows, we argue that our intermediate flow fact format FFX allows to specify
important flow information in most WCET analyzers. We therefore believe, that even if
some flow facts from different tools cannot yet be formulated in FFX, our work already
supports many properties of state-of-the-art annotation languages. Thus, FFX can be
used to make fair comparisons in order to gain comparability between the tools. Further,
it allows to exchange and interchange information and back-ends between tools, resulting
in better WCET estimates when using the tools in collaboration.

The approach of [54] argues that source based annotations are portable, easy to use
and flexible to integrate in existing toolchains. FFX follows this line of argument by
focusing especially on the flexible integration within existing toolchains.

The strength of FFX has already been shown to some extent in [5], as it is the
internal format of the oRange/Otawa tool. oRange/Otawa benefits from the fact that
all components of the toolchain use a common format to carry analysis information.

Additionally, in the Merasa1 project, the FFX format was successfully used in order
to compare results of OTAWA [5] with RapiTime2. FFX thus already proved to be
a suitable annotation language as the internal format of the OTAWA/oRange WCET
toolchain [5]. Our FFX support in r-TuBound/CalcWCET167 shows that FFX is also
suitable for intermediate flow fact representation. Moreover, our FFX format extends [5]
and supports most of the ingredients proposed in [41]. Unlike [41], where only the
theoretical benefits of a common annotation language are discussed, in work we propose
FFX as a common annotation language. We address both theoretical and practical
details of FFX as a common annotation language and present initial experiments with
FFX. As the format is expandable, we believe that all the required ingredients of an
annotation language can be supported without breaking compatibility with tools not
supporting new information.

WCET Tools

We now compare our implementation in r-TuBound to other state-of-the-art WCET
toolchains.

The SWEET tool [33] applies a technique called abstract execution which is basically
a form of symbolic execution based on abstract interpretation (value analysis). It uses
abstract values for program variables and executes the program in the abstract domain,

1http://www.merasa.org
2http://www.rapitasystems.com/

93

http://www.merasa.org
http://www.rapitasystems.com/

using abstract operators. This technique allows for deriving context sensitive informa-
tion about the program, e.g. by using execution counters for blocks, incremented when
entering the block. The results of the value analysis for these counters derive execution
frequencies of blocks – the ones located at loop headers are used to derive loop bounds
and also allow to derive lower bounds on the number of iterations. The abstract execu-
tion approach taken by SWEET seems comparable to the symbolic execution approach
pursued with r-TuBound. Whereas r-TuBound relies on symbolic execution using SMT
over bitvectors and arrays, SWEET relies on abstract interpretation based symbolic ex-
ecution and is especially powerful for deriving flow facts (execution behaviour of the
program). Compared to SWEET, r-TuBound itself is not able to handle loops that in-
volve floating point values (there exists a model-checking extension, though). Another
restriction is that r-TuBound cannot handle loops where the loop condition relates two
variables that are both modified in the loop body. Additionally, the pattern based ap-
proach of r-TuBound limits the types of loops that r-TuBound can analyze, whereas an
approach based on abstract operators seems more versatile. On the other hand, the over-
approximation techniques might allow for analyzing loops where abstract interpretation
based techniques fail.

The OTAWA [5] uses the companion tool oRange [49] to gather flow facts, including
loop bounds. The approach pursued by oRange is based on abstract interpretation and
execution flow analysis [59]. It works as follows: an annotated context tree consisting
of loop and function call nodes is constructed. For each loop node, two expressions are
constructed, one, representing the total number of loop iterations, and one that counts
the maximum number of loop iterations for each startup. An extension to Ammarguellats
method [4] for the recognition of induction variables and recurrence relations is applied
to evaluate abstract stores, which are finally evaluated to compute the above mentioned
total and maximum number of loop iterations. The operators that oRange can handle
are very similar to the operators r-TuBound can handle. The approach can deal with
certain loops that contain boolean connectives in the condition and it is able to handle
nested loops.

When comparing the symbolic execution engine SmacC of r-TuBound to the CBMC [23]
bounded model checker for ANSI C and C++ programs, an important difference is that
SmacC performs path-wise symbolic execution. That is, instead of verifying that a prop-
erty holds for the whole program, SmacC checks the property for each path through the
program. This situation, often denoted as the path explosion problem of symbolic exe-
cution, on the one hand might prevent a full-fledged verification of a program due to a
high number of paths, but at the same time it comes with the advantage of precise path-
wise analysis information, that, as we have shown, is very relevant for our approaches
to WCET analysis.

CBMC allows verifying array bounds, pointer safety, exceptions and user-specified
assertions [46]. It takes as input C files and translates the program, merging function
definitions from the input files. Instead of producing a binary for execution, CBMC
performs symbolic simulation on the program [27]. CBMC translates refined programs
to SAT instances and uses the MiniSAT SAT solver to verify properties. Unlike CBMC,

94

our symbolic execution engine SmaC does not establish a full representation for the
memory of the program and its layout, instead it uses intermediate variables when ac-
cessing variables. CBMC unwinds loops and recursive function calls and transforms the
program until it only consists of if instructions, assignments, assertions, labels and goto

instructions [23]. An assertion for each loop verifies that the unwinding bound [23] is
large enough, otherwise the bound is increased. Then it is transformed into static single
assignment form, consisting of bit-vector equations for constraints and verification con-
ditions. The conjunction of the constraints and the negation of the property is checked
for satisfiability. If the conjunction is satisfiable, the property is violated.

95

CHAPTER 8
Conclusion & Perspectives

The present thesis addresses new and uncoventional problems in the WCET analysis of
programs.
(1) Precision. We first describe an effective procedure that is able to prove whether the
WCET bound inferred by a static WCET analyzer is precise, and if not, to tighten the
WCET bound until eventually the bound is proved to be precise. Our procedure is called
WCET Squeezing. It works by iteratively refining the program model by excluding infea-
sible program paths from the model until the time bound delivered by a re-application
of the WCET bound calculation to the refined model can be proved precise.

WCET Squeezing combines symbolic execution together with the implicit path enu-
meration technique, and uses SMT reasoning together with integer linear programming
techniques for computing precise WCET bounds. Symbolic execution offers a precise
framework for program analysis and tracks complex program properties by analyzing
single program paths in isolation. This path-wise program exploration of symbolic exe-
cution is, however, computationally expensive, which often prevents full symbolic anal-
ysis of larger applications: the number of paths in a program increases exponentially
with the number of conditionals, a situation denoted as the path explosion problem.
Therefore, for applying symbolic execution WCET Squeezing, we used WCET analysis
as guidance for symbolic execution in order to avoid full symbolic coverage of the pro-
gram. The resulting symbolic execution framework is thus selective in the sense that it
explores only those program paths that (possibly) exhibit the WCET bound of the pro-
gram. Selective symbolic execution in WCET Squeezing makes a compromise between
the precision and computational cost of symbolic execution, with the ultimate cost of
making WCET Squeezing practically efficient.

Such a compromise between precision and efficiency is also present in other ap-
proaches to the WCET analysis of programs: a successful WCET analyzer usually re-
quires a balance between the speed and the precision of the deployed analysis. Precision
of the analysis is gained by applying powerful program analysis techniques that gather
information about the program and pass it to further analysis and computation steps.

97

Precision of the analysis yields tight WCET bounds, however, at the cost of high com-
putational efforts; this sometimes prevents the analysis to terminate within a given
time-limit. Therefore, precision of the analysis is often traded for its speed, that is faster
analysis with possibly imprecise WCET bounds are in general instead of a precise but
inefficient analysis. Automated methods for refining imprecise WCET results into tight
WCET bounds are therefore crucial in making WCET analysis practically useful.

In this thesis we argue that combining selective symbolic execution with traditional
WCET analysis in WCET Squeezing yields such automated method for deriving pre-
cise WCET bounds. We show that, when using selective symbolic execution in WCET
analysis, a partial symbolic coverage of the program is sufficient to tighten and, even-
tually, prove precise the WCET bound of the program. Selective symbolic execution
comes thus with the advantage of avoiding the path explosion problem of traditional
symbolic execution, as it applies costly symbolic execution only for those program parts
that influence the WCET bouds.
(2) Performance. Our results show that efficiency of WCET Squeezing crucially de-
pends on the quality of the initial WCET bound derived by a static WCET analyzer. To
make WCET Squeezing as proof procedure highly performant, it is thus key to empower
the used WCET analyzer as much as possible. Therefore, our thesis also addressed the
problem of improving the strength WCET analyzers. To this end, we described an auto-
mated approach for computing tight bound, called loop bounds, on the number of program
loop itarations. Our method relies on symbolic computation techniques, in particular on
recurrence solving approaches, and combines them with new ways of program flow re-
finement and SMT reasoning. We demonstrate that loop bounds derived by our work
improve quality of WCET bound, and hence the performance of WCET Squeezing in
general.

Further, we can use the selective symbolic execution for deriving loop bounds for pro-
grams where using only symbolic computation methods fails. For doing so, we consider
the program loop and use only variable declarations relevant this program loop. The
such reduced program is next symbolically executed, by taking increasingly finite loop
unrollings; the initial loop bound is hence set to 0. If symbolic execution reports that
the negation of the loop condition is unsatisfiable on the unrolled loop path, the loop
bound is increased until the negation of the loop condition is satisfiable. Upon termina-
tion, no execution of the program exhibits a higher loop bound. Such a use of symbolic
execution in loop bound computation is especially useful for bit-precise reasoning over
the program.
(3) Portability. In this thesis we also present an approach to make our WCET Squeez-
ing method portable for immediate usage in arbitrary WCET analyzer toolchains. This
is achieved by making tools of different WCET analyzers interoperable by means of in-
troducing a flexible and extensible intermediate language providing a common interface
for exchanging analysis information. This language is called Flow Facts in XML, shortly
referred to as FFX. An immediate benefit of FFX is, for example, quality assurance for
WCET analysis, FFX can be used to test and validate new analysis techniques and tools
against using a common annotation language.

98

(4) Practice. Last, but not least, the thesis reports on the implementation and exper-
imental evaluation of our results. To this end, we imlemented the overall framework of
the thesis in the r-TuBound WCET tool change and tested r-TuBound on a large num-
ber of examples coming both from academia and industry. Our experiments of using
r-TuBound for WCET Squeezing, selective symbolic execution, loop bound computa-
tion, and comparing WCET analyzers based on the FFX format highlight the practical
benefits of our work. It is not unusual, for example, that in a single iteration of WCET
Squeezing, the precision of WCET bound is improved by 3%.

Conclusions and Further Work. The techniques developed in this thesis emphasize
the advantage of using symbolic methods, including symbolic execution, symbolic com-
putation, and theorem proving, in the WCET analysis of programs. We believe that our
results empower the strength of existing WCET analysis techniques, for the following
reasons.

• We use symbolic execution in WCET Squeezing on reduced program fragments,
and analyze programs which could not be analyzed so far by other methods.

• We deploy symbolic execution and symbolic computation to compute loop bounds
that are further used in improving the efficiency of WCET Squeezing. Some of the
loop bounds derived by our approach could not be obtained by previous methods.

• Based on the implicit path enumeration technique, we use the result of an initial
WCET analyzer and apply symbolic execution in WCET Squeezing to prove precise
initial WCET estimates. To the best of our knowledge, WCET Squeezing is the
first approach able to prove precision of WCET bounds inferred by a static WCET
analyzer in a fully automated way.

• WCET Squeezing can be used as a general proof procedure in WCET analysis, by
relying on the FFX format to exchange information between WCET analyzers.

• Our overall approach is implemeted in the r-TuBound WCET toolchain. When ap-
plying the selective symbolic execution framework of r-TuBound on a large number
of benchmarks, our results show that selective symbolic execution proves, or if nec-
essary tightens, the precision of WCET bounds by keeping low the computational
overhead for symbolic execution.

We conclude, that symbolic methods, if applied efficiently as proposed in this thesis,
are a useful addition to program analysis techniques and particularly suited for WCET
analysis of programs. We therefore believe that extending our results with more so-
phisticated symbolic methods is challenging challenging task to be further investigated.
In particular, we are interested in design new methods deriving precise WCET bounds
for programs with complex control flow and data structures, including floating points,
arrays, and pointers. Additionally, improving the performance of selective symbolic
execution by symbolic testing approach is another topic worth to be studied.

99

Bibliography

[1] SciMark2 C Benchmark Suite. math.nist.gov/scimark2/index.html.

[2] AbsInt Angewandte Informatik GmbH. aiT. http://www.absint.com, 2007.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in
Static Cost Analysis. J. Automated Reasoning, 46(2):161–203, 2011.

[4] Z. Ammarguellat and W. L. Harrison, III. Automatic Recognition of Induction
Variables and Recurrence Relations by Abstract Interpretation. In Proc. of PLDI,
pages 283–295, 1990.

[5] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an Open Toolbox for
Adaptive WCET Analysis. In Proc. of IFIP Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS), Austria, October 2010. Springer.

[6] H. J. Bang, T. H. Kim, and S. D. Cha. An Iterative Refinement Framework for
Tighter Worst-Case Execution Time Calculation. In Proc.of ISORC, pages 365–372,
2007.

[7] C. Barrett, A. Stump, C. Tinelli, S. Boehme, D. Cok, D. Deharbe, B. Dutertre,
P. Fontaine, V. Ganesh, A. Griggio, J. Grundy, P. Jackson, A. Oliveras, S. Krstić,
M. Moskal, L. D. Moura, R. Sebastiani, T. D. Cok, and J. Hoenicke. The SMT-LIB
Standard: Version 2.0. Technical report, 2010.

[8] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve. Software, 2004. http:

//lpsolve.sourceforge.net/5.5/.

[9] G. Bernat and A. Burns. An Approach To Symbolic Worst-Case Execution Time
Analysis. In In 25th IFAC Workshop on Real-Time Programming, 2000.

[10] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. SmacC: A Retargetable Symbolic
Execution Engine. In Proc. of ATVA, 2013. To appear.

[11] N. Bjørner, L. de Moura, and N. Tillmann. Satisfiability Modulo Bit-precise Theo-
ries for Program Exploration. In Proc. of CFV, 2008.

[12] R. Blanc, T. Henzinger, T. Hottelier, and L. Kovács. ABC: Algebraic Bound Com-
putation for Loops. In Proc. of LPAR-16, pages 103–118, 2010.

101

math.nist.gov/scimark2/index.html
http://www.absint.com
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/

[13] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. Design and implementation of a special-purpose static pro-
gram analyzer for safety-critical real-time embedded software, invited chapter. In
T. Mogensen, D. Schmidt, and I. Sudborough, editors, The Essence of Computation:
Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, LNCS
2566, pages 85–108. Springer-Verlag, Oct. 2002.

[14] M. S. Boddy. Anytime Problem Solving Using Dynamic Programming. In Proc. of
AAAI, pages 738–743, 1991.

[15] R. Bod́ık, R. Gupta, and M. L. Soffa. Refining Data Flow Information Using Infea-
sible Paths. SIGSOFT Softw. Eng. Notes, 22(6):361–377, Nov. 1997.

[16] F. Brandner and A. Jordan. Refinement of Worst-Case Execution Time Bounds by
Graph Pruning. 2013. under submission.

[17] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. In Lecture Notes in Computer Science (LNCS), volume 5505. Springer,
2009. TACAS’09.

[18] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and Automatic Gen-
eration of High-Coverage Tests for Complex Systems Programs. In OSDI, pages
209–224, 2008.

[19] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Auto-
matically Generating Inputs of Death. In Proc. of CCS, pages 322–335, 2006.

[20] C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three Decades
Later. Commun. ACM, 56(2):82–90, 2013.

[21] H. Cassé and M. De Michiel. FFX: Flow Facts in XML. Rapport de recherche
IRIT/RR–2012-5–FR, IRIT, Université Paul Sabatier, Toulouse, April 2012.

[22] P. Cerny, T. Henzinger, and A. Radhakrishna. Quantitative Abstraction Refine-
ment. In Proc. of POPL, pages 115–128, 2013.

[23] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In
Proc. of TACAS, pages 168–176. Carnegie Mellon University, 2004.

[24] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In Proc. of CAV, pages 154–169, 2000.

[25] M. E. Conway. Proposal for an UNCOL. Commun. ACM, 1(10):5–8, Oct. 1958.

[26] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In In
Proc.of POPL, pages 238–252, 1977.

102

[27] CProver. The CProver User Manual. http://www.cprover.org/cprover-manual/
cbmc.shtml.

[28] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence Sequences,
volume 104 of Mathematical Surveys and Monographs. American Mathematical
Society, 2003.

[29] C. Fraser and D. Hanson. lcc, A Retargetable C Compiler for ANSI C. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, 1995.

[30] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In Proc. of POPL, pages 127–
139, 2009.

[31] S. Gulwani and F. Zuleger. The Reachability-Bound Problem. In Proc. of PLDI,
pages 292–304, 2010.

[32] J. Gustafsson. SWEET Manual. http://www.mrtc.mdh.se/projects/wcet/

sweet/DocBook/out/webhelp/index_frames.html.

[33] J. Gustafsson. SWEET: SWEdish Execution Time tool. http://www.mrtc.mdh.

se/projects/wcet/sweet.html, 2001.

[34] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET
Benchmarks: Past, Present And Future. In Proc. of WCET, pages 136–146, 2010.

[35] T. Henzinger, T. Hottelier, and L. Kovács. Valigator: A Verification Tool with
Bound and Invariant Generation. In Proc. of LPAR-15, pages 333–342, 2008.

[36] N. Holsti, J. Gustafsson, G. Bernat, C. Ballabriga, A. Bonenfant, R. Bourgade,
H. Cassé, D. Cordes, A. Kadlec, R. Kirner, J. Knoop, P. Lokuciejewski, N. Merriam,
M. de Michiel, A. Prantl, B. Rieder, C. Rochange, P. Sainrat, and M. Schordan.
WCET 2008 - Report from the Tool Challenge 2008. In Proc. of WCET, 2008.

[37] M. Kauers. SumCracker: A Package for Manipulating Symbolic Sums and Related
Objects. J. of Symbolic Computation, 41(9):1039–1057, 2006.

[38] D. Kebbal and P. Sainrat. Combining Symbolic Execution and Path Enumeration
in Worst-Case Execution Time Analysis. In Proc. of WCET, 2006.

[39] R. Kirner. User’s Manual – WCET-Analysis Framework based on WCETC. http:
//www.vmars.tuwien.ac.at/~raimund/calc_wcet/, 2001.

[40] R. Kirner. The WCET Analysis Tool CalcWcet167. In T. Margaria and B. Steffen,
editors, ISoLA (2), volume 7610 of Lecture Notes in Computer Science, pages 158–
172. Springer, 2012.

[41] R. Kirner, A. Kadlec, A. Prantl, M. Schordan, and J. Knoop. Towards a Common
WCET Annotation Language: Essential Ingredients. In WCET, 2008.

103

http://www.cprover.org/cprover-manual/cbmc.shtml
http://www.cprover.org/cprover-manual/cbmc.shtml
http://www.mrtc.mdh.se/projects/wcet/sweet/DocBook/out/webhelp/index_frames.html
http://www.mrtc.mdh.se/projects/wcet/sweet/DocBook/out/webhelp/index_frames.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/
http://www.vmars.tuwien.ac.at/~raimund/calc_wcet/

[42] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and A. Kadlec. Beyond Loop Bounds:
Comparing Annotation Languages for Worst-case Execution Time Analysis. Soft-
ware and System Modeling, 10(3):411–437, 2011.

[43] J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic Loop Bound Computation for
WCET Analysis. In Proc. of PSI, pages 116 – 126, 2011.

[44] J. Knoop, L. Kovaćs, and J. Zwirchmayr. r-TuBound: Loop Bounds for WCET
Analysis. In Proc. of LPAR, volume 7180 of LNCS, pages 435 – 444, Mérida,
Venezuela, 2012.

[45] L. Kovács. Cutting-Edge Timing Analysis Techniques for Safety-Critical Real-Time
Systems (CeTAT). Project application at Vienna University of Technology.

[46] D. Kroening. Bounded Model Checking for ANSI-C. http://www.cprover.org/

cbmc/.

[47] L. L. N. Laboratory. The Rose Compiler: an Open Source Compiler Infrastructure.
http://www.rosecompiler.org/.

[48] B. Lisper. Fully Automatic, Parametric Worst-Case Execution Time Analysis. In
Proc. of WCET, pages 99–102, 2003.

[49] M. D. Michiel, A. Bonenfant, H. Cassé, and P. Sainrat. Static Loop Bound Analysis
of C Programs Based on Flow Analysis and Abstract Interpretation. In Proc. 14th

IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, (RTCSA 2008), Taiwan, 2008.

[50] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[51] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[52] P. Paule and M. Schorn. A Mathematica Version of Zeilberger’s Algorithm for
Proving Binomial Coefficient Identities. J. of Symbolic Computation, 20(5-6):673–
698, 1995.

[53] A. Prantl. The Termite Library. http://www.complang.tuwien.ac.at/adrian/

termite/Manual/.

[54] A. Prantl. High-level Compiler Support for Timing-Analysis. PhD thesis, TU Vi-
enna, 2010.

[55] A. Prantl, J. Knoop, R. Kirner, A. Kadlec, and M. Schordan. From Trusted Anno-
tations to Verified Knowledge. In Proc. of WCET, pages 39–49, 2009.

[56] A. Prantl, J. Knoop, M. Schordan, and M. Triska. Constraint Solving For High-level
WCET Analysis. CoRR, abs/0903.2251, 2009.

104

http://www.cprover.org/cbmc/
http://www.cprover.org/cbmc/
http://www.complang.tuwien.ac.at/adrian/termite/Manual/
http://www.complang.tuwien.ac.at/adrian/termite/Manual/

[57] A. Prantl, M. Schordan, and J. Knoop. TuBound - A Conceptually New Tool for
Worst-Case Execution Time Analysis. In In Proc.of WCET’08, volume 8, 2008.

[58] P. P. Puschner and S. A. V. Computing Maximum Task Execution Times – A
Graph-Based Approach. Real-Time Systems, 13(1):67–91, July 1997.

[59] R. von Hanxleden et al. The WCET Tool Challenge 2011: Report. In Proc. of
WCET, 2011. under journal submission.

[60] Rapita Systems Ltd. RapiTime Explained – White Paper. http://www.

rapitasystems.com/downloads/rapitime_explained_white_paper.

[61] C. Schneider. Symbolic Summation with Single-Nested Sum Extensions. In Proc.
of ISSAC, pages 282–289, 2004.

[62] M. Schordan, G. Barany, A. Prantl, and V. Pavlu. SATIrE - The Static Analysis
Tool Integration Engine. http://www.complang.tuwien.ac.at/satire/.

[63] S. S. Skiena. The Algorithm Design Manual. Springer Publishing Company, Incor-
porated, 2nd edition, 2008.

[64] J. Souyris, E. L. Pavec, G. Himbert, V. Jégu, and G. Borios. Computing the Worst
Case Execution Time of an Avionics Program by Abstract Interpretation. In Proc.
of WCET, pages 21–24, 2005.

[65] A. S. Tannenbaum. Modern Operating Systems, 3rd Edition. Pearson, Prentice
Hall, Upper Saddle River, New Jersey 07458, 2007.

[66] L. Thomason. TinyXML. http://sourceforge.net/projects/tinyxml/.

[67] Tidorum Ltd. Bound-T. http://www.tidorum.fi/bound-t, 2005.

[68] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric Timing Analysis.
In Proc. of LCTES, pages 88–93, 2001.

[69] R. von Hanxleden, N. Holsti, B. Lisper, E. Ploedereder, R. Wilhelm, A. Bonenfant,
H. Casse, S. Bünte, W. Fellger, S. Gepperth, J. Gustafsson, B. Huber, N. Islam,
D. Kästner, R. Kirner, L. Kovacs, F. Krause, M. de Michiel, M. C. Olesen, A. Prantl,
W. Puffitsch, C. Rochange, M. Schoeberl, S. Wegener, M. Zolda, and J. Zwirchmayr.
WCET Tool Challenge 2011: Report. In Proc. 11th International Workshop on
Worst-Case Execution Time Analysis (WCET 2011), 2011.

[70] S. Wolfram. The Mathematica Book. Version 5.0. Wolfram Media, 2003.

[71] M. Zolda and R. Kirner. Compiler Support for Measurement-based Timing Analysis.
In Proc. of WCET, pages 62–71, 2011.

[72] J. Zwirchmayr. A Satisfiability Modulo Theories Memory-Model and Assertion
Checker for C. Master’s thesis, JKU Linz, Austria, 2009.

105

http://www.rapitasystems.com/downloads/rapitime_explained_white_paper
http://www.rapitasystems.com/downloads/rapitime_explained_white_paper
http://www.complang.tuwien.ac.at/satire/
http://sourceforge.net/projects/tinyxml/
http://www.tidorum.fi/bound-t

	1 Introduction
	1.1 Problem Statement
	1.2 Contributions

	2 Preliminaries
	2.1 Programming Model
	2.2 Static WCET Analysis
	2.3 Symbolic Execution
	2.4 Algebraic Considerations.

	3 Proof – WCET Squeezing as Proof Procedure
	3.1 Example
	3.2 WCET Squeezing for Proving Precise WCET Bounds

	4 Performance – Accelerating WCET Squeezing by Empowering WCET Analyzers
	4.1 Example
	4.2 Automated Generation of Loop Bounds for Empowering WCET Analyzers

	5 Portability – Distributing WCET Squeezing by Enabling Interoperability of WCET Analyzers
	5.1 The FFX Annotation Language
	5.2 Interoperability via FFX

	6 Practice – Implementation & Experimental Results
	6.1 r-TuBound: Overview and Implementation
	6.2 SmacC: Selective Symbolic Execution in r-TuBound
	6.3 Experimental Results using r-TuBound
	6.4 r-TuBound and the WCET Tool Challenge

	7 Related Work
	8 Conclusion & Perspectives
	Bibliography

