
Short User Manual for Bound Propagation in
Vampire

Ioan Dragan Laura Kovács Andrei Voronkov
Konstantin Korovin

1 Installation
In order to use vampire with bound propagation one simply needs to download the
binary and run it from command line. The binary found on the webpage http:
//www.complang.tuwien.ac.at/ioan/boundPropagation is compiled
to run on 64bit linux machines. If you need the binaries compiled for a different oper-
ating system or for a different architecture, please let us know by sending an email to
ioan.dragan@tuwien.ac.at requesting it.

Prerequisites. One has to make sure that it also has the GNU Multiple Precision
Arithmetic Library correctly installed and configured. Instructions on how to down-
load, compile and install the GNU MP library can be found at http://gmplib.
org/. Uppon request it is possible to statically link the library into the binaries.

2 Usage
In the current version of the tool we have implemented a variety of strategies for picking
the next variable to be assigned. All this strategies can be specified using the flag
--bp variable selector. Details about the values this option takes can be found
in 2.

Concerning the assignment selection, we implemented some strategies for picking
a good value. In order to specify a different assignment selector than the default one,
you have to use the --bp assignment selector flag with the options presented
in 2.

Besides the choice of assignment and variable selectors, we have implemented
more options. Due to the implementation of these strategies, we can try to figure
out good values for the default parameters. Up to now we have tested around 3000
strategies.

In the following we present a summary of available options and possible values for
them.

--mode bpa - this specifies the mode to be bound propagation

--input syntax with either

1

http://www.complang.tuwien.ac.at/ioan/boundPropagation
http://www.complang.tuwien.ac.at/ioan/boundPropagation
mailto:ioan.dragan@tuwien.ac.at
http://gmplib.org/
http://gmplib.org/


2 USAGE 2

smtlib problems must be in smtlib 1.2 format

smtlib2 problems must be in smtlib 2.0 format

mps problems from MIPLIB

-t --time limit integer value, specifies the timeout for solving the current
problem. If no value is specified, the default timeout is 60 seconds.

--bp start with precise : values on, off . Default value is off.

--bp assignment selector The option specifies which assignment selec-
tor to be used. We have implemented some strategies and the values for each of
them are:

alternating : This alternates in picking upper bound with picking lower
bound

bmp : This tries to find a nicely represented value in the interval formed
by floor(lowerBound) and ceil(upperBound) which is still in the original
interval.

lower bound : Always pick the lower bound

middle : Pick a value in the middle of the interval. (lower+upper/2)

random : Pick a random value in the interval.

rational : This assignment selector is based on the continue fraction de-
composition algorithm.

smallest : Pick the smallest value possible in the interval

tight : Try to pick a number close to either upper or lower bound. This is
also set as default value for this option.

tightish : Similar to the tight one, but the ”close” value is bigger

upper bound : Always pick the upper bound.

--bp conflict selection Can take the following values:

least recent Pick the least recent conflict.

most recent Pick the most recent conflict.

shortest Set as default value for the conflict selection.

--bp conservative assignment selection : This option enables the
conservative behavior of the assignment selector. Meaning that we keep track of
the previous value we picked and if it is still fits the bounds, then we keep it. The
option is used in combination with -as option. Values for this options are on,
off. By default this option is turned off.

--bp add collapsing inequalities : This option enables the usage of
collapsing constraints in bound propagation. Values for this option are on, off.
By default this option is set to off.



3 EXPERIMENTS 3

--bp variable selector : This option takes care of the variable selector
of choice. Values for variable selector are:

conflicting counts how many times a variable appears in a conflict and
picks the one which appears more often

conflicting and collapsing - counts both the number of conflicts in which
a variable appears and also in how many collapsing inequalities it appears.
Again pick the best one.

first - pick the first variable which is eligible for being bounded

look ahead
random picks a random eligible variable from the variables which are to
be bounded. Default value for this option.

recent collapsing - pick a variable from the recent collapsing ineq

recent conflicting - pick a variable which proved to generate conflict

tightest bound - pick the variable with the tightest bounds

--bp almost half bounding removal With values: bounds on, off, on

--bp fm elimination - Fourier-Motzkin elimination, with values on, off

--bp fm balance - integer, specifing when to stop eliminating variables

--bp max prop length - integer value, maximal propagated equality length

--bp bound imporvement limit - integer value, specifies the max num-
ber of bounds which have been infered from the current constraint

3 Experiments
We conducted a series of experiments using this implementation of bound propagation.
We focused on three main categories of problems: (i) problems generated using Gorrila
[4] (ii) hard problems extracted from SMTLIB benchmarks [1] using Hard Reality [4]
and (iii) problems taken from MIPLIB benchmarks [3].

For the SMTLIB and MIPLIB benchmarks we tried out aprox. 3000 of strategies
for solving the problems. Taking into account all the strategies, we managed to solve
49 out of 128 problems from SMTLIB. Concerning the MIPLIB, we managed to solve
107 problems out of a total of 224. Compared for example with yices [2] , which solved
86 problems from the 128 SMTLIB problems, and 127 out of the 224 problems taken
from MIPLIB.

4 Experiments
If you are interested in more details about the experiments or you are in need of ex-
amples for combination of strategies for solving problems, we can provide them to
you.



REFERENCES 4

Solver Sat Avg. Time Unsat Avg. Time Unknown

Vampire 2797 0.3624 17100 0.2362 1576
Z3 3193 0.0727 18205 0.1446 75

Yices 3206 0.001 18267 0.0018 0

Table 1: Some experiments on problems generated with GoRRiLa.

Solver Sat Avg. Time Unsat Avg. Time Unknown

Vampire 79 6.43 28 4.54 117
Z3 96 6.20 25 2.13 103

Yices 103 3.44 26 0.31 95

Table 2: Experiments on MIPLIB problems.

References
[1] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library

(SMT-LIB). www.SMT-LIB.org, 2010.

[2] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
Proc. of CAV, pages 81–94, 2006.

[3] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical
Programming Computation, 3(2):103–163, 2011.

[4] K. Korovin and A. Voronkov. GoRRiLA and Hard Reality. In Proc. of Ershov
Memorial Conference (PSI), pages 243–250, 2011.



REFERENCES 5

Solver Sat Avg. Time Unsat Avg. Time Unknown

Vampire 33 5.23 18 3.78 77
Z3 76 2.89 22 3.40 30

Yices 85 9.90 26 6.02 17

Table 3: Experiments on the SMTLIB (Hard Reality) examples.


	Installation
	Usage
	Experiments
	Experiments

