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AQUIVALENZ AKZEPTIERBARER UND ALGOL-ARTIGER PROGRAMMIERSPRACHEN

CH. CRASEMANN
H. LANGMAACK

KIEL

Im Satz von Lipton ([Li 77]) iiber effektive Aufzdhlung von partiell
korrekten Hoareschen Zusicherungen ist von akzeptablen Programmier-
sprachen die Rede. In Lipton's vager Formulierung handelt es sich
dabei um Programme, die von einem Interpretierer ausgefiihrt werden
kénnen. Clarke, German und Halpern ([CGH 82]) pr#zisieren Lipton's
Formulierung dahingehend, daR Programme zu Funktionen &dquivalent
sein miissen, die {iber einer algebraischen Struktur effektiv durdh
einen deterministischen Algorithmus berechnet werden kOnnen. Die
Klasse derartiger Funktionen kann im Sinne einer geeignet verallge-
meinerten Church-Turing These durch verschiedene Ansitze definiert

werden.

Beispiele sind H. Friedman's "effective definitional schemes"
([Fr 691, [Ti 79]), seine verallgemeinerten Turing Algorithmen
(ibid.) oder while-Programme mit unendlichem GNO-indiziertem) Array

und Arithmetik ([cG 721, [Gr 75]).

Die letztere Charakterisierung wird der Ausgangspunkt fiir den Beweis,
daBR eine ALGOL-artige Programmiersprache mit vollem Prozedurkonzept
ohne Arithmetik und ohne Array, also nur mit einfachen Variablen,

die gleiche Klasse von Funktionen berechnet, also universell im Sinne

einer verallgemeinerten Church-~Turing These ist

Ein Schritt ist einfach Jedes ALGOL-artige Programm mit Proze-
duren kann durch ein while=Programm mit Array und Arithmetik simu-
liert werden, indem ein Laufzeitsystem durch rekursive Funktionen
codiert wird und das Array die Aufgabe der (unbeschrédnkt vielen)




beim Programmablauf benutzten (dynamisch erzeugten) Variablen erfiillt.

Die umgekehrte Richtung des Aquivalenzbeweises hat zwei Teile. Aus-
gehend von einem while-Programm mit Array und Arithmetik wird zu-
ndchst das Array ersetzt durch geschachtelte Prozedurdeklarationen,
welche vom PASCAL-Typ sind (Arttiefe 2) und indizierte Variable

durch globale Variable ihrer direkten Umgebung ersetzen. Dies erfor-
dert die Uberfﬁhrﬁng eines Programmes in eine iterativ-artige
(tail-recursion-artige) Form ([BaW 81]). In einer weiteren Trans- .
formation wird sodann die Wirkung rekursiver Funktionen durch geeignete
Prozeduraufrufe simuliert. Dabei wird insbesondere von Prozedur-
schachtelungen und Selstapplikation Gebrauch gemacht.

Als Folgerung aus diesem Ergebnis wird eine offene Frage aus dem
Gebiet der vergleichenden Programmschematologie ([CG 72]) beantwortet.
Zuletzt bemerkt A. Critcher in [(C 82)]: "It is not clear even with
passing parameters by name, whether recursion has the same power as
infinite arrays" (mit Arithmetik). Unser Resultat zeigt nun die
Gleichmédchtigkeit beider Xonzepte. Wesentlich ist dabei das Zusammen-
spiel von Prozeduren und Prozedurschachtelungen: Programme ohne
letzeres Konzept (und ohne das &dgquivalente Konzept h8herer Funktiona-
lit&ten ([Cr 831)) sind in der Kontrollstruktur gleichmichtig zu
Nivat's rekursiven Programmschemata RPS ([Ni 74]), sogar bei erlaubter

Selbstanwendung von Prozeduren ([Cr 83]).

Als weitere Folgerung der angegebenen effektiven Aquivalenz ergibt

sich die MGglichkeit, ohne Einschrénkung der Allgemeinheit ALGOL-
artige Programmiersprachen zur Grundlage von Untersuchungen iber die
Existenz Hoarescher Logiken im Sinne von Lipton zu machen. Dabei k&nnen
vorhande Hilfsmittel in solchen Programmiersprachen als explizites MaRB
fiir die Grenzen des Machbaren benutzt werden.

Eine detaillierte Fassung dieses Vortrages findet sich in [CrLa 83].
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INTRODUCTION

This paper aims in investigating the run-time behaviour of finite-mode
ALGOL68 programs in an abstract setting. It has been demonstrated previoﬁsly,
that results obtained by abstracting from this programming language to the
class .of level-n grammars [Dal can be successfully applied to investigating
various properties of the original programming language, ranging from
equivalence of denotational - and copy-rule semantics [Dal, decidability

questions [DaFel, to a completeness theorem for a Hoare-logic [DaJol].

It was suggested in [DaGo] to model the run-time behaviour of ALGOL68
programs with finite mode using a canonical generalization of the pushdown
automata to higher levels. The higher-order datatype n-PD of levelwn
pushdown stores can be defined by takirg rushdown lists of pairs <pushdown-
symbol , level n-1 pushdown store> .

In this paper we extend the characterization in [DaGo] to level-n tree
languages using a generalization of the concept of return-addresses to
applicative terms, which - together with substitution -~ form the underlying
datatype of level-n tree grammars. This method is both more general and

can be directly applied to the grammar (without constructing a normal-form
as required in [DaGo), which would spoil the application in syntax-directed

semantics).

We formulate the simulation result in the framework of recursive-—automata
theory recently devellopped by Engelfriet in [Eng 2], which is a streamlined
generalization of Scott's approach [Scol to the inherently recursive situation
on trees:!: a recursive tree automata over an automaton data-type D uses the
control-structure of top-down tree automata to generate trees using D as
auxiliary storage. This framework allows for uniform definitions and easy

comparison of various tree concepts (c.f. [Eng 2]).

In particular we will be interested in recursive tree-transducers over D ,
which are essentially top-down tree transducers with auxiliary storage D .
This stems from the fact, that a stack-oriented denotational semantics for
finite-mode ALGOL68 programs can be given using recursive tree transducers
over n-PD . (This application will be included in a full version of this
paper.) In general, recursive tree transducers can be viewed as formal
model for storage-oriented syntax-directed semantics. Moreover, as was

shown in [Eng 1 , Eng 2] recursive tree transducers over D are very close

to alternating D-automata : the parallel checking required by alternation

can be modelled in the tree transducer by copying the input, since

the input is only accepted if @ll copies are accepted. Thus the domain

of recursive tree—transdurcers over D coincides with the alternating
D-languages. We will prove a general decomposition result for recursive

tree transducers which characterize such translations as composition

of (finite state) top-down translations followed by a recursive D-automaton
(viewed as a partial identity) and a linear homomorphism . The decomposition

technique used is inspired from [Eng 2].

Since fhe datatypesunderlying level-n grammars and n-PD define the same
family of tree languages, it follows from the decomposition result, that
also the corresponding classes of tree—translations are equal, and, by
the hierarchy result proved in [Eang 3] for alternating n-PD automata,
form increasingly powerfull models for syntax directed semantiué with

increasing level.
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BASIC NOTIONS

Let § be a set of soris (or : base types). An S~set A is a family
of sets (AS|S€S) . For S-set A and B we define the union AUB
to be the S-set (ASUBSISES) .

The derived set of sorts over S is D(8):=§% X § ., An S-sorted
alphabet L 1s a D(S8)-set . 1If GEZ(W’S) , we say that type o=(w,s) .
For the special case where S$={s} , we call ¥ a ranked alphabet,
abbreviate (sn,s) to n {(for n€w , the set of natural numbers), and
call n the rank (or: arity) of OEEn . In case I contains only ~unary

symbols and ome constant, we call I a monadic alphabet.

For an S-set Y of parameters and an S-sorted alphabet I we
denote by TZ(Y) the S-set of I-trees penerated by Y . If tGTZ(Y)S ,
we let type t = s . We assume that the reader is familiar with the
notions of initial subtree and substitution of trees., We denote the tree
obtained by substituting in parallel ty for y in t (for y€Y'cy)
by t[y/ty]y€y' L IF Y = {y1,...,yn} is clear frim the context we
abbreviate this notatien to t(ty1,...,tyn) or ¢t(t)

A tree-language is a subset LE?E . Throughout this paper we will
identify L with the partial identity {(t,t) € TZXTEItEL} , thus viewing
it as a particular tree-translation. For tree-translations

T1ETZ1XT22 , T,CT3,%Tz, , we denote by T, ° T, their relational product

(while for functions we use £, o £, to denote the composition

X f1(f2(x)) ; we write f£(x) =t to denote the fact the f 1is undefined

on the argument x) . The domain of a tree translation T is denoted dom(T) .

The construction of derived types can be iterated:

p°(8) :=8 , Dn+1(8) ;= D(D™(S)) . We call D*(S) := U D™(S) the set of
n

(higher-order) derived types over S .
For a D%(5) set X (of nonterminals) the D*(8)-set TX of
; {(for TED*(8)) ,
T T
el = t(t1,...,tr)€TX . If €Ty, we

applicative terms over X is defined by X_CT
(o, T) o .

J =
t€TX s tjéTX for j€lrl,o o,
let type t = T . We say that an atom X occurs applied in t 1iff t
contains a subterm k(ti""’tn) : similarly x occurs non—applied iff t
contains a subterm to(t1,...,tr) s.t. % E tj for some j€lr] . We assume
that the reader is familiar with the notion of substitution of applicative

terms, which is denoted as in the special case of trees.
If type t = T€D"(S), than =n = level ¢t .

1 . RECURSIVE AUTOMATA

With the diversity of tree-automata model coming up in the recent
literature, we view it as mandatory to use a common notational framework,
which allows for easy comparison and clear ekposition of the essential
concepts. We hope that this paper contributes in advocating the framework
of recursive automata as such a tool, which is a streamlined gemeralization
of Scott's approach {Sco} to the inherently recursive situation on trees.
This framework was developped by Engelfriet in as yet unpublished

notes {Eng 2}; in order to .ake this naper self-contained we review

the basic concepts as they are needed,

Recall from [Scol, that an automaton-datatype D consists of

- a domain (or: set of gtorage configurations) C
- a set of initial storage configurations C, ¢
- a set of predicatesymbols Pred
- a set of instructionsymbols Inst
- a meaning function [ ] which asgigns to any
» predicatesymbol T .a predicate C » {true,false}

» instructionsymbol 1 a partial function C ——— C
The following "standard" datatype will be used throughout the paper.

1.1 Example [(Eng 2}

Let I be an S-sorted alphabet (of <nput symbols).
Define the datatype TREE by

- € =20, = TE

- Pred = {root = 0?7 |o€:}

- Inst = {select (i,s)]|i€w,s€s}

- lroot=c? ¥ () = #rue iff t = 0(t1""’tr)

for some t.€T

] .
leeloct (i,s)] (v) = v, iff t= ot senent ),
ielri, type e, = s,0€%
+  otherwise o
A more storage oriented view of trees is obtained by generalizing

the notion of pushdown to trees.




1.2 Example

Let T be an S-sorted alphabet (of pushdown symbols) with a
designated element <Y, of arity O . Define the datatype TREEPD
by '
—C =T, Co = {Yo}

- Pred = {top = v 7| ¥T}
Inst = {push t | €T (wx8) }

U kop = v ? , is just a different notation for asking about the label
of the root, which is the top of the pushdown
Upush tJ(pd) = tl(i,s) M select (i,s) 1(pd)]

{(i,s)€wxs

The semantics (or even pragmatics) of push t 1is easy to understand
by viewing striugs as monadic trees: pushing a string w then corresponds
to substituting the current pd for the (only) parameter (1,s) at the

"leave" (i.e. the right end) of w .

Given automaten datatypes D , D' , we can canonically define the
parallel product D x D' of D and D' by executing the tests (or
operations) of D. and D' 1in parallel (notion: wx m' , 1 x 1' ), The
datatype obtained from D by adding an <dentity instruction will be
denoted Did .

Let us now describe the "programming language" used to control
the operations on such datatypes. In the current context of tree-language
theory these datatypes will be used as auxiliary storage to top—down
tree automata (viewed as generators).

Fl

t.3 Definition [Eng 2]

(1) A recursive lree automaton over D is a set of (possibly nondetermi-
nistic) recursive procedures with one parameter of type D , which

compute trees. More formally, such an automaton consists of

- a set of states (or:procedurenames) Q

- a set of initial states Q. € Q

a (ranked) output alphabet A (of terminal symbols)
- a finite set of rules (transitions, productions)
R € QlPred*] x Ty (QlInstl)

written gq{m) -~ t .

{2) The class of recursive tree automata over D will be denoted

RTA(D).

Note that over the trivial datatype 1 (with a single test which
is true on the only element ofthe domain and an identity instruction)
this definition specializes to regular tree grammars {(with terminal
alphabet A and nonterminals Q ). Hence rewriting generalizes from
regular rewriting by allowing countrol and manipulation of the under-

lying datatype D .

1.4 Definition [Eng 2]

Let A€RTA (D) .

(1) Consider sentential forms Eiaty © TA(Q[C}) .
The move relation is defined by ty =y b iff there is a rule
q{m - t in R s.t. t, is obtained from £y by replacing an

occurrence of .q(ec) im £, by tli/ £ (C)}ernst

tests M (with & = ﬂ1...ﬂn) we have [ ﬂiﬂ (c) = true .

and for all

(2) A generates {accepts) the tree language
*
L{A) = {tETA|Hé°€G@ 34.€Qo qo(ce)= A t} . The class of languages
generated by RTA's over D will be denoted ERTA (D) (or simply

L (D) if no confusion arises).

To appreciate this definition as a unifying framework (and not as
yet another model) we urge the reader to consult [Eng 2}. In this paper
this framework will essentially be applied to generalizations of context-—
free rewriting and pushdowns. As a first example in the direction, note
that RTA(TREEPb) coincides with the ereative dendogrammars of Rounds
[Roul, i.e. with state-controlled context-free tree grammars (recall that
the finite-state contrel can be coded into the tree-pd).. Thus TREEPD
"is the datatype of" context-free tree languages: it captures the

substitution power inherent in context-free tree rewriting.
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Note that £ (n-TREEPD) coincides with the level-n stack automata

We now give a generalization of the datatype TREEPD to Aigher levels

(c.£. [Dal) in [DaGul, i.e. with state controled level-n tree grammars. It has been
¢.£. Lbal). '

I3

shown in- [DaGu] that one can restrict oneself to a single state, hence
The generalization is obtained by working with applicative terms £ (n-TREEPD} = 1 - EOI ,» the class of level-n tree languages [Dal.
rather than with trees. Thus n~TREEPD captures exactly the substitution power inherent in
higher-level tree grammars.

1.5 Example

Let X be a D*(S)-sorted alphabet (of nonterminals) with maximal
level mn , and let § = {s} .

Define the datatype n~TREE by

- C=¢C, =1T°
x
- Pred = {top =x ? | x € X}

i

Inst

fl

{select (;,D | j €w, 1 € D*(8)}

1

Note that any n-TREE t can be uniquely written in the form

> > —
t=x(m-t)...{(0c ~ t) with x of level m, k - t a vector of

applicative terms of level k .
cltop =x 7 I(t) = true iff t=x (@= t)...(6 = L) for some
¥X-t , k€ {o,...,m

clsetect G,0 1 (2) = (k—t)j iff tsx(mQE)...(o—%)
with type (k - t)j = 1 € pk(8)

+ otherwise

Again we are interested in the storage~oriented view, which will

generalize the operation of pushing to applicative terms.
1.6 Example

Let X be as in 1.5, and let X contain a level o element X,

Define the datatype n-TREEPD by

- ¢c=1% , Co={x.}:
X
- Pred = {top = x 7 | x € X}
- Inst = {push t | v € T° }

XUwxD* (8)

(where wxD*(S) 1is viewed as the obvious D#(S)-set)

* the semantics of top = x ? 1is carried over from n-TREE .

e Topush t D(pd) = el(j,D/ [select(, ] (pdd} (3,T)€ wxD*(S)
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2 . RECURSIVE TREE TRANSDUCERS

In this chapter we introduce recursivetree transducers over a datatype
D , which are essentially top-down tree transducers with auxiliary

storage D . The motivation of studying this model is twofold:

- we will apply the results of this section in chapter to a particular
datatype obtained by forming iterated pushdowns and show - in an
abstract setting = how recursive tree transducers over this datatype
can be use& to model the run-time behaviour of ALGOL-68 procedures

with finite mode

- recursive tree transducers over D are closely related to alternating

D—automata.

Following the definition and some examples we will prove a decomposition
result which shows that the top-down transducer underlying the recursive
tree automata can be separated from the datastructure by doing first a
top—down translation and then checking the resulting tree (of instructions)
using a D-automaton as acceptor., The output of the original transducer is
than recovered by a linear homomorphism. This technique is inspired from

[Eng 1], where it was illustrated in comnection with alternating pda's.

Consider the datatype TREEXD for a given datatype D , then a recursive

tree automaton over TREEXD can be viewed as a top-down tree transducer with

auxiliary storage D by keeping track of the initial tree in TREE . This

motivates the following definition,

2.1 Definition

(1) We denote the class of recursive tree transducers over D by
RTT(D) := RTA(TREEXD) . '

(2) For M € RIT(D) with input alphabet I and output alphabet A
we define the tree-translation induced by M to be
*
TOO = {(t,t")€T T, |3e, €Co 3q.€Qs golt,cod=y, t'] .

(3) The class of recursive tree tramslations over D 1is denoted by

ERTT(D) . We omit the subscript RTT if no confusion arises .

- 10 -

2.2 Example
(1) RTT(1) coincides with the class of top-down tree transduceré
(and will henceforth be denoted T) . In specifying T's we stick

to the usual notion. The.class of top-down tree translatioms will

be dencted T .

(Z) RTT(TREEPD) colincides with the class of level~1 stack transducers
of [DagGul

Note that €-moves can be described by working with TREEid rather

than with TREE . The corresponding notations will be indexed by € .

To stite the decomposition result in its sharpest form, we introduce

the following notation.

Notation

(1) LtHOM denotes the class of linear non-deleting tree—homomorphisms

(for this terminology c¢.f [Eng 4])f Note that such a homomorphism may

only erase monadic symbols.

(2 Es1 {resp. £<1 ) denotes the class of tranmslations of RIT's (resp.
languages of RTA's) which output at most one symbol at a time,

Similarly we use the subscript = 1 .

-The following normalform result is implicit in many applicatioms.

2,3 Lemma

If D contains an identity instruction then £y (D) 1is closed under
LtHOM and £§1 (my = £ (M,

Proof:

Let hGLtHOM,AERTA§1'(D) - Define A €RTA (D) by applying h (canoni-
cally extended to Q[Inst] as identity)to the right-hand-sides of the rules
of A, Since- h is linear and nondeleting

% %
9o (co) =, t Iff gqo (co) =>Ah h(t)
for all tETA(Q[C]) , hence h{(L(A)) = L(Ah)
Now A'GRTA<1(D) equivalent to A is constructed by memorizing the

occurrences of a right-hand-side in the state and keeping the storage-
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configuration unchanged until reaching the instruction-leaves of the

simulated right~hand-side (see [Gue] for the construction with D=TREEPD)

[w}

For the rest of this section we will assume that all derivations are
leftmost. Moreover, for the automaton datatype TREE we will abbreviate

)

root = g 7 for O€Zk into O(x1,...,xk

select (k,s) into x

id into X
now proceed to prove the decomposition result in a series of steps.,

2.4 Theorem

(D T e T oL Lo

@2 tmcr_, . £y (D) o L HOM
Proof: Let S = (Q,Q,,A,R) € RTT_ (D) .

Its rules are of one of the following forms

(1) r : q(G(x1,..,xn),W) >t (q1(Xj1,11),...,%§Xjn,bn))
'roqlx,m) - trf(qi(x,11),...,qn(x,in))
(iii) " ¢ q(x,m » q' (x,1)

{(ii) r

(iv) ' q(G(x15...,xn)m) - q'(xj,l)
Note that type (iii) rules are e-~rules or t-moves and type (ii) rules

are £-moves with ocutput,

S can be decomposed into the following recursive tree automata:

M = (QsQo :AR:RM) € TE ,=1

where Ag {g/r € R} is a ranked alphabet disjoint from existing alphabets;

the rank of P, is the number of occurrences of elements in Q[Inst] in the

right hand side of rule r .

RM contains the rules: for r (resp. r',rj?ﬂ a type (i) (resp. (ii),(iii),

(iv)} rule in R :

rM g (0(31?'”’Xn)) +pr(q1(xj1),.-.,qn(xjn))

T

thy q(x)+pr.m1&)“.”qn(xn

"

Myt a () >0 (e ()

r M : q(G(XT"..’XH)) +prr|l (q'(Xj))

- 12 -

Notice that M 1is a "depth preserving" transducer, i.e. M € T q°

Let now . A = ({a},{a},AR,RA) € RTA_, (D) be defined as follows. A has

1
a single state q , and its rules are, for each type (i), (ii) or (iii) rule

of S , defined respectively by:

r, q(m = pr(a(11),..., a(tn)) for a type (i) or

type (ii)} rule r in R

RN q{m) - Qru(a(l)) for a type (iii) or type (iv) rule r" im R

Then T(S) € Tp x T, , T(M) STy X Ty, and L(A) © TAg -

Define finally the linear homomorphism h : TAR(Y) - TA(Y) , where Y
is some “set of parameters, by h(y) =y for y in Y

h(Dr(t1,---,tn)) = tr(h(t1),...,h(tn)) if r is a type (i) or (ii) rule

n(pr(t)) = h(t) if r is a type (iii) or (iv) rule.

Type (iii) and (iv) rules correspond to erasing rules for h .

Notice that whem S 1is real time {i.e. has neither £-moves nor output
on £-moves,i.e. has only type (i) rules), then M is a usual transducer
without € -moves or €-outputs, i.e. M € T_ A is also realtime, hence

A € RTA_

T ¥

i (D) . This shows that it

suffices to prove part (1) of the theorem, then part (2) will follow.

Notation: a sequence of derivations applying rules r-q...rn will be

1 o
denoted by rl‘é_rn . Then if qo(t) M'é'rnM ty , by definition of M,
r1M...rnM will be the denotation in polish prefix notation of t, ; more

* * ;
~ precisely let ¥y be the morphism RM +iAR defined wM(f;) =0r; s then

1 n , , . . . .
“a = . t, . £
wM(rM rM) pr1 prn 1s the polish notation for . 1 Similarly, 1
- i p ] * ) .
qce) TA'2'TA t, , letting ¢,: R, > A, be defined by QAKIi ) = pri,

1 A R

1 Py _ X . .
wA(rA...rA) = pr1...prp VlS the polish notation for t,

(1) is then a consequence of the following 1 emmata:

: 1 n
Lemma 1: If q{c,,t) ek t' for c, €C, , qo €Q, t € TZ s
t' € T, and ra,...,rn €ER , then : 3 ¢ in t such that

A 1 5
- 1 .o . ) ,
Go(6) Ty 3Rty 5 Toleo) TALTA £, B(e) =, and oG -

pfi"'orn is the polish prefix notation for t1 .

Proof: any computation sequence ¢ = r1..'.rn of S can obviously be

1 T
Mff'rM“ of M and

projected into the corresponding computation sequences r

. . . oy
! 0 of A s if moreover ¢ 1s termlinating, h(t1) = ¢t

IA... A
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L 2: f o e [+] 3 ] o !

Lemma 2: If for q Q ¢, €C ,_rt_flTy t] E-?QR (Y)
T+ Ty i ri’_._rjp

g, (t) = t‘(q1(t1),...,qn (tn)) and q(c,) - A

then: p =n
golco,t) ¥
then q,{c.,t)

k for k= 1,...,p and

T
2(t1)(q1(t1,c1),--.,qn(tn,gn))
P

» Jk
...1'

r

A ,...,ri?) =
and Oryqeed

3

Proof: By the construction of M and A ; let QA(r
1 n
and wM(rM,...,rM} =0y eOpy then both Prye+ Py

the .encodings of t;

The reverse inclusions will be proved separately.

2.5 Theorem

T®m>t_, L

1 (D) o L HOM

=1

Proof: Let M = (Q,Qo,I,I',R) €T, , A= (5,59,2‘,RA) € RTA_,
and the tree—homomorphism h : To. (Y) ~ TA(Y)

h(c(tT,...,tn)) = tc(h(t1),...,h(tn)) for ¢ in X'
Let Tr = T(M) ., L{(A) , h (t,c') € Tr iff
- - : % - %
3 Oe Le] =] [+ =] o (=]
9.€Q0,90€Q, 3Jc,.€C 3t1€TZ, d.(t) 4 51 A ?°(c°) s b
We show that Tr = T(S) , where = (0%Q,Qc%Qq,A,RYERTT (D) is
to each rule r,, : q(t(x1,.. X V)

M ¢

, thus

g as M , we assoclate the rule

£ XT, <q,q>(r(x1,...,x Y, T + t (<q1,q1>(x 1,1 Y,
T(S) < Tr :

vees<q,q > (x
project any computation sequence of §

computation sequences of M and A . Conversely, Tr < T(8) is

obvious since both M and A are real-time. If moreover we replace

by L HOM , i.e. if the homomorphism h

s € RTT21 (D)

is non erasing, them 8

real-time on output, i.e.

The same proof applies if we replace Toq by T

transducer always outputs a symbol in any move; we then get

¢ ™2 e =1° boq © L HOM .
2.6 Theorem
If D contains an identity instruction, then (3) Eé (D) o %;

Proof: by lemma 2.3 we can replace £ (D) o L HOM by £, (D) .

also contains an ident

the automaton datatype corresponding to EE

be given by h(y) =
n v tg €T ) .

A h(ey) =

in
onto the corresponding

t;(a(c1)f}..,a(cn))

. If moreover t! € T
1 Ag

h(t;) is a terminating computation sequence of § .

Orjy e Prip

are
er

in polish prefix notation hence they are equal .

w}

m ,

*

+

given by

0(q1(x 1),...,q (x )) of M and rule
T, q(m) + O(q1(1 ),...,q (1 )) of A having the same rlght—hand side root

s‘n)) .
also

is also

=}

o7 * namely. if the

o £ (D)

Note that

ity in-

LtHOM

*

° LtHOM
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;)= ¢ o L () .
(Q,Q0,8

struction, hence (3) is equivalent to (4) EE
(QsQo,zsA:RM) € T€,51 » and A =

The rules of M are of the form

“p:}l")

Let now M =

(1) q(d(x1,...

+ t X.
,xp)) (q1( it .

)s'°'sqn (XJ ))

(1) q(x) » £q, 005000 (x))

where either t = 6(y1,...,yn) {(for 8€A) or ¢t

Similarly, the rules of A are at the form

vi (i.e. a move with

no output).

(D g m > 8q ), (1))
q

(i) q (m) + q¢' (1) {&-move) .

Let then S = (Q%Q,Qo*Qs,A,R) € RTT. (D) be defined by the following

set of rules:

- for each type (i) rule =r,, of M and type (i) rule r, of A having

A

¢ we assoclate the rule -rMXrA :

<q,€—l>(c(x1 3. !xp) ,TT) > 6(<q1 $q1>(xj 1 :11) yr e s<Qh9qn>(an:1n))

M
the same right-hand-side root

~ for each type (ii) and (i) rules r, and r, having the same right-

M A

corregponds the rule rMXrA :

<q,q>(x,m) + 5(<q1,51>(x,11),-.-,<qh,an>(x,1n))

“hand-sides root §

~ to each type (i) rule r, of M with right-hand-side root qi(xi)

M

M
for each q € Q(and e € Pred*)

correspond the rules r X ida =<qya>(0(x1,...,xp),€} - <qi,a>(xi,id)

- to eachltype (ii) rule Ty of M : g(x) > qi(x) correspond the rules
<q,3>(x,8) > <q;,d>(x,3d) for each q € Q

X 1td—:
Ty 1dq

- to each type (ii) rule r, of A correspond rules idq X r

A A

<q,q>(x,m ~ <¢,q">(x,1")

is included in the translation
T,]340€Q0,40€Q. 3co€Co MOE

can be

Obviously, T(S)
= {(g,t") € T

Since any computatlon sequence of S

- *
t' A q«:(co) =3’A tl} s
prOJected inte computation

sequences of M and A .

Conversely, Tr E,T(S) stems from the following lemma.

Lemma
Let £ € T (¥Y) , t, € TZ , Co € Co and assume
1.. r —_— - .rP =
Go (£o) SR CTE D Gefco) TATTSA t, (qled)
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then there exists a computation sequence g = r;...rg of 8
——

—— s -—
S.t. <Go,q,> t {<q,q>(t,e)) .

The proof of this lemma proceeds by induction on (n,p) .

* If n=p =0 the result is cbviously true,

* Suppose that the result holds for (n',p')2(n,p) , and consider a
computation sequence Qolte) nii t (Ef;i) (the case where

M 1
+ - . . .
qo (Co) R=1A t1 {q{c)) is similar and omitted). Then etther

1 > ————
- go(te) B v (q' (t)) %ﬁM t, (q(t)) for some n"Sn , where
ontd n+l , .
Sy = ¥ M *+T )y 1S @ sequence of €-moves without output, hence
: . . - * =
by the 1nduct10n'hypothes1s <q,qo>(to,co) “g ty (<q",q>(t,é) =0
n'+1t , n+1 . - .
Hd X - Ve =
and for s roy 2d o' LY Xﬁzd Ty where gq. is the

state labelling the occurrence in t,(q(e) to which rule vy is
“applied (for j € {m'+1,...,n+1}) , we have
e 2

2] gs t, (<q,q>(t,c)) : or
_— ntl —s

- Qo f(te) gM t;(q”(t")) for some prefix t; of t, and q;(t") LM §{q' ("))

with 1t1(§rz§)'a £y Gy, 8 (")), v, gl (e )

All the derivations being leftmost, there is some 'Sp with
Geleo) PR e @em) R (‘:<c'>) o

oEe M ¥ &M :

Then, by the induction hypothesis for (m,p'-1)

>

—

- F3 —
<oy go>(to,Co) g t; (<q",q">(t",e")) =06 .

By the definition of the rules of §
n+1 !
X
o™ M ﬁg t

e e e ey

1 (<q,q'>(t}e')) = 0' , and by the same reasoning as
above,for
g := 1id x P idg x P | o' & (<q,q>(t,e)) ;
. qp1+1 A e qp A 9,4 s C 5 or

- gqo{to) 3M t1 (o' (E"),000) r:g ) t1(...,q(t),...) where

n+t _ o= T Tt — ¢t
ry =aq (G(x1,...,xn))+ q(xi) and t' = o(t1,...,tn) and t = £ .
Then by the induction hypothesis for (n,p) né 1

- * - -
<Go,0>(to,c0) B¢ £1 (oon,<q’,>(t',0),...) =0 and 0 F M * %4

S 1
£ (ve.,<q,q>(t,e),...) . This finishes the proof of the lemma and

thus of the theoremn.

Summarizing the above theorems gives us the promised decomposition

result.

_]6_

2.6 Corollary

T M=, ° L, (D) LHM

(2) if D contalns an identity instruction then

Eé (D) = EE o £{D) © L HOM

(3 E% (D) = EE,=1° £=1 (D) o LtHOM

As an immediate corollary it follows, that in many cases acceptor-

equivalence implies transducer equivalence.

2.7 Corollary

(1) D1,D2 contain an identity instruction. Then

L (Dq) = L (Dz) = w’(D1) =7 (Dz) and Eé (D1) = Eé (DZ)

(2) £ (D1) =L

-1 (Dz)'g T (0,) =T (D,) and T @y =T @

9

u}

=1

In particular, the top-down auxiliary D-automaton are so closely
related to the D-acceptors, that strictness of a transducer hierarchy

(over DI""’Dn’D ) implies this result for the acceptor

AN
hierarchy. The revZZ;e implication holds {(only?) for transducers with
€-moves : if L € C (D1) , then {a} x L € EE (D1) for any constant
symbol a (since the corresponding RTTE can simulate the RTA inde-
pendent of the input). Moreover it can be shown, that moves of the kind
q(root = ¢ ? x ) + t (for ¢ # a) "don't pay" for the equivalent RTT
over D, unless ql7 instructions in t 1leave the input-tree unchanged.
Thus an RTA over D2 generating L can be constructed from this

RTT by forgetting the input compoment in all such rules (and not

simulating any other rule).

Now recall from [Eng 1], that recursive D-transducers are very close
to alternating D-automata: the parallel checking required by alternating
automata correspond to copying the input by the top-down tree transducer,
since a tree is in its domain iff a2l copies are accepted. Note that
the transducer will have to make €-moves of the alternating D-automaton.

This justifies to take the following proposition as definiiion of the
class EALT (D) of alternating D languages. (Recall that m means

monadic input trees).




2.8 Proposition [Eng 1]

SALT (D) = dom (%; m (D))

s

Now the feollowing characterization of alternating D-languages is
immediate from the decomposition theorem (note that the LtHOM is
irrelevant with respect to domains), thus giving a detailed proof

of this result.

2.9 Corollary {Eng 1]

(1) if D contains an identity instruction, then
-1
Lyr (O = Ts’m(ﬁ (D))

(2) £, (@ =1 (&

ALT g ,m =1 ™) .
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3. A RETURN-ADDRESS IMPLEMENTATION OF HIGHER TYPE PROCEDURES

i
In this section we will extend the classical return-address implementation
of (parameterless) procedures on pda's to procedures with procedure
parameters of finite mode (in the semse of ALGOL68). In this paper we
will only give the éomstruction on the level of abstraction of implementing
level-n tree languages; the run-time behaviour of a subset of ALGOL68 will

be modelled explicitly in a fortheoming paper.

The technique used for the implementation is gemeralized from the
case of procedures with base-type parameters, which on the abstract level
correspond to (0I-) context-free tree languages. For this case the
implementation was given in [Gue, theorem 3], see also [Gall. The basic
idea is to store the ceourrence of a recursive call on the pushdown;
when reaching a parameter in simulating a right-hand-side, this occurrence
is popped and -updated by the argument position - used as new state,
indicating that the simulation is proceeding at the occurrence "following"

the recursive call,

To extend this idea to higher levels, we will generalize the notion

of occurrences to applicative terms. The canonical generalization of the

‘pda to higher levels is the level-n pda, obtained by taking pushdown lists

of pairs <pushdown-symbol, level-{n - 1) pda> . This model was first
mentioned in [Grel] and then used in {Mas] to obtain an automata-theoretic
characterization of generalized indexed languages. We recall here the
formal definition used in [DaGe ). For a motivation of this defintion

we refer to this paper,

3.1 Definition

Let T be a set of pushdown-symbols and n€w . The datatype n-PD is

given as follows.

~ To define the set of configurations we define inductively an [n+1]}-set
n~pds (T). Intuitively pd € n-—pds (I')? describes a level-n pd-store,

where only the levels 2] are specified.

Let n-pds(M™ = {3, npde(™ = (Pln-pds ()it 1])#

Then C = n-pds(T)}°® , C, = {e} . Note that each pds € C has a unique
representation A, [A1[... Am m~?est]x..r1—rest] o-rest]

with Aj €T, j-rest € n~pds(P)J .




- Pred ={j-top =A? | A€ET , ofj<n}
- Inst = {j-pop | ofj<ulU{j-push v | v € T'* , oZj<n)
~ o lj~top = a2 1 (pds) = true iff

pds = A, ... Am m-restl...lo—rest and A = Aj

* Li-pop I (pds) =

A, [A1 [...j-rest...]l1-restlo—rest

iff pds = A, [...[Aj ...[Am n~resti... j~resti...lo-rest

(AN

and Jim

4+ otherwise

s [ j-push v ] (pds) = (for ¥ = Yyoer¥y)

A, [...Y1[j+1-f2ag]...w%[j+1-f2ag]Aj[j+1vf1ag]j-rest...]o—rest
iff pds = A, [...[Aj ...[Am m-rest]... j-restl...lo-rest

j+1-flag

and jZm

A, L... [Am[yd...yk]m—rest]...]o—rest
iff pds = A, [..;[Am m-rest])...lo-rest] and j=m+1

+ otherwise

Note, that this datatype contains an identity imstruction id := o-pushe .

a

It was shown in {DaGo] that the class of string languages accepted by
n-PDA's coincides with the class of level=n O0I-string languages. (We note
that the implementation technique of this paper, which ié essentially a
generalization of the construction in {Fil , cannot be directly adopted
to the tree-case.) Engelfriet proves in [Eng 3] that alternating n-PDA's
coincide with the class of languages accepted by deterministc Turing
machines in EXPT(LIN)~TIME and thus form a strict hierarchy. It thus
follows, by considering domains (c.f. 2.8), that recursive n-PD trans-
ducers define a strict hierarchy of tree-translations with increasing

level.
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3.2 Corollary

Yoz EE (n-PD) gEE (n+1-PD)

We now describe how the notion of occurrence is generalized to
applicative terms. Recall that occurrences in a ¢ree can be denoted
by a ctring in w* . Now note that applicative terms can be viewed as
trees of trees of... the atom set. Then an occurrence of an atom in such
a "complex node" of the tree is just the occurrence of the atom within
the node indexed by the occurrence of that node. The following example

illustrates this idea.

3.3 Example

Consider the applicative expression
1 8
EOE(x, (x5 (x,,£3) (%) ,a) ,b) € TX

where {x,,a,bl , {x1,f} . {xz,xé} are level o (resp. 1, resp. 2) -atoms

in X .

The occurrences of this expression viewed as a tree are shown below

€ —3 £

L 7N

. — .
H 21,65 ey ’l‘z '
<1’1,1> i 3 t

/ X<
> ey % £
1l L
!
111 —— ¥o

This motivates the following formal definitiom.
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3.4 Definition

{1) Let o-gec = w* , n+tl —occ = n-oce Xwk .
We denote (string) concatenation from left (i.e. with the

leftmost string in an n-occurrence) (resp. from right) by j*o (resp. o*j) .

(2) We define (by induction on applicative terms) the set oce(t)
of cccurrences of t and a mapping lab(t) which associates

to an occurrence the correspending subexpression of t .
- for x€X , oce(x) = {e} and lab(x)(e) = x

- for t = t, (t1,...,tr)
s oce(t) = {e}

U{< €,0>|0€ oce (t,), t, no atom}
"lifted occurrences''of the node t,
U{j*o0| o€ oce (tj), j € [r]}

"shifted" occurrences of tj

« Lab(t) (&) = t,
lab(t}(<go>) = lab (t,) (o)
lab(t) (j*o) = lab (tj) (o)

We now have the tools available to give the construction. Let A€ RTA
(n-TREEPD}. Without 1loss of generality (see [DaGul) we may assume that

A has a single state q . We can then write a rule (with production number
i,say) qltop = x 7) + t(qlpush t1),...,q(push (tr))

as

AR e t(t1,...,tr)

and define rhe(j) = t(t1,...,tr). Thus the right hand sides consist of
applicative terms over terminals (which thus may only occur within the
initial subtree t), nonterminals in X , and parameters <j,T> €wxD*(S).

The construction is such that it will store m—occurrences on level m .

3.5 Construction

For A € RTA (n~-TREEPD) as above, we define A' € RTA (n-PD) by
- A' Thas pushdown alphabet

I' = {[j,ol]0€ oce (rhe(j)) , i a production number}
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- states Q =T U {q} with initial state q ; if A' is in state
(j,o] then it is currently simulating occurrence o in the j—th

right-hand-side

- the set of rules is given by
s inttialization
q€) + 1j,el Gd
for each production j with left-hand-side x.¢

"start simulating some body of the main procedure x,"

+ check input
for [j,ole Q with Iab (rhs(j)) (o) = f € Ar
(i,0l€@) = £([],1%)(Zd), ..., [F,r%0) (<))

* recursive call

for [j,ol€ Q@ with Ilab(rhs(j)) (o) = x of level m

- if x occurs in an gpplied position (c.f. basic concepts)
[j,ol(e) + [k,el(m-1~push [j,ol)
for each production k with left-hand-side =x} "start simulating some

body of X and store the return address at level m~1"

- if x occurs in a non-applied position
(3,0)€) » [k,ei(Zd)

"start simulating some body of x

« retuyrn

for [j,ol€ Q with lab (rhs(j)) (o) = <k, of level m-

- if <k, T>occurs in a non-applied‘position
[3,0l(m=top = [r,0']?) + [r,0o'*k](m-pop)
for all [r,o'] €T ‘
"simulation of this level of the right-hand-side of j 1is completed;
return to the k—th son of the return address stored at level m "

- if <k, T > occurs in an applied position
(j,o)(m~top = [r,0']?) » {r,0"*k]{m-1~push {j,ol o m-pop)
for all ir,e') €7

. . . : . . "
"in addition memorize where to continue after completing level m

. eplit

for [j,0l€ Q@ with Zab (rhs(j)) (o) = t(t1,,..,tr) of level m
[j,ole = [j,<oe>]{m~1-push [j,ol)
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"the simulated occurrence is a complex call; split the call and

= f£{[2,<t,e>1((2,1}[1,<€ g>]] pd1), a) recursiveecall
= £([3,el([2,1][[2, <1 e>]l1,€,e>]] pd1), a) return at level 1 (applied)
= f£({2,<1,1>)((3,e1([1,<e,e>]] pd, pd1), a)
where pd, = (2,1ill1,< &, £€>1] recursive ecall (applied)
= ({4,003, edll2,<1,1>]1{1,< ¢ , €>]]pd2 p&1), a) return at level 1 (applied)
= f([2,<1,11>]([4,€][[1,< £, € >]}pd3 pdz pd1), a)
3 = {3,21ll1,<e ¢ >]]

return at level 1 (non-applied)

start simulating t; store the return address of this level'.

3.6 Example

Consider the level-2 grammar A (i.e. one-state RTA{(2-TREEPD))

, - ] where pd
with main nonterminal x., , level=1 nonterminal f , level-2 nonterminals

x,.,%x! and terminals a,b,f , and productions .
2’72 ' _ = f({1,<e,t>1(l4, e]pd3 pd, pd1), a) recursive call (non-applied)
1 Xo¥ > %, (£) (a,b) ;f = f£([5, e )({4, €3Pd3 pd, Pd1), a) check input
9 xyb - £ (xz(xé(q,(ss,s)>))(<1,s>,<2,5>), <1,8%) = £(£({5,11([4, ¢ ]pd3 pd, pd1),[5,2]([4', E]pd3 pd, pd1)), a)
3 x2+ 5 <1,(ss,8)> (<}, s, <2,8%) 4 (2) return at level o (non-applied)
4 Xé+ > <t (s5,8)>(<1, (s8,8)>(<2,8>,<1,8>), <2,8>) ; = f(f([4,1](pd3 pd2 pd1),[4,2](pd3 pd2 pd1)), a)
51 f v+ £(<1,s>, <2,s8>) : ‘ :
A sample derivation in A is i = £(E(f(a,b), a), a) .
o
2.+ x,(®) (a,b)
_ o We hope that the informal comments together with the example hel
2 fx{x'(£))(b,a), a) - . : ) ) ¢ i P
in understanding the comstruction. The correctness proof is complex
3 f(x'(£) (b;a)sa) and given in a full version of this paper. )
4 £(F(F(a,b),a),a) |
5 - We note that the techniques used in [DaGol to show how level-n pda's
= £(f(f (a,b),a),a) . '
5 can be simulated by level—-n grammars can be adopted straightforwardly
= f(£(f (a,b),a),a) € Ty to the tree case. Thus we obtain the following theorem.
We give the corresponding derivation sequence for the RTA{2-PD) 31,7 Theorem

constructed according to 3.5 . Recall that the initial storage con-

. . . £ (n-TREEPD) = £ (n-PD)
figuration of 2-PD 1s &£ . . o

©) initializate Now note that both datatypes have an identity instruction {(for n-TREEPD,
q(e) initialization

. id = push <1,s>) , thus by 2.7 the class of translations induced by
= [1ele) eplit

. RTT's over these datatypes are equal.
= [1,<e,e>]([1,£]) recursive call (applied)
(2231, 1{{1,<e,e>]]) check input
= f([2,1](pd1), [2,2}(pd1)) retyrn at level o
where pd, = [1,e]il1,<e, e>]] - : €. (n-TREEPD) = T  (n-PD)
= f ([2,1](pd1),{1,1](€)) check input - | o
= f([2,13(pdf), a) split

3.8 Coroliary

In particular this proves the result comjectured in [DaGul, that

level-n stack transducers induce a strict hierarchy of tree~translationms.
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On some problems with operational semantics of functional programming

languages

Elfriede Tehr

{extended abstract)

Functional (applicative) programming languages, such as LISP

(McCarthy et.al., 1965), KRC (Turner, 1981), PCF (Plotkin, 1977) etc.,
are in general based upon the lambda-calculus (Church, 1941). Although
operational and denotational semantics of the lambda-calculus are by
now well understood (Gordem, 1975), most of the existing implementations
of the lambda—-calculus correspond to incomplete versions or inconsistent

extensions of the axioms of the lambda-calculus.

The reason for this is mainly the fact that the standard reduction of
leftmost—outermost B-redexes with preceeding tests on variable conflicts
and appropriate renaming is highly inefficient, when implemented on or

simulated by a machine.

Interpreters of LISP and LIPS-like languages as the one given in
(McCarthy et.al., 1965) use in general a dynamic binding mechanism, which
violates the semantics of the underlying lambda-calculus as shown in

(Eick and Fehr, 1983).

Another well known implementation of the lambda-calculus is the SECD-
machine (Landin, 1964), which supports the correct scope-rules of the
lambda—-calculus but as shown in {McGowan, 1970) fails the reduce all
expressions having a normal form, because functional arguments cannot
be treated appropriately. Similar problems arise with implementation

on a cellular computer architecture as introduced in (Magd, 1979}, which
are suitable only for a restricted class of functional languages as e.g.
FP and FFP (Backus, 1978) because objects of higher functional types
cannot be handled. Other implementatiomns such as the graph-machine intro-
duced in (Wadsworth, 1971) or the combinator reduction introduced in

(Turner, 1979) make a radical change in the representation of lambda-

expressions. They work on labelled graphs or purely combinatory expressions,

with the effect that the original lambda-expressions get$ lost and inter-

mediate results can hardly be understood by the programmer.

All these deficiencies can be overcome by implementing a variant of /
the lambda-calculus, which maintains the original structure and

naming of an expression. This variant is obtained by adding an

unbinding mechanism lambda-bar (#) to the language, which neutralizes

the effect of one preceding lambda-binding. For example the variable

x occurs free in the expression Ax.#x but bound in the expression

AxLAxLExX.

The benefit of this extension is that PB-conversion can be perfomed
without renaming of variables by systematically using the lambda-bar

mechanism.

As a result machine models of languages based upon this extension have

an uncomplicated machine structure and run very efficiently.

The corresponding formalism was first introduced in (De Bruijn, 1972).

De Bruijn uses an implementation of this mechanism in his AUTOMATH-project
(De Bruijn, 1976) and shows that it is very efficient for automatic formula
manipulation. In (Berkling 1976a} the same mechanism was introduced
independently. Berkling developed in (Berkling, 1976b)} a reduction language
BRL which is an extension of the lambda-calculus not only by a certain set
of base operatioms, such as conditionals, arithmetical, boolean, and list
operations, but also by the unbinding mechanism lambda-bar. A machine
implementation of BRL wag first simulated in PL/I (Hommes, 1977) and then

a hardware-model was built (Kluge, 1979), which started operating in

1978 and has since the shown a satisfactory performance. In particular

the machine supports different reduction strategies, such as a finite

number of call-by-value reductions followed by a call-by-name reduction.

‘Hence the efficiency of the BRL-machine canagain be increased with

more efficient strategies.

The semantic effect of the lambda-bar operation on the lambda-calculus
was until now not very clear, since there existed only the syntactical
and operational descriptions of it. In (Berkling and Fehr, 1982) the
denontational semantics and a proof that it consistently extends the

lambda~calculus is presented,
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COMPLEXITY OF INFINITE TREES
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Lehrstuhl fiir Informatik II, RWTH Aachen
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W.-Germany

Abstract

Rational schemes interpreted over derived algebras permit a simple al-
gebraic analysis of higher type recursion. Their equivalence is charac-
terized by infinite trees. Measuring their complexity by the size of
finite subtrees we obtain a direct proof of the recursion hierarchy.

Introduction

Recursion is certainly a fundamental control construct of programming
languages. The problem whether its auxiliary use on higheér functional
domains adds computational power to a language has been investigated
by W. Damm in great detail. He solved this problem successfully using
the typed i-calculus with fixed-point operators and constructing hie-
rarchies of formal languages [Dam 82].

A simplified algebraic framework for proving the recursion hierarchy
was suggested in [Ind 80] by means of rational schemes with rank-free
interpretations. It is the purpose of this paper to demonstrate that
this suggestion in fact allows an appropriate treatment of higher type
recursion. .

Denotational seméntics supports the view that the function computed by
@ program is a certain combination of given base functions. Under the
influence of D. Scott”s work the advantage of continuous base functions
was observed : their use avoids predicates and partial functions. As a
consequence, complete algebras were recognized as a basis for an alge-
braic theory of programming [Niv 72, 75].

In a complete algebra there is a natural class of operations definable
as the closure of projections and base operations under composition

and resolution. The fundamental character of resolution (regular equa-
tions with parameters) already became evident in [Bek 691, [{Wag 71 a,b]
and [Wan 72].

Of course, resolution is simpler than recursion -~ their difference cor-
responds to that of regular and context-free languages. However, the
simple control mechanism of regular equations turns out to be powerful

enough in order to model not only recursion but also higher type recur-
sion.

Technically, this is achieved by taking derived algebras (algebras of
operations) as interpretations. This technique has first been used by

Maibaum in formal language theory [Mai 74].

Since the derived algebra is heterogeneous according to the arities of
operations, we alloﬁ an operation to have an arbitrary number of argu-
ments. The resulting theory of complete algebras without rank is not
very different from the ranked case, but it avoids many-sortedness.
Secondly, we modify the derivation insofar as base operations of the
underlying algebra a:e not represented by nullary constants but by
left-composition. This gives some additional Simplifications.

The main advantage of this approach is that the semantics of a ratio-
nal scheme interpreted by a derived algebra splits into several parts
which can be analyzed seperately. Since there exist initial algebras
for complete algebras representable by infinite trees {Gog 77}, the |
equivalence class of a n-rational scheme can be characterized by an
infinite tree which originates from a regular infinite tree by succes-
sive elimination of composition and projection symbols. Using an appro-
priate complexity measure we shall see that the resulting infinite

trees become more and more complex. This easily demonstrates the recur-
sion hierarchy.

1. §i—algebras without rank

We consider algebras whose operations have an arbitrary number of ar-
guments, including the empty list ¢ . This modification is of technical

advantage for dealing with higher type objects because we thus circum-
vent many-sortedness.

-Let A be a set.

Then Ops(A) := {f | f : A% — A} is the set of cperations on A.
Let & be a set of operation symbols (without arities),
Then @ :  — Ops (A) determines an §i—algebra ;
t= H g g
A <A;p> € Al 0

For any set X there exists
FQ(X) € glgg freely generated by X
Hence, any assignment a : X —-- A with A = <a;@ € élgg extends uni-
guely to a homomorphism
oz Fo(X) — A
If X =¢ , we simply write F instead cf F_(@) , and we denote the

L Q

unigue homemorphism by hA

The same situation arises when starting from a partially ordered or com-

plete partially ordered set A -complete with respect to directed sub-




' sets - and restricting Ops(A) to monotone or continuous operations on
A . The corresponding objects are denoted by

aigh R, hY
and alge , Fo(x) hy

Although we do not need any representation of a freely generated alge-
bra, we may of course view its elements as trees. In particular, we may

assume set inclusion for the carrier setsg

b, c
FolX) = FO(X) < Fo(X)

Examples With Q = {Fq'Fz""} we have
| | o
=)
F2 F 4 F2
1\ \\
F1 F1
| A\
' c
and //F1 1= //F2 F2 ‘ € FQ
F F \\ \\
2 {\ //F1 F, F
r F
1 1 ,F2 F2
'
SNL O\
‘ 1 F

Note that the operation symbols have no arity and can therefore occur
at arbitrary nodes.

Derived operations

If we choose a standard alphabet

X:{X1’x2y---} r

i c .
each infinite tree t € Fg(x) determines for A € AlgQ an operation,

Por its definition we associate with i
a=4a,..a € p%
1 r
the assignment

la,+] : X — &

o a, if 1 < length(a)
Xy — Erogi(a) 1=

1

L else
and get the derivation operator

derop, : Fg(x) — Ops (A)
t — (a + [a, 1]

Substitution

If A = F;(X) » derop, describes substitution of iInfinite trees

.
derop =: sbst™ : Fg(X) — oEs(Fg(X))
FQ(X)
The index <+ indicates that in sbstL(tO)(t1..tr) the wvariables
NP ST are replaced by 4
ITteration

In order to define Zteration of infinite trees we shall also consider
another kind of substitution which only substitutes given arguments and
leaves the remaining arguments unchanged

for t1,...,tr € Fg{x) we define the assignment

C
[t1--tr,xr+1] : X — FQ(X)

X, — 1 i < r then t, else x.
1 —— 1 1

and get
' sbst : F;(X) — oEs(Fgfx))

£ — (t1..t — [t,..t ,x 1)y .
. Ir Y i

1 r+1

This is used to introduce the Zteration of infinite trees at i , where
i =

. . o€ * c . .

1teri : FQ(X) — FQ(X} is defined by

1teri{F1..tr) 1=

Eroji(fix(uq..ur — sbst(t1)(u1..ur).. sbst(tr)(u1..ur)))
Here, fix gives the least fixed-point of a continuous transformation of
wC () ¥

Y

‘




2. Rational §{i-schemes

For an arbitrary complete algebra A € élﬂ; there exists a.natural
class of operations, called rational operations, which can be obtained
uniformly from the class of projections by means of left-composition
with base operations of A, composition and resolution. The essential
censtruction is that of resolution : it corresponds to the least solu-
tion of a system of reqular equations with parameters.

For defining rational operations we choose rational schemes in their
general inductive form. This is of technical advantage as we can intro-
duce at the same time the derivation mechanism.

Abstract syntax

We enlarge the set Q of operation symbols first to the set

D(R) := {F" | F € Q} V ﬂPi ' 1> 0} U {¢} of derived symbols
and next to the set

R() := D(Q) V ﬂRi | 1 > O} of rational symbols over 9.
The algebra of rational §I-schemes is then defined as
RatQ 1= FR(Q)

Initial algebra semantics

(& . .
Let A = <a;y> € Algg be an Znterpretation of Q@ . For the semantics of
rational {i-schemes it suffices to construct an R(Q)-algebra because of

initiality of Ratg in AlgR(Q). Again we proceed in two steps : first we
define the derived algebra of A

.= .t C
D(A} := < Ops(A);yp > e:élgn(g}

where
6(F‘)(f1..fr)(a) = ©(F) (£,(a)..£ _(a)) Lleft-composition
6091)(f1..fr)(a) = proj, (a) projection
6(@)(50..fr){a) = f,(f,(a)..£_(a)) composition
©({C) (g) (a) = 1

Ao
with r,i €W

Next, we augment D(A) to the rational algebra of A

R(A) := 0 ;- €
(A) < Ops(A);yp > € AlgR(Q)
where in addition
@mR;) (£,..£ )(a) := proj, (fix(f)) with £ : aF —, AT

b — f1(ba)..fr(ba)

Now, the semantics of rational {i-schemes with interpretation

A € Alg; is given by the initial R(®)-homomorphism

[ HA 1= hR(Q) : RatQ — R(A)

Eguivalence, infinite trees

As it may happen that different schemes define the same rational opera-
tion in each interpretation we have a natural eguivalence relation on

RatQ (the carrier set of RatQ)

We shall characterize this equivalence by infinite {-trees. For this

purpose we extend the algebra of infinite Q{Q-trees

c _ cC . <
FQ(X) = < FQ(X),w > € AlgQ

to an R(f)-algebra such that the derivation operator turns out to be
an R({)-homomorphism. For technical reasons, we proceed again in two
steps.

C, D _ c e c
F(X)7 = < Fo(X)i6.> € Algy o

is defined by

@(F") := @ (F)

fﬂPi)(t1..tr) = X, N

C) (£ .-t ) = sbst (t ) (t,..t)

B (¢) (e) = 4
and extended to

c R _ c . C

Fo(X)7 = < Fo(X)38 > ¢ Algr o)
by o e 7T . .

CmR,)(t,. ) = [47,x Jliter, (£,..t )
where the assignment [ir,x1] : X — Fg(x) is a shift of variables
xy > if 1 > r then x, else L

It was shown in [Ind 80] that the derivation operator now is an R(R)-

homomorphism

derogA : FS(X)R — R(A)

Moreover, since Rat. is initial in AlgR(Q) there is a unique R(R)-homo-

Q

tree; : Ratg

and we conclude the coincidence

[ 1, = dexrop, - tree,

morphism . F;(X}R

Now, the characterization of equivalence by infinite trees is easily




obtalned S ~T & tree, (5) = treeq (T)

3. Derived interpretations

We are now well prepared for modelling higher type recursion : we leave
the control structure represented by rational schemes unchanged, but

take repeatedly derived algebras as interpretations.

Abstract syntax of (n+1)-rational schemes

By induction on n € W we construct the set

o™ (9) of derived symbols of degree n
p° (q) = 0
D () := DD (Q))
The algebra of (n+l)-rational Si-schemes is then simply defined as
Rat """ = Rat . = F
D) R{(D"(Q))

Semantics

Let A = <a;¢> € élgg be an interpretation of O .
By induction we get the derived algebra of degree n
DY (A) € alg® :
D(R)
DP(A) = A
™1 (4) := D(DP(A))

From initiality we conclude the unique R(Dn(Q))-homomorphism

. {n+1) n
hR(Dn(A)) : Ratg — R(D (A))
which gives us the semantics of an (n+1)-rational Q-scheme S by
fs] t= h (8) OESn(A)* — QEEn(A)
p" (A) R(D" (A))
where QEEO(A) := A and OEsn+1(A) 1= QEE(OEsn(A))

O-semantics

Our interest in using fixed-points on higher functional domains origina-
ted from the question whether the possibility of high level recursion
increases the relative computational power of a language - in other
words : can we define more elements of a complete algebra by auxiliary
fixed-point constructions on higher functional levels.

In order to prove a positive answer it suffices to consider repeated

applications of higher level functions to empty argument lists € thus

producing a low level object. -
Therefore we modify the semantics.
{(n+1)

For S € Rat, we define O—semiz?ics of S with interpretation A by
ESHg 1= [.8] n {E)(E)...(g) € A
- D {A)
Now, it becomes possible to compare schemes of different functional
levels.
Let S € EEEén+1) and T € §§E£m+1) .

Their CO-equivalence is defined by

S ®T : e (VA €algo)lsly = [T15 . |
Again, this equivalence can be characterized by infinite Q-trees.
If s € ngén+1) , we compute its Q-tree by taking its rational D' (Q)-
tree followed by successive elimination of derived symbols.
The initial D(Q)-homomeorphism

C D

. c
yi 1dQ : FD(Q) s FQ(X)
describes this elimination. Since O-semantics is given by repeated ap-

plication to empty argument 1lists, variables in infinite trees do not '

have any influence and will be replaced by L . Therefore, we define the
Q-homomorphisms

.. c .C — .
l-yield, : FD(Q) — FQ by [e,11 o yield,

. - . C T
and l-tree, : FR(Q) — FQ by [e,Ll] » tree,
Taking into account that [ ] n = derop o tree we get
D" (A) D (A) D (&)
the indicated splitting of O-semantics.
(1) Lemma PFor S € Ratén+1) we have

ESBg = hi(é:zigi@g(...i:xigig N1 (L-tree _ (8))...))

D () D () A_JJ

'
=: OftreeQ(S)

This implies as an immediate conseguence the desired characterization

of C-equivalence.

+ -+
{(2) Theorem Let 8 € Ratén ) and T € Ratggm Y
Then : S R Te O-tree,(S) = O-tree, (T)
In this way, higher type recursion leads to classes of infinite trees.
+ +
Let Bgttreeén (R O—treep(ggfén R

be" the set of (wn+1)-rational fi-trees. In the sequel, we shall investi-

gate their complexity and prove the hierarchy theorem




(n+1) c Rattree(n+2)

(3) Theorem (¥ n € W) RattreeQ T o

4. Representation of (n+1)-rational trees

We have seen that an (n+1)-rational (-tree is constructable from an
l-rational Dn(Q)~tree by successive elimination of derived symbols
using l-yield. In order to prove the hierarchy we shall investigate
the impact of derived symbols on the structure of these trees.
Therefore, we first choose an appropriate representation of derived
symbols. In particular, we have to distinguish between different deri-

vation levels. This will be indicated by a level <ndex p and a deri-
vation index q in

cP-9 ¢ ™ (2) where p.g 1is short for (p,q)
%) :={r° | F € )
p(p"(2)) := 1P I | P9 ¢ pP(a)}
v @20 ) 15 0) ® :=p,)
u {¢n+2.0}
It follows that p+q = n+1 which is the "semantic level" since

oGP 9y € ops™ N (a) .

Now we can explicitly describe the construction of an (n+1)-rational
{i~tree from an 1-rational Dn(Q)-tree, n =1

. C C s .
L-vield  _ s F — F__ splits into
- " Ty T pBa) ™1 (o)
{Er-l-] ] zield n—-1
() 5
with yield __. : FC© — FC (X)
" () T pP(a) ™1 (a)
Since this mapping, ¢ for short , is a Dn(ﬂ)—homomorphism, we have
¢(Gp'q+1(t1..tr)) - Gp°q(¢(t1)..¢(tr))
V20 e ) = x.
n+2.0, | ¥ Wt
V(g TTtgeet)) = sbhstT({t ) U (e ). b (E))
be™2 %)) = 1

Moreover, as | is continuous we may carry out the computation on finite
subtrées (approximations) .

At this point we realize the advantage of representing a base operation
on level n by its left-composition on level n+1 : the tree structure
remains unchanged. As an immediate consequence we get the inclusion
part of the hierarchy theorem (3)

(V n € N) Rattreeén+1) pn+2)

For the proof we only have to replace in the defining 1-rational Dn(Q)-
tree a symbol gF-9 by Gp.q+1_ The resulting 1-rational Dn+1(ﬁ)—tree
yields the same {-tree.

< Rattree

Next, we shall present for n 2 1 "hierarchy candidates”
I
,tn+1 € Rattree(n+1)
such that tn+1 3 Rattree(n)
They are constructed from t°7 Ve Rattree |’ as explained below.
T D)

|
= -0 yields ¢ (t%) =: t, = F

/\ 40 1.0
F1.1 F1.1 F

//\\ \\Lo
¢2.0 ]P?_.O /F
\\F1.1 E:;? Fj.o g1-0
//\\ / 1.0
]1)2'0 ]P2'O / F
4 1
; fi.0 1.0

Note that during #—computationimz'o is replaced by X4 which disappears
2.

within the substitution produced by elimination of ¢ °

This flrst example already demonstrates the influence of derived sym-

bols : iterated composition yields finite subtrees of growing size.

l

2.n=1
n> 1 ’ ¢

& N\

P

2.n-1

n+1.o .IPn+'I.0

On computing t

pis

n+1 W€ carry out substitution of substitutions of ... so

that the resulting tree becomes more and more complex. The growth of

finite subtree size increases with level n.




As an example we compute t3

For arbitrary n > 1 we can prove by induction that

[
1]

n+1 //// \\ 10
//
//////’ \\\ with“2 leaves

x ?1.0 F1£———‘¥‘1‘0 with 2 leaves
g
P k
. 1.0 2
F
”'/ n/\/
F‘I'—O-—‘F1 -0 with 42 leaves

5. Complexity of (n+1)-rational Q-trees

Obviously, it holds for our example trees that tn+1 € Rattreeén+1) .
For a hierarchy proof it remains to verify that t ¢ Rattree(n) .

Therefore, we introduce a complexity measure on infinite trees following
our previous observations : we choose the breadth of finite subtrees
with respect to the depth of,their roots.

Let INT- be the cpo of natural numbers with. top element such that
0 <1 <2< ...<1T
and M :={f | £ : N —eﬁNT} be the cpo of measures with pointwise
ordering.
The measure algebra

M = <M;™> € Alg

20

is then defined by
F(e) := if
F(f1..fr) 1= if

k = O then 1 else O
@]

r
then if n1 f (0O) # O then ¥ £, (0)
i= i=

else O

r
else max (£, (k-1})
i=17 %

Clearly, F does not depend on F. Moreover, one can easily check that

i~

F is continuocus. Hence, there is a unigque f2-homomorphism

T : Fg(x) — M

which extends X, — if k = O then 1 else ©

I'(t) is called finite subtree complexity of t.
We see that P(t) (k) *# O iff t contains a node of depth k being the

rooct of a finite subtree t' € FD(X)‘ Of these subtrees T(t) (k) takes
the maximal breadth.

Computing the complexity of our example Erees tn+1 shows :
(4) Lemma T(t_,,)(0) = 0 n’2
_— - n+1 5/
F(tn+1)(k+1) = 4{ for all n = 1
Now, we determine upper bounds for the complexity of t € Rattreeén) .

First, we can prove that each regular tree has bounded complexity :

(5) Lemma For each t € Rattreeéq) there exists c¢ € N such that
rft){k) < ¢ - for all k € N.

This relies on the fact that a regular tree has only a finike number

of different subtrees.

(6) Corcllary Rattreeéq) g Rattreeéz)
Next, we analyse the increase of complexity produced by l-yield. So,
let t € FD(D) be an arbitrary infinite D(Q)-tree such that T(t) < f

A look at the computation of our example trees shows what happens on
elimination of derived symbols : composition symbols produce substitu-
tion of subtrees causing exponential growth of the breadth of a finite
subtree. However, if f 1s constant, as in the case of regular trees,
Zf(n) remains constant ! But, since composition symbols can also occur
on infinite branches they can produce more and more substitutions of

finite subtrees




{7) Theorem Let t € Fg(p) such that T(t) < f

cqek cz.f(i)
Then there are Cy r Cy €N such that T(l-yield(t)) (k) < T 2

i=1
The proof proceeds by algebraic induction on the structure of finite

approximations ©f +t in Fg(ﬂ) and exploits continuity of yield.
From (5) and (7) it follows

(8) Corollary For n = 1 and t € Rattreeén+1) there are ¢,,c
such that c,.k+c

1772
1 2
//Q
7
i) (k) < (é

. (n)
Therefore : tn+1 3 Rattreeg

€W

Conclusion

The algebraic analysis of recursion on higher functional domains shows
that its computational power grows with increasing functional level.
Moreover, the approach by combinators {(derived symbols) clearly demons-
trates the reason for this phenomenon : it is composition of higher
functionals which in connection with recursion causes growing comple-
xity. |
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- AUTOMATED CONSTRUCTION OF VERIFICATION CONDITIONS

Thomas K&dufl
Institut flir Informatik I
Universit8t Karlsruhe
Postfach 6380
D-7500 Karlsruhe 1

The question if the correctness of programs can be established
automatically was raised as early as 1967 when Floyd's paper
appeared. His foundational work led to the program verifier of
King [9], to the Stanford verifier [6] and others.

In this paper we present the rules for generating verification
conditions which guarantee the correctness of a program in such
a way that they specify an algorithm performing the task. A

system generating verification conditions is currently implemented

[8].

1. The Function VC Generates Verification Conditions ;

In this chapter we define verification conditions and the

function VC generating them.

Suppose we are given a precondition P and a postcondition Q
and some means to evaluate the truth of correctness formulae

like P|pc|Q where pc is a construct of a programming language.

Definition:

A verification condition for a language construct pc, a pre—'
condition P and a postcondition Q is a logical formula whose
truth implies that of P|pclQ.

If pc does not contain while or if-statements, then verification
conditions are implications P-»R such that the truth of RlpclQ is

implied by P-R.

The function VC yielding verification conditions has. the

functionality
F x PC x F-F

where F is the set of well formed logical formulae and PC is a
construct of the programming language. The first argument is

used as precondition and the third as postcondition.

The feollowing equations define VC for the common program

constructs:

Assignment
VC(P,sta; x := e, R) = VC(P,sta,[R]i)

x{e1/e2]

VC(P,sta; x[e1] 1= e, ,R) = VC(P,sta, [R]x }

Here [R]i denotes R where every free occurence of x is replaced
by e. x[e1/e2] is the modification of the array x: Xo fi]::x[i]

. 1/
if i # e, and X[e1/e2][e1] = e,.

Assert

vCc (P,sta; assert Q,R) VC(P,sta,Q) A (Q-»R)
Assume

VC({P,sta; assume Q,R) = VC(P,sta,QeR)




Empty-Statement

VC(F,e,R) = P-R

While-8tatement

VC(P,sta; invariant Q; while e do sta',R)
= VC(P,sta,Q) A VC(Q A e,sta': Q) A (Q A 5 e=R)

We require every while-statement to be preceded by an invariant:

The designer of the program 1s assumed to know the invariant
assertion being the basis for the behaviour of the loop. Thus
the definition of VC forces him to write the invariant into his
program.

If-S5tatements

VC(P,sta; if e then sta, else sta, fi,R)
= VC(P,sta; assume e sta1,R)
A
VC(P,sta; assume - e; staz,R)
VC(P,sta; if e then sta' fi,R)
= VC(P,sta; assume e; sta',R)

A VC(P,sta; assume = e,R)

Compound Statement

VC(P,stai; begin sta2 end, Q)
= VC(P,sta,l; sta,,Q)

Procedure call

VC(P,sta; ple,v),S)
_ ev ev
= VC(P,sta,[Qlar A ([R}ar"’s”

where: e is the actual call-by-value parameter
v i1s the actual call-by-reference parameter
Qipla,r) IR procedure hypothesis
a is the formal call-by-~value parameter

r is the formal call-by-reference parameter

It is obvious that this egquation for procedure calls can be

generalized to an arbitrary number of parameters.

Construct definition o ;

VC(P,const x

i

Yi dec; StarQ)
VC(P,[dEC; Sta]irQ)

Variable declaration

VC{P,var x; dec; sta,Q)
I
= VC(P,[dec; sta]i Q)

where x' is a new identifier not occuring in P, Q and dec: sta.

Initials

VC(P,initial x' = x,Q) = VC(P,e,[Q]}f,)

Let us consider the eguations for constant and variable
declarations. A declaration changes the environment, which is

a textual notion. Defining the equations for VC we wish to be

as close as possible to predicate transformers (see [10]) yielding
weakest liberalized predicates. Hence following Milne [10] we prefer
to rename the new declared indentifiers instead of renaming
identifiers in the pre- and postconditions in order to avoid

name clashes.

Procedure declaration

vC{P,procdec; dec; sta,Q)
= VC(P,dec; sta,Q) a
A VC(R,value x; initial x' = x; decp;stap,s)
where procdec
procedure p{x:type; var y:type);
entry R;
exit 8; ‘
initial x' = x;

dec_: sta
p P

Value specification’

VC(P,value x; initial x' = x; dec; sta,Q)-

X X
= VC(P,{[dec; initial x_ = x; sta]x?}XO,Q)

where x_ is a new identifier neither occuring in P, Q nor in the
X

programming language construct and {sta}x0 is a substitution not

applied to the asserts, invariants etc. contained in sta.




Initials
1
VC(P,initial x' = x,Q) = VC(P,e,[Q]¥ )
The treatment of value specifications allows assignments to a
value parameter in the body of the procedure. In order to

motivate the definition let us consider the Hoare-like [7]
proof rule for call-by-value

b4
plistalllo

[P1¥ista
yi 0
where y does not occur free in Q.

If a while-statement occurs in [sta]i the designer may use y
to denote the current content of the parameter and x to denote
the content of the parameter when the procedure is called. To
make this explicit he has to specify this in the initial
eguation initial v = x. The equation dealing with wvalue
specifications together with the equation for initials treats
the call-by-value specification as usual. The formal parameter
becomes a variable local to the procedure body. The value of
the'corresponding actual parameter is then assigned to this

local variable.

We conclude this chapter by noting a lemma which shows that the
result of VC is a conjunction of legical formulae, a fact used
frequently in the following chapter.

Lemma 1: VC(P,pc,Q) = R1A.,. ARhwhere pc i1s a construct of the

programming language and the Ri are logical formulae.

2. The Corréctness of VC i

In order to prove the correctness o©f VC we shall show:
Whenever

VC(P,pc,Q) = R1A ...AZRn

then there is a derivation using Hoare-like proof rules

R /R ,Tie... I PlpciO

=r

where pc is obtained from pc by cancelling all asserts, assumes
etc. and 21,...,Zk are correctness formulae occuring in the

derivation.

In the following Ry,...,R_ - Plpc|Q denotes the existence of

1
such a derivation.

The subsequent lemma shows how the splitting of statements is

mirrored by VC.

Lemma 2:
. = ¥ ]
VC(P,staq, Staz,Q) VC(P,sta1,S1 Ao ASn) A R1A .../\Rm
where VC(true,staz,Q) = 8, A .../\Sn ARy Ao AR

— 1
and Si = TruefSi

In order to state the correctness of VC we need an auxiliar

notion:

Definition:

BEvery construct beginning with assert, assume, invariant,

initial, entry or exit is called annotation.

Theorem 1:

Assume VC(P,sta,Q) = R1A .../\Rn such that sta does not contain

an assume.
Then there exists a derivation
R1""’Rn P|stalQ w

where sta is obtained from sta by deleting all annotations.




Proof:

The proof is done by induction on the structure of the constructs
of the language. We only show the induction steps for the procedure
call and the value specification. The proofs for the other

language constructs (except for declarations) and the proof of

the induction base may be found in [6].

Value specifications:

VC(P,value xX; initial x' = x; dec: sta,Q)

X X
vC(P,{ldec; initial x_ = x; sta]x?}XO,Q)

by definition

I

VC(P, initial X, = X sta',Q)
where sta' is obtained from

Xo.%0
{[sta]x,}x by substitutions

according to the declarations dec

. . ' _ ] '
VC(P, initial Xy = Xy S1A... ASn) A R1A e n e ARm

because of Lemma 2.

x .
= ! '
P->[S1 Avun A Sn]x ARy A ..o AR .
o
Again by Lemma 2:
1 —
VC (True,sta',Q) = S1A ces AS A Ry A ..o AR

Using the induction hypothesis:

.18 R -+R_ |- Truelsta'lQ }

1’..
S S ,R R_ | Truel{ldec; sta]XO }XOIQ
1,.-.; n’ 1,---’m ? XFX

sta does not contain asserts etc.

X
—_. %0
ST’ ,Sn,R1, "Rm I~ Truel[dec; sta]X |Q
S, A ... A5 =True
i n N
—. %0
Rys---sRy b S;A... A8 Ildec; stal Clo
X : —_—
R1,...,Rm E_{S1 A e ASn]XOEvalue x; dec; stalQ r>
P->[S1 A oo ASn}: ,R,I,...,Rm b Plvalue x; dec; stalQ

o)
(using the rule of conseguence)

Procedure calls:
VC(P,sta; ple,v),S)

ev 53 Ir
= VC(P,sta,[Q]a]: A Vr([R]a*[S]V))

where R is the exit- and
Q the entry-assertion of p

= P, A...AP

1 n

By the induction hypothesis we have

ev

e r
ar M Vr([R]a+[S]v)

P P }— PistalilQ]

1’.-

In order to obtain Plsta; ple,v)|S we execute the following

derivation:

(1) PlstallQlS) A vr(IRIS-[SI))

(2) Qlp(a,r) IR procedure hypothesis

(3) [Q]iz'mﬂe,v)iiRjzz call (2)

e r ev
(4) vr([RIS=181%) A [Q1S )
lple,v) IIRIS T A vr([RIZ-I[SI])
Invariance (3)

(5) [RIST A vr([RIS+[8]1])-§

Note: R does not contain

free occurences of r

(6) Plsta: ple,v)|S

by applying the rules of
consequence and composition
to (1, 4, 5)

In the derivations presented in the proof we have used the

following proof rules:

Procedure hypothesis

Qip{a,r)|R where each identifier occuring free

in Q or R must be a or r




Call

Qlpla,r) iR

e v ev
[Q]arlp(e,r)I[R]ar

Invariance

Qlple,r) R

QAPlp(e,r) IR A P
where each identifier free in P is different from r

Call-by-value

P![sta]il@

[P];{Ista 1Q

where y must not occur free in @
In order to prove the induction step for variable- and constant
declarations in the proof of the theorem one has to use the

folliowing proof rules.

P |[dec: sta]deQ

Piconst id = ¢; dec: stalQ
where ¢ is a constant
and

P|[dec; sta]ilQ

Plvar x; dec; stalQ

where y must not occur free in P, Q and dec: sta

The rule for constant declarations is an adaptation of Milne's
results [10].

The rule for variable declarations may be found in [1] too.
Many authors (see [2], [3] and [11]) reject this rule. They

prefer an appreopriate renaming of the pre- and postcondition ;
in order to avoid name clashes possibly connected with variable

declarations.

The guestion of the completeness of VC is open: We have to show
that VC(P,sta,Q)Vyields true verification conditions whenever
PlstalQ is derivable using Hoare-like proof rules. This gquestion
is currently investigated. Note that this problem alsec arises
when one studies the proof rules in presented in [4]. In this
paper the guestion whether the procf rules have the same power
as traditional Hoare-like proof rules as far as the same language

constructs are concerned is not answered too.
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Dr. H.-J. Klein, Kiel

Thema des Vortrags: "Eine Methode zur Konstruktion von Automaten
flir die Simulation des Laufzeitverhaltens von

Programmen"

. Zusammenfassung: Die durch Anwendung der Kopierregel auf Programme
ALGOL-#hnlicher Programmiersprachen erzeugbaren Ausfiihrungsbiume

sind i.a. nicht endlich. Fiir Programme bestimmter Teilklassen

solcher Sprachen konnten jedoch endliche Unterbdume der Aus-
fiihrungsbdume angegeben werden, die die Ausflihrungsbdume vollsténdig
charakterisieren. Wir definieren eine sogenannte erweiterte Kopier-
regel und betrachten spezielle Ausfihrungsbdume, zu denen stets
derartige charakterisierende endliche Unterbdume gefunden werden
kdonnen. Uber diesen speziellen Ausfiihrungsbdumen lassen sich
"Durchliufe" definieren, die den Pfaden in den gewthnlichen Aus-
fihrungsbdumen entsprechen. Flir dieses Durchlaufen der Bdume werden
Informationen {iber gewisse statische Verweise und iliber Zuordnungen
von aktuellen zu formalen Parametern benétigt. Der zur Verwaltung
dieser Information und zur Realisierung der Durchliufe auf dem
charakterisierenden Unterbaum des speziellen Ausfiihrungsbaumes

eines Programms notwendige Speichertyp bestimmt den Typ des
Automaten, der zur Simulation des Laufzeitverhaltens dieses Programms
geeignet ist. Wir demonstrieren diese Konstruktionsmethode an einigen

Beigpielen.

M. Krause, W.-M. Lippe, F. Simon

ON ALGEBRAIC SEMANTICS OF IMPERATIVE PROGRAMMING LANGUAGES

Abstract

We give a survey of algebraic semantics and it's problems
with imperativé program constructs. Generalized recursive
program schemes (GRPS) are used to cope with these problems.
Thereby} the solvability of so called local variables is a
major peoint. A method of L. Kott /Ko76/ to show the solv-
ability is discussed. Due to technical reasons Kott makes
restrictions which do not allow to define algebraic semantics
for programs with mutually recursive procedures. We show

that it is possible to solve local variables without Kott's
restrictions by using some elementary ideas of the copy-rule-
semantics. Thus we are able to define algebraic semantics for

a more powerful set of imperative programs.




I. Introduction

For the definition of a programming language one distinguishes bet-
ween two fields: syntax, defining the structure of programs, and
semantics, giving meaning to programs. Formal description of the
syntax are well known. But for a long time semantics were usually
given informally by describing the effects of syntatic structures

on a particular computer or on an abstract model of a computer.

But since one considers a program as a definition of a mathematical
function /McC 63,Pa 69/ it is possible to describe the semantics

of a program formally, i.e. by mathematical means. This leads to

the so called "fixed point semantics" or "denotational semantics"
introduced by D. Scott and C. Strachey /Sc 70/. 2. Manna and J.
Vuillemin /Ma 72,Ma 74/ applied this method to ALGOL-like languages.

Another method is the "algebraic semantics" introduced by M. Nivat
/Ni 72, Ni 74/. 1In this approach programs are simple rewriting
systems defined !> recursive equations, called recursive program
schemes (RPS). This method is immediately applicable to functional
languages. But applied to ALGOL-like languages there arise problems
with some imperative program constructs, i.e. assignments, value
parameters, block nesting and local wvariables. To handle these
structures correctly, the RPS were augmented by L. Kott /Ko 76,Ko 77/
tc the generalized recursive program schemes (GRPS). This concept
is described in chapter III. The theory of GRPS yields "computing
processes" as they are needed for a formal description of the

semantics of variables in imperative programming languages.

Because ©of the chosen proof technique, however, Kott can only handle
programs which do not have mutual recursive procedures with value-
parameters. This happens, because he regards procedures as para-
meterized blocks, which is generally not correct.

The main point of this paper is to show how mutual recursion of
procedures with value parameters can be done in the theory of
GRPS. For this we use some ideas from the "copy-rule-semantics”

/La 73/ for programs with procedures. Then Kott's theorems and

i/
definifioné (see part "Iﬁterpretation and Semantics of a SSG") are

to be adapted to our framework.

II. Algebraic semantics

In this section the theory of algebraic semantics will be roughly
outlined. Let F be a finite set of function symbols. With every
fEF is associated a positiv integer p(f), called the arity of £.
Let V be a set of variables. The free F-magma generated by V,

M(F,V), is given inductively by:

1. VEM(F,V)
2. If f€F and t1,”.,tp(f)EM(F,V), then f(t1,.e.,tp(f))€M(F,V).

Thus M(F,V) is the set of all weliformed terms which can be con-
structed by function symbols f€F and by variables vev.

A recursive program scheme (RPS) T on M(F,V) is a system of

equations _
I: lDi(v.l,,...,v‘:}i) = 'fi, 14 i$N,

whered>='{¢1 ...,wN} is a set of unknown function svmbols,

Ti is an element of M(FU@,{V1,...,VD.}) and Py = plor).

1

We extend a RPS I to a schematic rewriting systems T by adding

o )} = & to I for all ¢ €d. These equations are
i i

abbreviated by ml(v1,..,vpi) = 1+ 0.

On the magma M(FU¥,V) a derivation is defined by I:

. i
equations ¢ (v1,...!v

For all t, t'€ M(FU®,V) t' directly derives from z with regard

tOE (t T—> tﬂ) ifft=aq}:l:(t.!p-ouptp-) B and

ti= o Tl(tTgwo-,t l/V.I,..-,Vp )B Or t' = ‘2 B
LI T AN R | v ivi i )
where a,ﬁeﬁﬂ= FovuU{ (*))'," ,'} and t (t1,...,tp'/v1,...,v

i pi

results from Ti by replacing all occurrences or Vj by tj for j=1,..,pia

P

—%ﬁ>(—§éﬂ denotes the transitive (reflexive, transitive) closure

of —379 .

¥*
By L(f,w1)=Df{tEM(F, )/(p‘((v,l,“u,vp y T o > t} we denote the set
of all terms which are derived from1cp1(v1,...,vp ) with regard
T ’ 1

to L.
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Example: Let I be given by
T o' (vy)= £(g(vy),ah(vg e (kvy)))) + .
L("f.w1)= {Qr '
f(g(vT),a,h(v1pQ)):
£(g(vy),a,hivy,fl(glkivy)),ahlk(vy), 2))),...1.

Notice that in the theory of RPS no procedure parameters or formal
procedure calls are allowed. Variables are always interpreted over

simple domains,; like integers, Booleans or strings.

A discrete interpretation I of a RPS £ on M(F,V) is given by

1. a discrete domain, i.e. a partially ordered set'(DI,E) with

X g vy iff x=w or x=y, and w& DI i1s the smallest element of DI’
2. a set of monotone functions called magma operations

Fr = {f;: D p(E) D /£€F}.

I I

Thus a discrete interpretation fixes the set of values and the basic
functions. Let I be a decrete interpretation.

A valued interpretation of a RPS I on M(F,V)

{(1,v)/M(F,V) —s DI is inductively defined by

(I,v} () = w

(I,v)(vi) = v(vi), where v /V —> DI is an environment

(Il\)} (f(tol;oooftp(f))) = fI((I'\)) (to])f"" (II\)) (tp(f)))'
Now we can define the semantics of a RPS. Let I be a RPS on M(F,V) and
let I be a (discrete) interpretation. Then thé semantics '

B
Val(Z,¢')/D % —> D_ of T under I is defined by

I
1 a if there is a teL(§,¢1) with
ValI(Xpw )(61,.0.,691)= (I,v)(t):d',d'+ W
w otherwise

where dj = v(vj) for j=1,...,p1.

The language L(I,e ) can be considered as a set of finite approxi-
mations of the function which is "computed" by Z.

Because of the following result ValI(E,mT) is well defined.

'

Lemma /Ni 74/:
Let be t, t'EL(f,m1) and'let (I,v) be valued interpretation.
If (I,v)(t)$¥ w and (I,v)(t")% w, then (I,v)(t) = (I,v)(t'}).

Using RPSs to describe the semantics of ALGOL-like programs causes
problems with some imperative program constructs which annot be
regarded as basic functions over some simple domains. An example

is the assignment statement.

Example /Ko 76/:

W} = begin integer procedure fact(x); integer x;
fact:= if x=0 then 1 else x % fact(x-1};
integer a,b;
read(a):;
b:= fact(a);
a:= if a =(a2) *2 then 1 else alb + b;

write(a)

end

By the transformation described in /Ma 72/ this program is asso-
ciated with the following RPS:

ol (vy) = £lq(vy),a,s(r(vy,0°(v)) 02 (v.))) (1)
0o? (vy) = £(g(vy) ,a,hivy,00 (k(vy)))). (x1)

Eguation (II} is the transformation of the declaration of the
procedure fact. It is not so obvious how the main’'part of the
program is transformed into eguation (I). First of all the four

statements of the main program are transformed into

integer procedure prog(a);

prog:= if a=(a$2) *2 then 1
else a? fact(a) + fact(a);

out prog(in}

where in and out denote I/O-operations.

Now it is obvious that equation {I) is the transformation of the
declaration of the procedure prog. Unfortunately the substitution
of b by fact (a) is only correct if the computation of fact termi-
nates.




Let ¥ be the following interpretation:

D= Z Ul{wl.
For every m, n€ D, and t € {false, truel is
aI=1; kI(n) = n-1; hI(m,n) = men;

SI(m,n)= m+nz; ri(m,n)= mn, if n>0;

true if n is pair
dr {n) =4 false if n is odd
L otherwise
Ftrue if n=0
g;(n) =qjfalse ifn#$0andnF w
LW otherwise;
. m if t=true
:I(t,m,n)= n if t=false
w otherwise.
let us take f(q(v ) ,a, s(r(v ) ,0)), which is a term of
L{Z,¢ ) and let v be an env1ronment with v(v )= -2, Then

Vali(Z,e') (-2) = (I,v) (£(q(v,) ,a,s(x(v,,2),8))

| £5 ((T,9) (@(vy)), (T,9) (@), (T,9) (s(x(vy,2) Q)
= £1(q;(-2),1,5. (7 (-2,9),0))

= 1.

It is easily verified that this is not the output of the given
program for input a= -2. This example shows that elimination of
assignments is not the proper way to capture the notion of a store.
But by means of generalized recursive program schemes we are

able to cope correctly with imperative language elements.

ITI. Generalized recursive program schemes

Definitions. Let F, ¢ and V be defined as in chapter II and let
W be a finite set of local variables with Wm(FUQUV) = 3.

A generalized recursive program géheme (GRPS)I is a system of egua-
tions on the magma M(FU®,VUW)
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I
T wl(v1,...,vp }y = 1%, i=1,...,N
. R §
wrrd = ) s J= s ny Gi,
i 1 i,o,
where TlEM(FUGJ,{V.l,...,vp }U{Wl ey WOITAY)
. i
and Tl'JEM(Fué,{v1,...,vp_}).

i .
o, is the number of local variables belonging to wl.

Remember that all elements of X=FUOUVUWU{'(',")',','}

are symbols of an alphabet. A string teM(Fu¢,VuW) is called a term.
We c¢btain a generallzed schematic rewriting system Z by writing
the equations ¢ (v1,....,vp-) = Tl + § instead of ¢ v 1,...,vp )y =T
In this paper we always use generallzed schematic rewrting sys%ems
(systéme schématique généralisé, shortly SSG) and we do not

distinguish them from GRPS.

Due to technical reasons we devide the set ¢ into ¥ and ¢ : Y is the
set of all unknown function symbols from which no terms with

\ W
occurrences of local variables can be derived. ¥ = $\¥ is the comple-

ment of ¥ with respect to ¢.

Example (continued):

will be transformed to the SSG L'+ on M(F VS, V,UW,)

T
o 2,2 1,1
@A(v1) = nz(m (v oW )+ 9,
wlel = w3(v1)
M § ot (vyvy) = 18, w0 vy) v g,
211 L f(giv.),a,s(r(v.,v.) V)
w = g 1/ ¢8y 11V27 V5

0> (vy) = £(g(v,),a,hivy,0° (k(vy)))) + 2,

“

2
F,l = {a,f,qg,h, 1dz,k,q,r,s,n2,91’ﬂz}, where

Q1= Q, 92 = (Q2,8), I(idz)(v1,v2) = (v1,v2) for all VqsVy €Dy

and for all I,

I(ng)(vj,v2)= 91 for all VqrVy € DI and for all TI.

o




.1 2 3, W_ .1 2 _ .3
@1 = {‘-P PR PRY }.r ¢‘1 = {w » @ }v‘y.l = {Q) } % = begin integer a;
v { v} integer procedure f(x); value x; integer x;
= {v
1 17Y2 “begin integer y; y:= h(x);

W= {wle] w2’1}. f:=y
F
. end;

Remarks: integer procedure h{z); value z; integer z;

begin integer t; t:= f£(z);

- The notion "local variable® refers to local wvariables in blocks

h:=
known from imperative languages. , &
- The interpretation of a SSG is different from that given in chap- gnd;
; i o, . N § ;
ter II, as the values of the local variables “}'}“Qﬁ'-l_axmrnug mt read(a);
a:= f(a)

will be given "dynamically" in the interpretation. In order to

compute the value of 1t first of all it is necessary to compute E end

T

_ i i O i :

the values of the local variables W1'1,.,.,Wl’ 1. Following ® will be transformed to the 858G 1°:
Kott, we say, it is necessary to silve the local var%ables.  ? r w1(v1)= id1(w1’1) + 91

- Different rewritings of a symbol ¢~ may differ by different

1,1 _ 2
values of it's local variables. So it is necessary to distinguish W = ¢ (V1)

the equations with local variables by subscription, so that the i wz(v1)= ®3(V1) + Q. - call of £ in the main program
eguations may be czésidered as."séatic ocbjects". So every equation f ) (;)3(‘,1)= w4(v1’w3,1) + @, - declaration of £
® (v.l,...,,vp ) = 17 + Q with w16® resolves in a system of equations i 3,1 :
wg(v1,...,vpl) = T;+ 2, w;'3= T;'j,j=1,...,0i, where mehA, A is a v - V1

L 1 1,3 . i 1,4 | etv,,va)= 02 (v, vt ) + 9. - body of £
set of indices and 7 rsp T _'- is obtained from 17 rsp T 1772 1772 1
by subscription of all 0ed¥  and all weW occurring in T- rsp. P ﬁ wirl = w6(V2)
St Thus,.for a}l 55Gs we have in general an infinite system wS(V1;V2:V3}= v3+ v3+91 - fi=y
of equations which simulates the SS8G. Semantics of SSGs will be ' € 7
defined by means of semantics of the simulating infinite system. ¢ (v1) e (V1)+ 2 - call of h

w7(v1) = wa(v1,W7'1)+ Q, - declaration of h

IV. On the semantics of S8Gs wil = vy

_ ws(v1,v2) = wg(v1,v2,w8’1) + 91 = body of h
Using Kott's definition of semantics of a 8SG it i1s impossible 8. 1 10
. i . [ -
to give semantics for the following program, because it has v -0 (v2)
mutual recursion of two procedures with value parameters and wg(V1:V2rV3) = vy t 91 - h:= ¢
local varlables. l ¢1O(V1) = @3(v1)+ e, - call of f in the body of h

-

10}’

&)
]
—~
-
o]}

vV = [v1,v2,v3},

17 Qi} ¢ = {@TI---:G
- _ W= {w1'1, w3’1, w4'1, w7'1, w§'1},




Using Kott's method to solve local variables wi'j belonging to wi
it is not necessary to solve further local variables wi"jP

with 1'<i because he defines an order on the unknown function
symbols such that no local variable wi'j will depend on any

local wvariable wi"jv with i'<i. To define such an order, however,
there must be no mutual recursion as it is given in w. There

must not exist a sequence of procedure calls where two procedures
call themselves'mutually recursively such that the transformation
of the procedure in a SSG have both local variables. The trans-
formation of a procedure has local variables if it has value

parameters or if it has local variables in it's body.

This restriction was made as a consequence of the wrong assumption,
that procedures can be considered as parameterized blocks.

With some elementary ideas of the copy-rule-semantics we are
-able to solve local variables without Kott's restriction and
to define algebraic¢ semantics for a more powerful set of SSGs
and thus for a more powerful set of imperative programs. In
Kott's paper the theory of the solution of local variables
already affords some mathematical efforts which unfortunately
-are not less in our presentation.

In /Kr 82/ transformations are described which translate pro-
grams of a simple imperative block-structured pProgramming
language with assignments, conditional statements, while-loops
and procedures into SSGs. This provides a method to define
semantics of simple imperative Programming languages without
higher functionality, i.e. without procedures as values. More
complex constructions with procedures were studied with algebraic
methods by Damm /Da 80/, Fehr /Fe 80/ and Indermark /In 80/.

On solving local variables

Using SS8Gs the solvability of the local variables is Kott's main
problem as it is our's. If we have shown that all local variables
are solvable, we can adapt Kott's propositions to our method

of solving local variables.

In our framework we have to handle with distinguished 858Gs, i.e.

other nodes is as described above.

- 10 -

!

every unknown function symbol in @W has at most one occurrence
on a right side of an equation. In /Kr 82/ it is described

how one generates a distinguished SSG I' from any SSG I with
L(£') = L(Z). Thus I' and I have the same semantics Gu 80/.

Analogously to the copy—rule-semantics /La 73/ we define a
rewriting tree eb for any distinguished 888G IZ. The root of
eb is labelled by w1(v1,.uo,vp }, i.e. the axiom of Z. If
n € N* is a node of eb, then Jni, i€ N is a son of n, if there

is a ¢%¢W that occures in the label of n and there are i-1

occurrences of symbols of o™ left from wj. ni is labelled by
T%t1,.°o,tpl/v1,.,.,v .) where t1,°..,tp. are the arguments

8]
3 .
of wj in thg label of n. Thus a node of eb with a label without

an occurrence of any symbol of ¢W is a leaf.

Furthermore for every w ') we define a rewriting tree ebi,j'

The root of ebi . is labelled by 14¢J. The construction of all
r

Example (cont.):

The rewriting tree for I is eb : T1(v1)
1,1

id1(w ).
‘o 3.1 . T,
The rewriting tree for w is eb3'1. Vs
The rewriting tree for mﬁ’j is ebg 13 TG(VZ)
[

w7(v2)
' 7,1
(98 (Vzrw "}
|
@9(V21W7’1rw8’1)
g,

The reader may construct the other rewriting trees.

With these definitions all rewriting trees are regular

/La 73, Kr 82/ w.r.t. relations ~ in eb rsp. ~, . in eb. ..
i,] 1,37

~ IrS8Sp. say that two different nodes are in relation

i,3
if they are in the same path and if they are generated by the
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W . . o '_ifxf  j4“ 1&;_,
: - 11 - Zepw O M(FUYUR 97 VUW;;q) 1s obtained from I by . o -
~ adding the eguation w;{v1,°=a,vp ) =T, + 0, neEN. to L. for
same unknown function symbol. ' ; i, : o
am ym every equation Lp‘l(v1,...,,vp ) = Tl + § in I with wle¢w, where
Thus we only need finite initial subtrees tb rsp. tbi,j to know Ti _ Ti(m . | /wi(wirj/wirj) cor a1l wEQW et - s
the whole structure of the eventually infinite rewriting trees. n n 1nd.(g,1) n ’ ree Vgt
. i i, 53 _ . i_.W
Due to technical reasons all symbols V,W(and F are substituted - - for all equations w rJ = ¢ ’j, 36{1,...,0i} associated to mle¢
i !
by "-". Let a node be labelled by 17 (t;,..,t /Visee., v, ), then . o o e s {4
p. 1 P, chik ddi wlfj = 37 . i,] = ol
E adding n T(n(i,j) to Eebw” where Tn(i,j) T (mn(i,j)/m)

the unknown function symbols in oW occurring in this terﬁ are not
substituted by "-" iff they already occur in t*. Now all remaining for all wed",
unknown function symbols in £b rsp- tbij are indexed according to
their position in tb rsp. tbi,j‘ Thereby in tbi,j every index gets .
the prefix (i,3j). The set of indices islNe, where me = NU{(i,j)| _ g W

&,
ie{1,...,N}, j€{1,...,oi}}. ingd

- other equations in I are added to Zebw unchanged.

_ ot W * _ *
= {p, /v€®", nE N_}, W,og = {wn[wew, n€ me},

Example {cont.): .

\ - The partially defined mapping ind'| M’ x {1,...,N
All rewriting trees eb' and eﬂ; . are finite. Thus we know the o P . Y ‘ pping ) e y N} — I computes the
v : extension of the indices with the aid of the finite initial trees

whole structure of all of them. The rewriting trees which are

tb rsp.‘tbi 5 Thereby the rightmost occurrence of a pair

modified and indexed are ’

i 1 (i,j)€ Ne\ N in an index n indicates in which tree tbi i we have
eb T (=) ' to compute the extension of n. ’
Example (cont.): From " we get I
eb” - ebw )
3,1 1 - 1.1
(e (vy)=id (w7 )+,
1,12
. | m(l,l)(v1)—¢(l,l)ind%(l,]),2)(v1)+91'_ Here the extensions of
7 w3(v )=¢4 (v ,w3'1)+9 - the indices are trivial.
g 1)1 (=) n' 1 ni*"1""n 1 ,
’ w3'1=v - S0 we write them
. n 1 5 41 : explicitly.
8 = !
0%y 1)1 (-0 O (Vqrva)=ey (Vyrvpewy " )4y
T, . 4,1_ 6
Lebw® 9 . Wa' Ten (s, 1) (V2)
S : 7 =
o (=== T On (VyrVarV3) =V,
(4,1)11 6 7
¢ (Vy)=e_,(v,)+0,
. on (V1) =0g; (vyney ' ) 4ay
7.1
: | W =v
The reader may construct the other trees. 8 & ! 9 8.1
, ' ; - o, (Vyrvy)=e (Ve vy ,w ' )+s’2.i
Now we define an infinite system of eguations Eebw associated with : : n 8 1 ?0 . n
L. Again we assocciate rewriting trees with Eebw  which all have g wn’ =“)):1(8,1)(".2) ;
the same structure as the corresponding rewriting trees of I. f wg(v1,v2,v3)=v3+ﬂ1 :
. 10 _ 3 ;
¢n (V1)“¢nﬁv1)+n1

*
\ nEINe
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We now construct an idexed rewriting tree for zebw which 1s equal

to the rewriting tree for I except for the indication of the symbols
from ¢W and the local variables. Therefore we call it eb too. For
every local wvariable wi'j € Wi g ve construct an indexed rewriting
tree ebn(l, i, except for the indication

of symbols from @ and the local variables. We have to distinguish

ebi,j and ebn(i,j)

X Whlch is equal to eb

carefully!

. s T
Example (cont): The indexed rewriting trees to Zebw and to the

local variables have the feollowing form:

eb”: ®1(V1)
' 1,1

idj(w )
il 2
‘ : v.)
(1,1) ‘;’g:,:)‘ 1
T(x,n)z(v1)
4 3,1
f(l 11 Y, ! .
5 3,1 1
f(l,:)lll(Vl'w(l,l)l'w(l,l)ll’
w4 1
(1,1)11
Tr L
Ebn(B,l)' vy , BENN
b i 60, L\ (v,) n€ N
n{4,1)° Tn(s,1) ’
?n(é,l)l(vz) ;s
8
tnl4, D2 % (4, 1)1 ..
9 _ 7.1 b
Tn(&,l)lll(VZ'wnEA,l)l'wn(A 1)11)
n(4,1)11
T »* *
m . 10 , *
®Pa(8,1)° n(s,1) (V2) , DE ]
3
‘Tn(a,l)l(vz’
¢4 (v w3 1
‘ *n(8,1)11'V2'"n (8,1)1)
5 ' 3,1 4,
Tncs*‘)lli(v ¥a( 8,l)l’wn(8 DIIL
w4,1 .
n(8,1)11
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Now we take an arbltrary finite initial tree of eb. For all- eb J
I

we take an arbitrary finite initial tree of eb, .. These trees are

i,3
. respectively. The set of all these trees

called eeb and eebi’
F = {eebl}u ) {eebi j} is called a forest for the 8SG I.
¥

ie{1,...,N}
jelt,var0y}

The number of all nodes of eeb and all eebi

r
We deflne a derivation ————> on L ebw depending on a forast F  and
a monotone mapping k| W ——f> N that gives us the number ob allowed

is denoted by

open, i.e. not finished, supporting computations. - A supporting
computation has to be opened, if a local variable has to be
solved. - Let be mn€¢?nd with n=n'(i,j)n" or n=n", n,n'€ m:,

n"e N*. .If n"€ eebi’j rsp. n"€ eeb and the number of open supporting
computations (i.e. the number of occurrences of elements of

IN.\N in the index n) is not greater than < ([ [F] 1), then o will

be expanded. Otherwise, ®, is rewritten by §i. The structure and the
guantity of the finite initial tree Ebi,j is transfered to ebn(i,j)
by the derivation 35?*’ ; 80 we call such a tree eebn(i,j)“
Now we will define, what we mean by.sayiné a local variable is
solvable:

Let I, and F,k be glven, let be wn’:J € W,
arguments t1,...tp EM(FUWU@ na' VYW, nd) '
1ff there exists téM(FUW VUW d) with T zi'j)(t1,...{tpi/v1,...,v )

0.
357? t and t(lt(w)/w)EM(FUW V) exists. A term

w; may have the

1nd :
1,37

wn is called solvable
i

lt(w;'J) = F(lt(w)/w) is called solution term of wi’j. If we can
give lt(w;’j) explicitly, we say that w;'j is solved.

A solution of a local variable mey depend on scolutions of other
local variables. Given F and k the following two ‘lemmata and

the theorem show that all occurring local variables are solvable.

Lemma 1: Let X ebw’ F and « be glveng @ 6¢ na may have an occurrence

in eeb(n) and all arguments of m may be terms, in which no
W

we®1nd has an occurrence. Also unknown function symbols which

had to be rewritten to generate eeb(n) from ek, may have only terms

as arguments in which no wEand has an occurrence. Then all local
variables wn'3;36{1,n..,0 } of m are solvable.
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Lemma 1 is proved by induction on the length |n| of n. Induction

IF1 1.

start and induction step are proved by induction on x{

Lemma 2: Let n€eeb be the greatest node w.r.t. to lexicographic

ordering in eeb. Then for all Q;E®?ﬁd having an occurrence in

eeb(n) all local variables w;'J are solwvable. ﬂf; .

Outline of proof: We vary eeb(n) stepwise: In eeb(n) there exists a

supporting computation

w; which satisfies all premises of Lemma 1. After rewriting w;

by the term which is generated from w; by Feo ! another unknown . - ) if
r L "
function symbol satisfies the premises of Lemma 1 or there is no N
other unknown function symbol of Q?nd in eeb(n) anymore. In the
last case Lemma 2 is proved.
From these two lemmata we get the %
£
Theorem: All local variables with an index in eeb are solvable. Fg
. : Eel
A
Outline of proof: Let n€ eeb be the greatest node w.r.t. to lexio=- ¥

graphic ordering. By Lemma 2 all local variables of all wie@?n

)

{,ns,1m

1,_
TV
7.1

3
lt(w(
{w
S I)1(B,1)
5,1 :
(1,004, 1)1

{1,110 H4,

Q=lt(w

T

10
i

]

7.1
e

m

) €el | 1y s,)

N\

8,1

7

i

3

Faona o Yoan Y onen Y Lhnis, D

ld,1

1 )
N4, 10

r
Ll

jump back.

8
1t(w(I

¥ (L1, N

9
1
1J1|)

; ISPp.

r
1)

1uwﬁ
m

1,
1 1

+
>

{1,1) 1

4,1

d E
occurring in eeb{n) are solvable. Therefore we may substitute ;E
the unknown function symbol that generates eeb(n) by a term in ﬁ,:h:;
which all occurring local variables are solvable. This term is = %;"Eiﬁf
generated from eeb(n) by 351<> . We now remove n from eeb and Y ?} 3 é
’ ) = = =
we have a smaller tree eeb'. This can be repeated until we have a Q_ wﬁrjimg
tree that only consists of it's root. b g \ é?¢949
Y e
Example (cont.): Let be eeb" = eb" and for all i,3 let be FE
. o £
eebz 3 = ebI 5 Then 3 is determined. Let k" be the constant g o
r r = —~
mapping k' (m) =2 for all m€ N. We write ¥ and x instead of =5 ~-=
T oom ' $ <=
F and k . Y
There is only whr? in eeb™. To solve w '’ we "Jump" into the tree 'S F
T 1,1 . . o -
eeb(1’1). The root of eeb(1’1) is T3 4y- So the first supporting = & 2 %
computation is opened: % = £ 2
T‘i '1 _ 2 ( } 3 * 4’1 - NB..-::-:’Q;:\:S. :mef;
(1,0 20,0 TR 0u, 01 ) B v, 110 iﬂ
T . 3,1 4,1 °
I b ' 4 ]
n ee (1,1) the local variables w(1'1)1 and V1,111 haveloccurrences, g
. 3,1 . <
The solution of w3! is trivial. We j i 7 ' g
(1,1)1 ® Jump into eebyy 4yq(3,q) and %

. - 4,1 . . . "
get vy as solution ?erm. To solve w({,1)11 we Jump into :

eeb
w1(v1)
¥

ia

lt(w1’11mlt(wa
— means 37:? , ==» means jump into eeb"
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m
eeb 1 4y19 (4,1}

3,1 7 - [
e, 1104, 1) YA, 11 e Ca, 118,11, NVER YA, D1t |

6 3,1 8,1

- . 7,1
In eeb(1 1711 (4,1) the local variables w(1 1)11(4,1)1 and

8 1 7,1
(1 1711(4,1) 11 have cccurrences. The solution of w(1 1)11(4,1)1

3,1
is simple: We jump into eeb(1 1511(4,131(7,1) and we get w(1 1)1

7.1
for which we know the solution term. Thus 1t (w(1 111 (4, 1)ﬂ

8,1

V.l.

To sclve w(1 1911(4,1)11° we jump lnto eeb(1 111¢4,1)11 (8, 1)rnis root is

10 7,1
w(1 1)11(4,1)11(8, 1)(w(1 1)11(4, 1)1). Now the number of occurrences

of elements in N\ I¥ is greater than k(| |F11)= 2. so by definition

10

7,1 —_
fEe e, 1,1, n YA, nne.n? F3 %
1

8, . 8,1
already the solution term of w(1 1911(4,1)11° lt(w(1 1)11(4 1)11) 91.

{2 That is

Now we have to complete the supportlngcaqmuﬂlmuofv%1 ”11.1t@%11)1ﬂ =

8,1
lt(w(%'1)11(4'1)11) = 91.Furtheron,we have to complete the supporting
computation of w1ty = lt(W%{11)11) = Q,. Thus wirl is
. ¥
solved.

Interpretation and semantics of a SSG

Let be a distinguished S8SG. By Eeb we assign the infinite 858G on
M(FUWU@ b,VUW ) associated with I. In Zeb all unknown function
symbols are only indicated by indices of eb, i.e. by Zeb no

supporting computations are opened.

A discrete interpretation (I, F, «¢) of a infinite 858G Z is given by

- a discrete domain, i.e. a partially ordered set (DI,_) with
XEy iff x = w or x = y where wEDI is the smallest element of DI'

a set F, = {fI: Dg(f) —> DIIfEF, fI monotone w.r.t. £},
- a forest F '

- a monotone mapping k| N —» N witﬁ [#] ] — < (1% ]).

We define the following set of local variables

wWt) = {wéW bltEL(Z L © ) and there is a t' with

valy o (Tgpro') (V1) =
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1

w1(v poea V) ————5 t -m——% t and w occurs in t'}.
1 p .
1 eb eb 1
Let v[V —_ DI be an environment, v(vk) = vk’ vooo= (v1,.,., vp1),

A valued interpretation (I,ng,v) of Eeb is a mapping

(I,gﬂk,v)]M(F,VUWeb)-_ﬁb D. defined by

(I,F,k,v)(Q) = w
(I,Eix,v)(vk) = Vi, KE(T,.ees pq)
‘ 1
(1,F,6,v){w) = val, 1t(w)(v')

o~ S

w, 1f there is a t , m€{1 .. p{f)} and a
J
wn' €W, with wn’J occurs in t  and ngeeb

(1 §§'m~w(f(t1,...,tp(f))) = { w, if there is a wn’J EW(f(t1,...,t (£))) with

néeeb and Val lt(w ’3) (v ] = w

fI((I,RﬁK,u)(t1),...,(1,?ix,v)(tp(f))) otherwise

Y

We have to explain Val t(u ) with teM(FuY,V):

Having a rewriting system L' that is constructed by taking all
equations of the unknown function symbols of V¥ from I, I' is a
rewriting system without local variables. Then we define

'ValI t(v1) = ValI(E',t)(v1)-

Now the following theorem holds: é

Theorem: Let I be a SSG, I, the associated infinite SSG,
(I, 37K v} a valued 1nterpretatlon of T eb® Then for all

t,s€L(L eb’ @ )
If(I,%,«,v) {t) + w and (2,F k,v) (s) + w, then
(I,é"’,K'\)) (£) = (I;?;K;\)) {(s).

With this theorem the semantics of én infinite 858G zeb is defined:

The semantics of an infinite S8G zeb is a mapping

1 .
(£pr0 ) [Df1 —> Dy with

4, if there is a teL(I_, ,p') with
(I,Fk,v}(t) =4, d # o '

ValI,?}K

w  otherwise
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.“Td aefine the semantics of a SSG I by means of the semantics of the

associated infinite S5B5G Zeb the following is shown.

Let I be a 5S§G, T the associated infinite SSG,kgﬁ &' forests,
eb _
K,k' monotone mappings, I an interpretation. Then the following

holds:

1) If F %', then «(||%]||) £ «(} {3

2) If x £ k', then Valy o (T, 0 )EValy o\ (Ty,0)
3) 1f Fe¢F', then ValI’E;K(Eeb’w1)E ValIP?,'K (Eeb,m1),
where $¢%' iff eeb ¢ eeb' and for all i,] eebi‘.seeb!

P l:j.

n

The semantics of a SSG I is a mapping ValI(2,¢1) DI1 —_ DI with

d, if there are 37and K, so that
1 1, _ 1 1, _
Val (Z,0 ) (V') = valy o o (Zgpr0) (V) =&, d $w

w, otherwise.
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Nicht-deterministischer Lambda-Xalkiil

Erich Meyer

Institut fiir Informatik, Universitidt Kiel

Im klassischen Lambda-Kalki{il reduzieren die Terme (Ax.x)u
zu u und (Ay.x)u zu x. Wir wollen den Kalkiil so erweitern,
daBl es in ihm einen Term gibt, der sowohl zu u als auch zu X

reduziert.

Wir erweitern dazu die Termmenge, indem ﬁir zulassen, daB
Variable, die unmittelbar einem Lambda folgen, geklammert
werden dirien. Die Bedeutung einer geklammerten Variablen
wollen wir so festlegen, daf sie einerseits wie eine unge-
klammerte wirkt und andererseits wie eine Variable, von der
tiberhaupt keine Bindung ausgeht.

Betrachten wir den Term (A(x).x)u; er soll also einerseits
die Bedeutung von (Ax.x)u haben und andererseits die von
(Ay.x}u.

1) (A (x) .xJu

VRN

u S

Welche der mdglichen Reduktion genommen wird, soll nicht
determiniert sein.

Nehmen wir den Term (Ax(x)}.x)uv. Er soll einerseits die Be-
deutung von (Axx.x)uv haben, welches zu v reduziert, und
andererseits die von (Axy.x)uv, welches zu u reduziert.

(2) (Ax(x).x)uv

V/ \u

Wir kénnen die Wirkung von A(x) auch so auffassen, dafl 2(x)
nicht die Bindung von einem weiter auBlenstehenden Ax oder A(x}
an ein weiter innenstehendes x abschneidet. Eine Variable soll
also im Unterschied zum klassischen Kalkiil mehrfach gebunden
sein kénnen. In (2) ist x an Ax gebunden, welches zur Einsetzung
von u fithrt, und an A(x), wodurch v eingesetzt werden kann.
(2) stellt also eine nicht-deterministische Alternative von
v und u dar.

Betrachten wir den Term (A (x)(x).x)uv, so kommt gegeniiber (2)
noch die Méglichkeit hinzu, filir x garnichts einzusetzen, wie
es schon bei (1) der Fall war. '

(3) (A(x) (x).x)uv
VAN
v u X

Nach dem bisher Gesagten ist die Bedeutung eines Terms, wie
(A (x).xx)u noch nicht vollsténdig bestimmt. Wirden wir X(x)
zum einen durch Ax und zum anderen durch Ay ersetzen, so er-
hielten wir die Reduktionen zu (uu) und zu (xx). Dieses ent-
spricht aber nicht ganz unserer Intention. Wir mdchten die
Einsetzungen fiir jedes x unabhingig von den Einsetzungen fiir
jedes andere x ausfiihren kdnnen, so daB wir auch zu (ux) und
zu (xu) reduzieren kénnen. Dieses erreichen wir, wenn wir von
(AM(x) .xx)u zunidchst zu (A(x).x)u((A(x).x)u) lbergehen. Wir
benutzen also eine analoge Regel zu der im klassichen Kalkil
zulidssigen Ableitungsregel:

(4) (Axq.ooX - PQIRy.. Ry reduziert zu

(Ax1...xn.P)R1...Rn((lx1...xn.Q)R1...Rn)

Als zul#ssig sehen wir eine Regel an, wenn sie Terme in solche
der gleichen Bedeutungsklasse iberfihrt. Wir wollen die Reduk-
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tionsschritte von (A(x).xx)u noch einmal zusammen darstellen
durch

(5) (A (x)..xx)u

l

(AxX) . x)ul (A (x).x)u)

SN N

(uu) (ux) {xu) {xx)

Um unsere Uberlegungen verallgemeinern zu kénnen, fehlen uns
noch weitere Details. Wie sieht zum Beispiel die Reduktion
von Ax.{A(x)y.xx)y aus? Hier treten zwei Schwierigkeiten auf:
zum einen haben wir bisher nur reduziert, wenn flir jeden Para-
meter ein Argument vorhanden war, zum andern wiirde man einen
Bindungskonflikt erhalten, wenn man y fur x einsetzte.

Zunichst eine Zwischenbetrachtung:

Im klassischen Kalkiil muB man gebundene Variablen umbenennen
kénnen. Zum Beispiel darf der Term (Axy.x)y nicht zu Ay.y re-
duziert werden. Normalerweise geht man zu einem Term (Axz.x)y
Uber, den man dann zu Az.y reduzieren kann. Die Umbenennung von
Variablen kann man durch eine eingeschrénkte inverse n-Reduktion
verméiden, indem man von (Axy.x)y zu Az.(Axy.x)yz Ubergeht.

Ein Term der Form (AxT...xn.x)P1...Pn 1l4Bt sich mit den folgenden
klassisch zuldssigen Regeln ohne Umbenennungen reduzieren:

(6) (lx1...xn.xn)P1...Pn reduziert zu Pn

(7) (kxT.;.xny.x)P1...PnP reduziert zZu

(Ax-’ *r @ uxnox)P-‘ *® .opn
Wir gehen also davon aus, daf man mit Hilfe der Regeln (4),
(6), (7) und dér eingeschrinkten inversen n~Reduktion einen

klassischen Term mit Normalform zu dieser reduzieren kann. Fiir
den Term {Axy.x)y erh#lt man also die folgenden Reduktionsschritte

® (AXy.X)y

|

Az, (Axy.x)yz

lz.(lx.k)y

!

AZ.Y

Kommen wir zuriick zur Reduktion des nicht-klassischen Terms

Axo (A(X)y.xx)y .

Wenden wir das Analogen zur eingeschridnkten inversen n-Reduktion

an, so erhalten wir ixz.{(A(x)y.xx)yz. Diesen Term kénnen wir =

analog zu (4) reduzieren und erhalten Axz. (A(X)y.x)yz((A(X)y.x)yz).
Die Teilterme (A (x)y.x)yz reduzieren wir analog zu (7) zuerst
zu (A(x).x)y und dann wie in (1) zu y und zu Xx.

Insgesamt erhalten wir
(9) AX.(A(xX)y.xx)y
Axz. (A (x)y.xx)yz

Axz, (AX)y.x)yz{((A{x)y.x)yz)

SN N

AXZ. Yy AXZ.¥yX AXZ.XY AXZ . XX

Nachdem wir nun alle Reduktionsmdglichkeiten beispielhaft ange-
wandt haben, sollen sie nun systematisch und allgemein darge-
stellt werden.

Wir gehen aus von einer Menge VAR von Variablen und einer Menge
KONST von Konstanten. Die Mengen sollen nicht leer sein und die
Zeichen ( , ) und A nicht enthalten und sie sollen disjunkt sein.
Die Konstanten nehmen wir hinzu, damit wir spédter Einsetzungen von
Termen in Terme beschreiben kdnnen. Insbesondere sollen Konstanten
nicht gebunden werden k&nnen.




Definition 1

TERM ist die kleinste Menge von Termen, filir die gilt:

(i) VAR + KONST < TERM
(ii) seien P,Q € TERM, dann ist (PQ) & TERM

(iii) sei P ¢ TERM und x e VAR, dann sind AxP, A(x)}P e TERM .

Um die Terme tibersichtlicher schreiben zu kbnnen, fihren wir
einige Notationen ein; dabei werden wir Terme durch die Buch-
staben P, Q, R, S und T bezeichnen und Variable und geklammerte
Variable durch X, Y und Z.

Notation

Statt AX1...Aan und AX1...AXH(PQ) schreiben wir
(AX1...Xn.x) bzw. (AXT...XH.PQ).

Statt (...(PR1)...Rn) schreiben wir (PR1...Rn).
Ferner lassen wir Zullere Klammerpaare fort.

Auf den Termen wollen wir nun Reduktionen definieren. Sei p
eine solche, dann wird die p-Reduktion eines Termes P zu
einem Term Q durch (P,Q)€p dargestellt, also p als Relation
aus TERM x TERM aufgefalt. ’

Definition 2

81 ist die Relation aus TERM x TERM mit

g1 = {( (AX1...Xn¢PQ)R1.;.Rn,
(AXq v+ X PIRy - oRO (0% o X QR R D)

Die B1-Reduktion ist analog zur Regel (4) gebildet.

Sei (P,Q)€R1 und seien uPv und uQv Terme, wobei alsc u und
v Worte aus (VAR+KONST+{(,),A})* sein missa, dann kénnen wir
den Ubergang von uPv zu uQv als eine von B1 bewirkte Reduktion

f
auffassen. Um dieses allgemein formulieren zu konnen, definie-
ren wir fiir jede Konstante a eine Einsetzungsfunktion ka mit
‘der Wirkung, daf xaf(uav,P) = uPv ist.

Definition 3

Sei a e KONST, dann ist
ka- ¢+ TERM x TERM - TERM
die Abbildung mit

(i) ka(a,S) S

(ii) «a(p,S)

p , falls a # p und p-e VAR + KONST ist.
(iii) ka(xXP,S) = AXka(P,S)
(iv) «xa((PQ),S) = (xa(P,S)«xa{Q,S))

Mit Hilfe der Einsetzungsfunktionen wollen wir zu jeder Relation
o aus+TERM x TERM eine Einsetzungsrelation xp definieren.

Um beim Beispiel zu bleiben:uPv kB1-reduziert zu uQv, wenn

P zu Q@ Bl-reduzjert.

DPefinition 4

TERMa {T e TERM | a kommt in T genau einmal vor}
Sei p ¢ TERM x TERM, dann ist

kp die durch p érzeugte Einsetzungsrelation aus
TERM x TERM mit

kp = {(xa(P,Q), xa(P,R)) | P ¢ TERMa, (Q,R) € p }

Im klassischen Lambda-Kalkiil gilt das CHURCH-ROSSER-Theorem,
das besagt, daf wenn man einen Term P zu Q und R reduzieren
kann, man diese zu .einem Term S reduzieren kann. Wir wollen
sagen, die Reduktion habe die Diamanteigenschaft.




Definition 5

Sei SET eine Menge und p ¢ SET x SET eine Relation.

p hat die Diamanteigenschaft genau dann, wenn es zu (P,Q)

und (P,R) aus p stets (Q,S) und (R,S) aus p gibt.

Ist p reflexiv und transitiv und hat p die Diamanteigenschaft,

so heit p ein Diamant.
p* ist die reflexive und transitive Hiille von p.

Satz 1

(kR1)* ist ein Diamant.

Die Komplikationen, die beim Beweis des Satzes auftreten,
macht das folgende Beispiel deutlich:

Beispiel
(Ax. (xy.PQ)R)S

(Ax. (Ay.P)R((Ay.Q)R))S.
(Axy.PQ)S(( x.R)S | L B1

81 \\\N (Ax. (Ay .P)RIS((Ax. (AYy.Q)R)}S)

/

(Axy.P)S((Ax.R)S) ((Axy.Q)S((Ax.R)S))

Die Pfeile bedeuten 81- oder kB1-Reduktionen, abgesehen vom
Pfeil rechts unten, wo zwei B1-Reduktionen parallel auf ,
Teiltermen ausgefilhrt sind.

Bestehen fiir eine Relation p Flinfecke (die Terme im Beispiel
bilden ein solches), so kann man im allgemeinen nicht auf die
Diamanteigenschaft von p* schlieBen, wie durch die Skizze ange-
deutet sei. | '

/\

AN

C' — D?

Un die stdrenden Fiinfecke zu beseitigen, definiert man eine
¢ -Reduktion, die im allgemeinen mehrere B1-Reduktionen zu-

sammenfalt.

Definition 6

@ : TERM -+ TERM ist die Abbildung mit
@((AX1,..Xm.P)R1...RmQ((AXT,D.Xm.Q)R1.°.Rm)°

Q(?).= falls T = (XX1...Xm.PQ)R1...Rm...Rn

T sonst
¢ c¢ TERM x TERM ist die Relation mit

© = {(5,T) | &(S) = T}

Lemma 2
Es ist filr m < n

@((Axi...xm.p)n1...Rn) = ®((AX1..,Xm.®(P))R1...Rn).

Betrachten wir den Ausgangsterm des Beispiels (Ax.(Ay.PQJ)R)S,
so kdnnen wir ©®({Ax.(Ay.PQJR)S) und (Ax.®((Ary. PQ)R))S bilden.
Auf grund von Lemma Z besteht dann das Diagramm

(Ax. (Ay.PQ)R)S
Ky
G (Ax.o((Ay.PQ)R))S
@
o ((Ax. (Ay.PQ)R)S)

Den Beweis von Lemma 2 kann man durch vollstéﬁdige Induktion
ttber die Stufe von P fiihren. Die Stufe eines Terms ist die
minimale Anzahl der Rekursionsschritte, die zur Berechnung
des Bildes bei © bendtigt werden, wobei in jedem Schritt élle
Vorkommen von @ einmal auszuwerten sind.




In dem Beispiel hatten wir die Reduktion von

(Ax. (Ay.PIR)S((Ax. (Ay.QJR}S) :zu

(Axy.P)S((Axx.RIS) ((Axy.Q}S((Ax.R)S))

als von zwei parallelen Bl1-Reduktionen auf Teiltermen

herrithrend bezeichnet. Wir kénnen die Reduktion durch
zwei Einsetzungen in den Term (aTaZ) darstellen:
K&Z(Ka1((3132), (Ax.(Ay.PJR)S ), (Ax.(Ay.Q)R)S )

reduziert zu
Kaz(KaT((a1a2), (Axy.P)}S((3x.R)S) ), (Axy.Q)S((Ax.R)S8) )

Ailgemein haben wir

Definition 7

Sei p « TERM x TERM, dann ist wp die Relation mit
mp = {(xa (...xa;(P,8{),...8.), va (...xa (P,T{),...T})) [

P ¢ TERMa;, (5;,T;) € p flr, alle i 1 u {(pP,P)]|}

Satz 3

mp hat die Diamanteigenschaft.

Zum Beweis dieses Satzes benftigt man das Lemma 2 .
Mit Hilfe von Satz 3 kann man dann Satz 1 beweisen.

Als nichstes wollen wir die eingeschridnkte inverse n-Reduktion
definieren. Da sie die Wirkung einer impliziten Umbenennung
von Variablen hat, wollen wir sie, wie im klassischen Kalkiil
tiblich, mit o bezeichnen.

Zuvor milssen wir noch definieren, wann eine Variable nicht frei
in einem Term vorkommt. Statt "x ist nicht frei in T", werden
wir x ¢ T schreiben.
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Definition 8

Fir (Q,T) e VARXTERM ist x ¢ T genau dann, wenn eine der
folgenden Bedingungen erfiillt ist.

(i) T = (RS), x ¢ Rund x ¢ S

(ii) T AxS
(1i1) T = AYS , x # Yund x ¢ S

(iv) T & VAR+KONST und T # x.

Nach dieser Definition ist zum Beispiel x ¢ (Axy.x)y aber nicht
x ¢ GOX)y.x)y

Definition 9

TERM x TERM ist die Relation mit

= {( (Ax.‘c-a‘XnY.]occYm-P)R-I---Rn',

Az.(AX1...XnY1...Ym.P)RI...an )
z ¢ (AX1...XnY1...Ym.P)R1...Rn }

ig]

.Es sind also ((Axy.x)y, Ax.(Axy.x)yx) und

((AX)y.x)y, Az.(A(X)y.x)yz) aus o,
((AX)y.x)y, Ax.(A(x)y.x)yx) aber nicht.

‘Satz 4

xa und mo haben die Diamanteigenschaft.

Satz 5

(ka U xB1)* ist ein Diamant.

Der Beweis von Satz 4 ist leicht zu fithren. Zum Beweis
von Satz 5 braucht man den

Satz 6

{(ma U mp)* ist ein Diamant.




Zum Beweis_dieses Satzes braucht man das

Lemma 7

Seien (P,Q) € ma und (P,R) € 7o ,
dann gibt es
(Q,S) £ mp , (R,T) € 7o und (T,S) e mp .,

Dieses Lemma behauptet alsoc das Bestehen spezieller Finf-
ecke. Zusammen mit der Diamanteigenschaft von 7o und von

mg kann man dann diese von (mo U wy)* beweisen.

Lemma 7 demonstrieren wir an zwei Beispielen:

(1) {(Axy.xyl)uv
c./ T
. (Axy.x)uv{((Axy.y)uv)
(Az.{(Axy.xy)uz)v l "o .
. (Az.{xxy.x)uz)v((Az. (Axy.yJuzlv)

/

(Azxy.x)v((Az.u)v) ((Az.z)v) ((Azxy.y)v((Az.u)}v) ((Az.z)V)

(2) (Axy.xy)uv
o IZ/// T
{(Axy.xJuv((ixy.yluv)
(Az.(Axy.xy)z)uv l o
" \\\\& (az.(Oaxy.xdzyuv{(hz. (Axy.y)z)uv)
T

(Azxy.x)Ju((Az.z}w)v((izxy.y)u((Az.z)ulv)

dabei sind o e Ta und T £ TP .
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Wir bendtigen noch die Reduktionen von Termen der Form
(AX1...Xn.x)R1...Rn. Erst durch diese wird der Kalkiil zu einem
Einsetzungskalkiil, denn durch die B1-Reduktionen wurde nur eine
Verteilung oder Weitergabe von Parametern und Argumenten auf
die Teilterme vorgenommen.

Definition 10

B2 und B3 sind die Relationen aus TERM x TERM mit
B2 = { ( (AX1.9.XnX.x)R1,..RnR , RJ |

O<n, X=xoder X = (x) }
B3 = { ( (lxi...xnx.x)R1...RnR ,

(AX1...Xn.x)R1...Rn) } 0<n, X=yoder X = (x) }

Im folgenden bezeichnén wir mit TERM' die Menge der Terme,
die keine geklammerten Variablen enthalten und entsprechend
definieren wir

Bi' = Bi N TERM' x TERM' und o' = o N TERM' x TERM' .

Betrachten wir die Reduktionen nur auf den klassischen Ter-
men, so erhalten wir den

Satz 8 (CHURCH-ROSSER-Theorem)

(ko' U kB1' U kB2' U kR3')* ist ein Diamant.

Stellen wir noch einmal zusammen, was wir insgesamt zur De-
finition des Kalkiils ben&tigt haben:

Definition 1 ergab die Menge der Terme. Die Einsetzungsrelation
war durch Definition 4 gegeben; dazu bendtigen wir die Ein-
setzungsfunktionen ko aus Definition 3. Die R-Reduktionen

waren durch Definition 2 und. Definition 10 gegebén. Die a=-Re-

- duktion war durch Definition 9 gegeben; dabei brauchten wir

die Relation "kommt nicht frei vor in'", die durch Definition
8§ gegeben war.
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Zum SchluB noch einige Bemerkungen:

Die Reduktionsstrategie, die wir verfolgten, bestand darin,

nur Terme der Form (AXT...Xn.P)R1...Rn zu reduzieren. Um

dieses zu erreichen, wurde die a-Reduktion neu definiert.

Sie gestattet einerseits die Umbenennung von Variablen, soweit '
sie nicht geklammert sind, und andererseits die Ergidnzung fehlender
Argumente, also den Ubergang von (kX1...Xn.P)R1...Rm zu
AzI...zl.(AX1...Xn.P)R1...Rmz1...zl mit 1l =n -~ m.

Es stellte sich heraus, daB die Schwierigkeiten beim Beweis

des CHURCH-ROSSER-Theorems fiir die klassischen Terme nicht von

den Einsetzungen also den B2- und R3-Rzduktionen Lerrlhrten,
sondern bereits beim Verteilen der Parameter und Argumente,

wie es die B1-Reduktion bewirkt, auftreten.

In deh Beweis der Diamanteigenschaft von (ko U kB1)* geht

nicht ein, ob die Variablen total oder partiell gebunden

sind, also ob in den Termen der Form (AX1...Xn.P) die X,

Variable oder geklammerte Variable sind.

Diese Erkenntnis hatte urspriinglich zu der Idee gefilihrt, den
klassischen Kalkiil zu einem nicht-deterministischen in der
dargestellten Form zu. erweitern. '

. e
\\Qg‘:*\ AN ALGEBRAIC SEMANTICS FOR DATA-DRIVEN (BUSY) AND /

DEMAND-DRIVEN (LAZY) EVALUATION
AND 1TS APPLICATION TO A FUNCTIONAL LANGUAGE *)

Bernhard Mgller
Institut flr Informatik der TU Minchen
Arcisstr, 21, D-8000 Miinchen 2, Fed. Rep. Germany

1. INTRODUCTIOM

In recent years ideas on "non-conventional" machines and languages have become
more and more important. The aims are, on the one hand, to move towards a more
fiexible use of paralielism, and, on the other hand, to allow "unbounded ob-
jects" in such a way that certain problems can be solved more easily in terms

of these objects while the solution remains algorithmic. These two concepts

are closely related to the techniques of data-driven (or busy) and demand-driven
(or lazy) evaluation (see e.g. /Treleaven et al. 82/ for these notions).

The present paper shows how the notion of an equationally defined continuous
algebra can be employed for deriving these two forms of operational semantics
for recursively defined objects from the least-fixpoint-semantics of recursive
definitions.

The general plan used is similar to the well-known techniques for evaluating
recursively defined funtions, viz. repeatedly replacing certain occurrences of

‘the recursively defined identifiers by their'definitions and subsequent simpli-

fication.

By using equationally defined continuous algebras whose equations can immedia-
tely be used as term rewriting rules, the simpiification rules are correct by
constructien. Moreover, a syntactic criterion (safety) guarantees that the re-

writing system obtained is confluent and noetherian so that finding normal
forms is uncritical. The algebraic approach permits a coherent presentation

of mathematical semantics (satisfaction of equations in an algebra) and operati-
onal semantics (deductions using equations as term rewrite rules). Finally, the
algebraic approach allows a uniform treatment of data and control structures:

+) This work was partially sponsored by the Sonderforschungsbereich 49, Pro-
grammiertechnik, Munich, Fed. Rep. Germany




This is shown by a safe equational specification of a functional programming
language & la /Backus 78/; the techniques developed in the paper provide a
mathematical as well as lazy and busy operational semantics for it. Detailed
proofs of the theorems and lemmas are contained in /Moller 82/.

1 am grateful to F. L. Bauer and M. Broy for a number of valuable remarks.

2. CONTINUOUS ALGEBRAS -

We call a partially ordered set N complete if it has a least element and
every directed subset M c N has a supremum UM in N, If N and P

are partially ordered, a mapping f : N =+ P is called monotonic if for

x, y €N x <y implies f(x) <f(y). If N, P are complete, f 1is called
continuous if for all directed M <N Uf(M) exists and f(LIM) = LI (M).

A continuous mapping is monotonic, We quote the well-known fixpoint theorem
for continuous mappings {see e.g. /Manna 74/):

Theorem 0: Let M be compiete and f : M - M continuous.
(1) (Tarski) f has a least fixpoint.

(2) (Kleenge) The least fixpoint of f s lJ{fi(JJ c i e
where L is the least element of M and f°(L) := 4,
1y = f (e ).

T

Given a family (M1)1€I of complete sets, the direct product P := ier M4
consists of all mappings f : I - #Ei M, such that f(i) € M, for ie€l.
It is partially ordered by f <g iff f(i) <g{(i) for all i€ I. Under
this ordering, the direct product is again complete and for a directed set
GeP (LI G)(i)=Ufg(i):g€G. If T=1{,....,n we also write

My X o0 X Mn for P.

A signature (cf. /ADJ 77/) X = (S,F) consists of a set 5 of sort symbols
and a set F of operation symbols. Each f € F has a functionality
S1 % .. XSS With S1s +vos Sy S € S. If n=0 then f 1is called a

constant symbol.

Example: o = (Sos Fo) where S = {nat, sequ} and F consists of

0 :'~'gg§, succ : nat - nat,
() : - sequ, add : nat x Sequ - sequ .

Given a signature X, an ordered I-algebra A consists of a family (sA)S S

of nonempty ordered carrier sets sﬂ and a family (fA)IEF of operations such
A A
- g,
n

that A is a monotonic mapping from s x ,,, x s A dis called conti-
nuous if its carrier sets are complete and its operations are continuous. Homo-

morphisms between Z-algebras will not be needed in this paper.

Every ordered z-algebra A may be embedded into a continuous Z-algebra A”. The
construction used is the completion by ideals (cf. e.g. /Vuillemin 75/, /Nivat
76/): wlog, we assume that all carrier sets of A have least elements. An ideal
of a partially ordered set is a directed subset of it which together with an

(==}

element contains all smaller ones. Now the set sA consists of all ideals of
R and for ideals I s vaes In £h (I4s oovs In) is defined as the least ideal
containing fA(I1, cens In). It is straightforward to prove that A~ is indeed
a continuous X-algebra. A is embedded into A" by assigning to each element

the smallest ideal containing it.

A” has the property of being inductive (cf. e.g. /ADJ 78/): every element of a
carrier set is finitely approximable, i.e. it is the supremum of a directed set
of finite elements. Here, an element x of an ordered set N is called finite
if for every directed set D < N. x < UD implies x <z for some z € D. The
non-finite elements in an inductive algebra are called infinite elements or 1limit
points.

3. TERMS, VALUATIONS, INTERPRETATION

Let £ = (S, F) be a signature and X = {XS)SéS a family .of sets of variables.
Furthermore, 1et for each s € S -LS be a constant symbol of functionality - s
not contained in F. Then we define a family (WZ(X)S)
of sets (wrt. inclusion) which satisfies

ses s the least family

(1) XSSNZ(X)S for all s €5

(2) JE € WX(X)S for all s €5

(3) If f €F 1is an operation symbol of functiéna]ity Sy X ... XS =S

and t; € WZ(X),  (i=1, ..., n) then f(ty, ..., t ) € WE(X),.
1

The elements of the NE(X)S are called Z-terms {with free variables) of sort s.




Let [ = (_[_S)Ses be the least (wrt. inclusion) family of partial orderings on

the Wr(X), satisfying '
(1) 1oLt forall te NZ(X)S

(2) If tilgs.,t% (i=1, ..., n) then f{t,, ..., t )
i

for an operation symbol f of functionality s, x ... x S, = S

We construct an ordered r-algebra Wz(X) by defining SHZ(X) i= WE(X)S order-
) (s £ P F(Ey e, t). WE(X) ds called the
Z-term-algebra over x (cf. the notion of the free ordered magma in /Nivat 75/
or Tx(X) in /ADJ77/). For WZ(f) we simply write WZ,

ed by 4 and f

The completion wz(xf° of WE(X) can be interpreted as the algebra of finite
and infinite I-terms with free variables (cf. the free complete magma in /Nivat
75/ or CTZ(X) 1in /ADJ 77/).

. | ,
A valuation of X 1in a Z-algebra A is a mapping v : S€S XS ? €5 sh such

that v(x} € sh for x € Xs’ Let ‘VA be the set of valuations of X in A.
Because VA is a direct product of carriers of A we have

Lemma 1;: If A dis continuous then VA is complete.

The interpretation tlvl of a I-term t with respect to a valuation v of X
in a Z-algebra A 1is defined by

(1) If t dis a variable x then tlv] := v(x).

(2) If t is of the form f(t,, ..., t,) then
tlvl = fR(E, IV, L, g IVD).

4, TERMS OVER RECURSIVELY DEFINED OBJECTS AND THEIR MATHEMATICAL SEMANTICS

A system of recursion equations is a valuation e of X in WE(X)., Over a

Z-algebra A e defines a valuation transformer e, - VA - VA by

ep(vi{x) = e(x)Ivl.

Examplie: Let e be the syétem X = add(0, x) over XI,. It will be interpret-
ed as the recursion equation sequ x = add{0, x). For an arbitrary

valuation v in & ZIp-algebra A we have eA(v) X e addA(OA, v(x)).

Over Wio(X) we may take e ditself for v and obtain eNZ(X)(e) :

x = add(0, add(0, x}), 1i.e. the result of "unfolding” x once in e.
v}

Lemma 2; If A is continuous then ep is continuous.

Therefore, if A is continuous, by (1) of theorem 0 en has a least fix- é
point teal - We call Y the solution of e in A (cf. /ADJ 77/). |

Example: In Wy,(X)™ the system e from the previous example has as its solu-

tion the ideal generated by
L, add(0, L), add(0, add(0, 1)) ...)
which may be interpreted as the infinite term add{(0, add(0, add{0, ...))).

For a term t from Wg(X) and a system e of recursion equations we call the

pair r = (e, t) a representation and rA

by r- in A.

sz t[leAI] the object represented

Whereas this defines the mathematical semantics of terms over recursively de-
fined objects completely, we are now going to develop an operational semantics
for such terms from Kleene's approximation sequence as given in (2} of theo-
rem 0.

Let e be a system of recursion equations over Wz{X), A a continuous Z-

A to

every X € X This valuation is used to interpret terms with {not yet unfold-

algebra, .and QA € VA the valuation which assigns the least element of s

ed) var1ab1es form1ng t[QA] for some term t € WZI{X) means interpreting t
such that the varijables are considered as carrying no information,

For a term t € Ws(X) and a system e of recurision equations define tg := t,

tn+l 1= tn[e]; i.e. the 'ti evolve from t by repeatedly unfolding the de-

finitions of the variables as specified by e.

Lemma 3: tijepltl = [J{En[QA] :n giN}, 1i.e. the object represented by (e, t)

is the supremum of the interpretations of the to.

Proof: By induction on n one shows that tleh (v)} = t {v] for all valuations
v. Now the claim follows from the fact that !eAl = [j{eA[QA] n € N}

((2) of theorem 0) and lemma 2. o
Thus, a first operational semantics for a representation r_ = (e, tn) is giv-
en by Kleene's approximation process: |

(1) (Interpretation) Form En[QA] = ug.




~

(2} (Unfolding) Replace in t simultaneously all variables by their defini-

tions according to e, i.e. form tn+1 1= tn[e], and apply the process
to Posl °° (e, tn+1)'
Then I u, = m>n} = rA, the object represented by r in A.

Example: The representation (sequ x = add(0, x), x) over ¥ represents
the object add(0, add(0, add(0, ...))) of Wr . The t, and u
which evolve during Kleene's approximation process are

~

n tn , U,
0 X L
1 add(0, x) add{0, 1)

2 add(0, add(0, x)) add(0, add(0, L))

The u, are exactly the terms generating the ideal which is the sol-
ution of the recursion equation, o

If the carrier set of the sort of gn in A 1is a flat domain, i.e. if all
chains in it have at most two elements, then by the continuity of the operati-
ons involved there is & Ek’ k > n, such that Ek[QA] = %n[jeA:] and the
process can stop as soon as a maximal element is reached.

Since in the process gll_variab?es are unfolded, this method is also calied
full computation rule (cf. /Vuillemin 74/, /Manna 74/; see also the Herbrand-
Kleene-Machine in /Bauer, Wossner 82/).

This operational semantics still is somewhat vague as the interpretation step (1}
in general is not "algorithmic". In the next section a class of algebras is de-
fined for which this step can be made effective.

5. OPERATIVE ALGEBRAS

An equation over a signature I 1is a pair (ts, tz) of x(X)-terms of the
same sort; we also write t, = t.. A Z-algebra A satisfies the equation
ty =t if for all valuations v € VA tafv]) = ta[v].

Call a family < = (fs)ses of quasiorderings on the carrier sets of Wz(X)

T-compatible if [ < < and the operations of Wr(X) are monotonic wrt. <,

too. For a set E of equations let ¢ be the least {wrt. inclusion) z-coif-
patible family of quasiorderings on Wz(X) such that for all equations
(ty, tz) € E and all valuations v € sz(x) t V] <¢ ta[v] and ta[Vv] < ti[vl.

Theorem 1 (cf. e.g. /Bloom 76/, /Courcelle, Nivat 76/):

(1) The quotient algebra Wz(X)/< of Wz(X) by the congruence
induced by < satisfies E.

(2) If an ordered r-algebra A satisfies E, so does AZ,

Under certain restrictions the equation defining NZ(X)IfE can be used as term
rewriting rules. This will allow to make the interpretation step in the approx-
imation process effective.

The idea is that the set of operations is partitioned into "constructors™
which suffice for generating all elements of bm(X)/SE, and "extensions"”
which are defined essentially by primitive recursion over the constructors.
This is rejated to the criterion for sufficient completeness given in /Gut-
tag 75/. We-require.that every extension has certain "critical arguments”
which control the primitive recursion. They will allow a precise treatment
of lazy evaluation. Let us now formalize these notions.

tet £ = (S, F) be a signature and C, Z< F form a partition of F. The
operation symbols in C are called constructors, those in Z extensions.

We write C also for the subsignature (S, C) of . We want to impose
conditions on a set E of rI-equations under which every variable-free z-term
can be rewritten into a pure (also variable-free) C-Term unsing E.

A ZC-combination is a term of the form z(t,, .... tn) with an extension

z € Z and constructor terms t. € WC(X), 1in which every variable occurs at
most once.

Now let E “consist only-of equations (ti, tz) in which the t, 1is a ZC-
combination. Let E be unambiguous, i.e. no two left-hand-sides in E may
be identical up to a consistent renaming of the variables. For every z € Z
Jet the number of equations whose left-hand-side begins with z be finite.
Then "lej denotes the maximal height of terms occurring as the j-th ar-
gument of z in a left-hand-side in E (the height of variables is 0). If
Hzlly > 0 the j-th argument of 2z is called critical. E 1is called C-com-
plete for the j-th argument of z if in all j-th arguments of z in Teft-




hand-sides of E variables occur only at nesting depth Ilzllj + 1 and ev-
ery variable-free C-term of hejght < |lzt|j occurs as j~th argument of 2z

in some left-hand-side of E.

An equation z{t4, fees tn) =t et is called reducing if no other extension
than z occurs in t, all variables of t also occur in the left-hand-side,
and, if z actually occurs in t, every critical argument of z in t is a
proper subterm of some critical ti‘
E is called safe if all its equations are reducing, if for all z € Z E s
C-complete for all arguments of =z, and if it is monotonic, i.e, if for equa-
tions ty = tp, Uy = Uz € E, t4 [ uy (possibly after consistent renaming)
implies %4 [ ua. ‘

For a safe set E of equations, C-completeness means that the left~hand-sides
in E provide a complete case analysis; together with the unambiguity it also
implies that at most one equation can be "applied" at any "place" in a given

term. For ¥-terms ts, tz we say that t4 = tz if there is a context K,
E
an equation (u4, uz) € E and a valuation v of X in WZ(X) such that ti =

K[u;Iv1) (i1, 2).

*x
Theorem 2 For safe E, = 1is confluent and noetherian. Therefore every term
E *
t € WZ(X) has a unique normal form NF([t] with respect to = and

*
there are no nonterminating computations under = E

E

Theorem 3 For safe E the carrier sets of WZ/ﬁE are isomorphic to those of
WC. This means that WC (WC”) can be extended to an ordered (con-
tinuous) z-algebra satisfying E by interpreting the extensions sui-
tably.

For the proofs see /Mdller 82/.

Thus, interpreting a I-term in the algebra WC means reducing it to its normal
form. By theorem 2 this process is effective. Therefore, for safe E, we call
wiﬁgE an operative algebra. More. generally, wz[gE is operative, if there is

a sequence X cI C ... of signatures with TEN I, =%, and a sequence (Ei)ieN
with e

as constructors.

Example: If we enrich £, by the extensions

pred : nat - nat, head : sequ - nat, tail : sequ - sequ

E;. = E, such that E, 1is safe w.or.t. EoSNIG g 35 extensions and I; 4 :E

to s,, the equations

"'L!
4,

pred(L)
pred{0)
pred{succ{xX)) = x,

"

head(L) = 4,
head(()) = &,
head(add{x, s))

Xy

tail(d) = &,
tail({)) = <,
tail{add(x, s))

H
w

are safe wrt. the operation symbols of X, as constructors. =]

Over an operative algebra Kleene's approximation process is fully "algorithmic";
note, however, that in the case of a carrier set with 1imit points nontermina-
tion may be necessary for the correctness of the operational semantics. In

this case one may view the process as producing more and more ocutput (the se-
quence of the Uy s for which uy L u; L ust ... ho1d§) which approximates

the exact value "to any degree of precision desired".

The "Tanguage" of ({terms over) recursive definitions over an operative algebra
may be compared with the “language" of partial recursive functions of the nat-
ural numbers: the simplification rules ( ;-) of the algebra correspond to

- E

primitive recursion, whereas taking fixpoints of recursion equations (the fix-
point operator) is more related to the y-operator.

6. DATA-DRIVEN AND DEMAND-DRIVEN EVALUATION

In the form of Kleene's process considered so far, in every interpretation step
the normal form is computed completely anew. This section aims at avoiding
these repeated computations. We exploit the fact that - by construction - in-

terpreting and term rewriting are compatible, and simplify the terms %n be-
fore the interpretation step proper. This saves rewriting work in later inter-
pretation steps. Ideally, the simplification eliminates all variables so that

unfolding becomes unnecessary and the process can terminate.

First we consider a method which strives for "maximal increase in information”.
It therefore reduces the considered term as far as possible and afterwards un-
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folds all variables. It can therefore be calied busy evaluation /Broy 80/,

or, since it starts reducing terms as scon as sufficient information about the
arguments of the extensions in the term is available, also data-driven evalu-

ation (see e.g. /Treleaven et al. 82/).

For a given representation r_= (e, t

N it works as follows:

n)
(0) (Simplification) Determine the normal form 'tﬁ = NF[tn}.

(1) (Interpretation) Interpret the resulting term, i.e. form

e v WE(X)
un 1= NF[tn[Q ]1 .

(2) ({(Unfolding) Unfold the recursive definitions in tﬁ’ i.e. form
tn+1 1= tﬁ[e], and apply the process to the new repre-

sgntat1on Foel °= (e, tn+1)'

We give two criteria for terminating the process:
(0a) If tﬁ does not contain variables, u, = rgc and the process may
stop.

(la) 1If u is maximal in the respective carrier set (i.e. if it does

not contain 1) then u_ = rﬁc and the process may stop.

n

The correctness of this operational semantics is stated in

Theorem 4 (1) For the Uy evoTvigg during data-driven evaluation of r

n
and the object rﬁc represented by r = in WC” one has
&§=LH%:m3m. '

(2) If the carrier set of the sort r_ is flat and neither of the
termination criteria is ever satisfied then rﬁc = L,

Second, we consider a method which strives to avoid term manipulations which
are irrelevant for the further progress of computation. Because the applica-
bility of equations of a safe set E is determined by the critical arguments
of the extensions, this method avoids reducing terms which "at the moment”

are not critical (they may, however, become critical by subsequent rewriting),
and unfolds only those variables which "at the moment" prevent the further
evaluation of the critical arguments. Thus this method simplifies only as
far as necessary and unfolds as little as possible; it can therefore be
called lazy evaluation (cf. /Henderson, Morris 76/, /Friedman, Wise 76/, /Bau-
er 79/) or demand-driven evaluation {cf. /Treleaven et al. 82/). For its pre-
cise specification we need two %urther notions:
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For a term t € W(X) the set K(t) of critical variables is given by

(1) K(x) :=§ for a variable x € X

(2) K(f(ta, ..., £ }) 3= §“ﬁi K(tj) where Mf is the set of all J
such that an extension occurs in tj’ if f 1is a constructor, and
the set of critical argument indices, if f {is an extension.

The normal form KNF[t] of t wrt. the critical arguments is defined by

(1) KNF[X] := x for x € X

(2) For a term t = f(t4, ..., tn), KNFIt)} := f(KNF[t4], ... KNF[tn])
if f is a constructor. If f 1is an extension, we set
T = (T4, ...,‘Eh) where T,

Tj = tj otherwise. If therg is an equation (u4, uz) € E such
that uq[v} = T for some valuation v (by the safety of £ there
is at most one such eguation) then KNF[t] := KNFluz[vl], otherwise
KNF[t) := T. |

In general, KWF[t] * NF[t}, however one has always t oA KNF{t] - NF{t].
E E

Finally, for the method of demand-driven evaluation it is important not to ne-
glect the noncritical variables completely: the operations of a continuous
algebra in general are not sequential in the sense of /Vuillemin 74/, so that
the evaluations of their arguments have to be advanced "sufficiently uniform-
ly", ™in a fair manner in parallel”.

Now for a represenation ry = (e, tn) the process of demand-driven evaluation

works as follows:
(A} (Reduction of extenéﬁons) Determine an arbitrary natural number kn’
set Voo 3 tn, 1 := kn, and apply (B) to the representation

r = {e, v and 1.

n no’

(B) If- 1=0, apply step (C). Otherwise
(B1) (Simplification) For the given representation ¥ = (e, v

nm nm)

determine the normal form Vﬁm 1= KNF[vnm] with respect to the

critical variables.
(B2) (Interpretation) Form wu, . := NF[VAm[QWC]].

(B3) (Unfolding) Determine the set K(
and unfold them in v

Vﬁm) of critical variables
i.e. form v ;= v! [e_ 1 where

[}
nm’ m+l ° nmnm

1= KNF[tj] if tj is ¢ritical for f and
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enm(x) 1= e{x) if x € K(vém) and enm(x) ;= X otherwise,
Afterwards apply step (B) to the new representation
an+1 1= (e, Vnm+1) and to 1}-1.

. (€) ({General unfolding) Form t_ ., := Vo [e] and apply step (A) to

Pre1 1= (& thig). "

The termination criteria are analogous to those for data-driven evaluation:

(Bla) If Vﬁm does not contain variables then véﬁc = rEC and
the process may stop.
(B2a) If Uom is maximal in the respective carrier set then
We™
Uom = Tn and the process may stop.
Theorem 5 (1) For the wu evolving during demand-driven evaluation of
oo
r, = (e t,) and the object rﬁc represented by r, in
o We™ _ , ,
WC™ one has rp —LJ{ump rm>mn, pel, e, KD
(2) If the carrier set of the sort of t is flat and none of
the termination criteria is ever satisfied then rﬁc =1.

Example: We enrich I, to Zz by a sort bool and by the operations

true, false : - bool,
not : bool - bool,

iszero : nat - bool,

if . then . else . fi : bool x nat x nat - nat,
incr : sequ - segu,

sel : nat x sequ - nat .

If we take true, false, 0, succ, {), add and the -L's as construc-
tors, the following equations are safe:

not(+i) = 4,

not(true) = false,

not(false) = true,

iszero(+) = 4,

“iszero(0) = true,
iszero(succ(n)) = false,

- 13 -

if & then m else n fi = 4,
if true then m else n fi =m, !
if false then m else n fi = n,
iner(y) = 4,
iner(()) = (s
incr{add(n, x}) =
add({succ(n), incr(x)),

sel(n, 1) = 4,
sel{n, ()) = 4,
sel{n, add(m, X)) =
if iszero(n) then m else sel(pred(n), x)) fi.

The so1u£ion of the system

e : sequ nats ='add(0, incr(nats)}
is the infinite sequence add(0, add(l, add(2, ...))).

Sti11 the data- as well as the demand-driven evaluation of a represen-
tation (e, se](succk(o), nats)) terminate with the value succk(O). D

7. AN EQUATIONAL SPECIFICATION OF A FUNCTIONAL PROGRAMMING LANGUAGE

This section contains our main example for the techniques described. We
shall give an equational specification of functionals of arbitrary order over
sequences of natural numbers. For this purpose we first extend the set of
sorts S, of signature ¥z by infinitely many new sorts for functionals to
a set of sorts S5 as follows:

(1) SzcSs

(2) If s45 .ovy 5,5 SE S; then funct (Sq4s eves sn) S € S,

{3) Sa is the least set (wrt. inclusion) satisfying (1) and (2).
The carrier of sort funct (s4, ..., sn) s in the algebra to be constructed

will contain denotations of function(al)s with argument sorts s., ..., S,
and result sort s. Some members of S, are '

funct (nat) nat, funct {nat, funct (bool, sequ) sequ) nat,
funct {funct (nat) seaqu, funct (sequ, sequ) bool) funct (nat) nat .
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The operation symbols for our algebra are the following:

if . then . else . fi_: bool xs xs xs » for all s € S,

5
app"lys1_nsn : funct (Sq45 +..s sn) S xSy % ... xs ~»>s forall s., s €55

f' i o funct (Sqy «vvs Sn) s for all operation symbols f : S1%...xS =S {n > 0)
j . | '
ﬁS*"'sn : - funct (54, ...y sn) 55 for all sS4y ...y s, € Ss and 1 <j<n
const:1 g S~ funct (S4, vy sn) s for all s4, ...y Sgs S € S
n
SqevsS.5 S , _
comp, "N : funct (S5, ... sn) s x funct (U4, ..., um) 54 X uus

x funct (uqs, ..., um) Sh - funct (uq, ..., U ) s

for all Ugy oues Ugs S1s +=es Spn S € S,

condg : funct (s) bool x funct (s) u x funct (s) u - funct (s) u

for all s, u € S5

If we take all new operations beside if . then . else . fi and apply as con-

structors, the following equations are operative:

if L then x else y fi_ = 4,

if true then x else y,fis.= X,
if falsethen x else y fis =¥,

5
appiys1...sn (LFUnct (Sqsnvrss.) 82 %10 =00 Xg) = L5

n)
5 '
aPp1ys1...s (f'y Xq9 cous xn) = F{Xqy 10y xn) s

. n

J 3 -
app1ys1._'sn ("51...sn’ Xas wees Xp) = Xy

s 5
ap;ﬂys““.Sn (C0n5t51...sn (Z)y Xqs -uns xn) =z,

s Sq.2.5, 35
app1yu1...um (compuj.._u;’ (95 has coes o)y Xas wees X)) =

5 54
app1ys1'ﬂ.sn (9, appb’u1...um (has Xa5 veus xm)’ T
*n
app1yu1.,.u (hps X1 oo Xp) )

m

B S

applys (cond] (p, g, h), x) =
if applyg (p, x) then apply( (g, X)

else app]yg {(h, x) jiu .

Note, that only the first arguments of the if . then . else . jis and the

app1y§1..ls are critical; in the case of the apply's this is the function
n

argument.

In the sequel we drop the indices of the operation symbols.

apply denotes the operation of applying a function denotation to its
arguments.

- if . then . else . fi  denotes the usual conditional

- f' is a syntactic construct for denoting a function f as a functional
constant of the next-higher order

- ¥ s a syntactic construct for denoting the j-th projection (or selec-
tion)

-~ const is a syntactic construct for denoting constant functions
- comp is a syntactic construct for -denoting function composition

- cond s a syntactic construct for denoting the conditional.

Thus the constructors of our signature correspond to the syntactic constructs
found in most functional (applicative) programming languages.

Let us illustrate this with an example: The whi]e—comb%nator of /Backus 78/
can be denoted by the recursive definition

funct (funct (s) bool, funct (s) s) funct (s) s while =
comp{cond', n*, comp(comp', while, n2), const(id))

where the identity function 1id can again be realized by a projection {we have
not done this in order to avoid distinguishing projections with different indices).

Let F = apply(while, comp(not', iszero'), pred'), or, in Backus's notation
F = {while not o iszero pred).
A busy evaluation of the term

apply(F, succ(0)),
or

F : succ(0),
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first unfolds while once {since no simplifications are possible) giving

apply(apply(comp(cond', n?,
comp{comp', while 7),
const(id},
comp(not', iszero'}, pred'),
succ(0) ).

This simplifies to

apply( cond({comp(not', iszero'),
comp(F , pred'),
id}),
succ(0) )

and further to

apply(F , 0) .

Now again while is unfolded and this time the simplification yields 0 so
that the busy evaluation stops.

Since busy evaluation unfolds all recursively defined variables, it corresponds
to the fuTl computation rule of /Vuillemin 74/. In lazy evaluation, only those
variables which are critical for apply are unfolded. Because we represeni a
nested function app]icatidn '

f(f(xs y)s flu, v))
as

apply(f, apply(f, x, y), apply(f, u, v))

and only the first argument of apply {is critical, lazy evaluation of function-
als here corresponds to a restricted and more economical form of the paraliel
outermost rule {not all outermost occurrences of recursively defined functions
are expanded but only those occurring within some critical-argument of an exten-
sion).

8. CONCLUSICN

The method of algebraic specification, when extended to inductive continuous
algebras, is a convenient tool for defining and describing many interesting
domains with nonstrict operations and with limit points. This answers to a
number of remarks in /Cartwright, Donahue 82/ on the “restrictiveness" of the
algebraic specification technique.

- 17 -

The main difference between the approach of /Cartwright, Donahue 82/ and that

of the present paper seems to be the following: We specify the domains axiomdti-
cally rathef than explicitly; syntactic criteria (in this paper the restriction
to pure equations; more general forms are considered in /Mdller 82/) then guaran-
tee the existence of suitable continuous models. In /Cartwright, Donahue 82/

the reverse approach is taken: first the domains are given explicitly; afterwards
their characteristic properties (corresponding to our axioms) are proved.

Our main aim, however, was to show how a precise operational definition of lazy
and busy evaluation can be derived from their mathematical definition in terms of
continuous algebras; derivations using axioms of a certain restricted form (op-
erative axioms) lend themselves as a reduction calculus for the evaluation of
terms over the respective algebras. This method, too, works uniformly for recur-
sively defined data and functions.

Further research should concern techniques for implementing non-operative alge-
braic specifications by operative ones; in this way a first specification can
be free of operational details which should only be introduced at a later stage
in the development process.
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1 Introduction

For concurrent programs - even when restricted to a particular
style like Communicating Processes = a wvariety of semantical models
have been propesed (e.g.[Mi 80, HBR 81, BZ 82]). Each of these
differaent models can be viewed as describing certain aspects of a complex
behavicur of programs. It seems therefors desirable to bring some "order”
into these semantical models so that one will finmally be able to
recommend each model for the purposes and applications for which it is
best suited.

More specifically we pursue the following sims:

(1) The semantics of concurrent programs should lead to a simple
correctness criterion, and simple proofs of correctness.

(2) Simple metheds should be develioped for generatiing sound semantical
models for different purposes and applications,

(3) Existing semantical models'should be related to each other in a
clear system of classification.

In this paper we concentrate on an application ts Cemmunicating
Processes and present concrete steps towards aim (1)=(3). 1In
different settings such steps can also be found in recent work by
L BZ 82, Br B2, Mi 82, NH B2] . Ue now outline the steps taken
irn our paper, |

Ad (1): A program P is callec correct w.r.t. a given specification S,
abbreviated by P sat S, if every observation we can make about the behaviour
of 8 is allowed by S. Varying the definpition of an ohservation, we can
express either partial or total correctness of P in this way.

In Sections 2-4 we start from a set M of observations and define
the class of spscifications 5 as a certain family of subsets of M. A
specification—oriented semantics assigns denotationally to every program P

& specification [P
approach deals very
as the set union of
specification space

such that P gat S holds iff [Pfc S is true. This
simply with nendeterminism, which camn be expressed just
sets of aobservaticns., Technigally we require that a
over an observation space shall be a2 comglete partial

order, Designing & specification-oriented semantics for a programming
language L(= ) means then mapping every language constructor in L(Z)
onto a continuous operator on specifications. This enables us to treat
recursion in the traditional way and leads to simple proof rules based on
fixed point induction. .

Ad (2): The simplest way of defining a language constructor is by
pointwise application of a relationship between observations, Let g be
such a relation. We define

-

C?g(p) = zyjax: e P& xg y}

Unfortunately, this operator is not necessary continuous. By viewing
specification ‘spaces as examples of informaticn systems in the sanse of

{ Sc 82 ] we arrive at a definition <€g from g, which is guaranteed

to be continuous. Unfortunately, the result af this construction is rather
obscurg. Cur main result is that under certain assumptions about g, we

can show -

where CT is defined explicitly in terms of g, and represents
the possibility of divergence. The details are given in Sections 5-6.

Ad (3): In Sections 7=10 we apply the methods developed so far
to generate and relate three semantical models for (sublanguages of)
the language L{X ) of Communicating Processes. L{Z ) describes networks
of processes which work in parsllel and communicete with each other in a
synchronised way. 7o construct these networks, L{> } has operators
& — (first communication), || (parallel compesition with synchronisation),
or (internal nondetermimism), [ (external nondeterminism), \b (communi-
cation hiding), A g.P (recursion).

The semantical models differ in the structure of their observation
space and this influences the number of representable operators and the
notion of correctness. The simplest model is the Counter Model € which
can only deal with acyclic or tree-like networks of processes f{Ho 821 .
Arbitrary networks require the Trace Model J° whieh can still not model

7 [+Ho 807 .

In ¢ and T only safety properties (partisl correctness) can be

‘described by P sat S, Dealing with the full language L(Z ) and with

liveness properties (total correctness) calls for the more sophisticated
Readiness Model R [HBR 8%, HH 82] .

In these models special attention is given to the hiding operator \b
which localises communicaticns on internal channels of a network. This is
the most complicated operator, simply beecause the possibility of hiding
infinitely many communicaticns has to be considered. We show that ip all
three models the hiding operatcr can be repressented as (g = Cqg v C?g .
The remaining operators are simply of the form Cg = C g.

Finally, in Section 14 we indicate further directions of research.
Proofs of our results will appear in the full version of this paper.

2. Algebraic Preliminaries

In this section we explain the gesneral format of our programming
language and denotational semantics. The notation is similar to that of
T GTuiy 77 ] for continucus, many-sorted 5 —algebras.

{ground) types, ( € & )V is a set of variables each one with a certain
ground type t associated, and a set fﬁqa)F of cperator symbols each one
of a certain (derived)type tq, +¢ey tq —> t. The set of variables of

type t is denoted by Vi & V and the set of operator symbols of type

vee, th— < F where Ft abbreviates F i

A signature is a structure X = (T,V,F) where (t€)T is a set of

t’l, “any tn-ﬁ t by Ftn’

fvery signature 2 determines a programming language (P,0 € ) L(Z),
namely the set of all recursive terms or programs over Z each of which

L

with a certain type t. The set L(Z:}t z L(=) of programs with type t

is defined by the following BNF=-syntax,




for signatures Z1 and Zz we write 21 = }:2 if Z1 results ’

from Zz by removing grmund1types, variables, and uperatnr1symb0is.
For 2 Z“-algebra D and Z & > 2 the Zq—reduct DIz is a

Z 1—.:—1.‘1get:1rr;1 consisting of the families { & N [ t & Tq) and
1 _
(Lfls | ferfh.

Let », g bs X -algebras with 2 = (T,V,F) and @ = { @ " ! teT)
be a family of operators @t: Z‘}t S ‘ft. Then @® is a homomorphism

from D to § if

O, (Lrlp (dys eeen d ) = [#1, (D@, oy §ypy (@)

P:i= ¢ I F(Pq! cer pn) M3 P

where § € V., fe th, vee, tR s ¢! and P; & L(Z)ti . The

construct m$§.- [Ba 80] defines a binding occurrence of §  and gives
rise to the usuel notions of free and bound variables in programs,
A& program P without free variables is called closed.

Ltet (£,5) be a partial order., A subset X € 2 is directed
if every finite subset of X has an upper bound in X. (2@ ,E) is a cpo
(complete partial opder) if it has a least element L and every
directed subset X of ®» has a lub (least upper bound) WX in 2.
If 2)1, ceey Eﬂ are cpos, then sc is 2:1 K e x.@n, with the

componentwise ordering.

A function or operator f: & — ¢ from one cpo & into another = B for all f&F . and (d , eeey d ) € St‘l X eae X Bt .
cpo € is (£ ~) continuous if it preserves lubs of directed subsets, i,e. Ely eeey th— ¢ 1 n n
if F{UX) = UF(X) holds for every directed X ¢ ® . (In particular f is : ‘ _ . o o
then monotonic, i.e. preserves £ .) And f is called strict if it - o @ is called continuous (resp. strict) if every @ g S
preserves the least element. We remark that an operator f: .@,Ix vee x5 —— T _

n Lemma 1. Let $, '€ be as above and @ = { EP l t € T) be a strict
is continuous iff it is continuous in all its arguments (see e.g. [Ba 80] ). ; —_ . . t
and continuous homomorphism from & to € . Then ¢ t( [P}{S ) = [Pﬂg

Every continuous operator f: £ — © has a least fixed point «f in & , : holds for esvery closed program P & L(Z)t.
namely uf =|f{f (L) | n> 0} where f(d) =d and T (g) = i
e (d)).

A {continucus) Z -algebra 2 [GTUJUJ '?'?] consists o7 a family 3, Observations and Specificstions

(“C"}t I t & T) of cpos together with a family ([¢] fa F) of

continuous operators with

2 We now formalise the concepts of observaticn and specification

mentioned in the irtroduction. We are intsrested in observations we can
make about the behaviour of a program P during its operation. This intuition
leads us to postulate a certain relation —> between observations which is
intended to reflect that P usually produces the obssrvations in a step-by-
. Every comtinucus 2 -algebra induces - gtep manper. "Thus x —> y means that observation y may be made ‘

: immediately after x , without any intervening observation. This relstion
will be grucial later on in Section 6. First we need an auxiliary noticn.
A relation g £ M X N between sets M and N is domain finite if for every
y e N the set {x!lx gy} is finite.

ﬂf_’l{g : ‘@t'l X aee xf)tn-—w“vﬁt

for every f & Ft’] cee, tn =t

a straightforward denotational semantics of t(Z), also denoted by
F.Jdg . Let (pe) Env be the set of envircnmentis, i.e. mappings
p:v —> U D, which respect types: P(%) € ©, for ge V.. Then

() —> Env—> U, & Definition 1. An observation space is & struscture (M, —> ) where M
is a set of so-called cbservations and -+ is a relation —> =M x M
such that == (the transitive closure of —> ) is non-reflexive and
domain finite. This definition reflects the fact that at all times a
P(g ) gprogram has made only a finite number of steps, and only a finite number

of different observations can be mads.

[L-3g £t g

is given by
(1) [sdg (o
(ii) {F(Pq, sery pn):ﬂg (P) = [f IIE) ([p? ]g (P)y venes {Pﬂﬂ?) {r))

Equivalently, we could reguire that for every x € M the set of all

(:11) [ “g WP e () = w (N d. H:Pﬂg(P [d/§} )) descending chains x ——b... —>x, = x 1is finite. Thus (M -,——...:t.....() y is

’ 7 ' a simple well-foundsed order where every x € M has at most finitely many
where the appropriate type constraints ars assumed. As usuzl p Ld/g} - predecessors y —® X, Note that — may be empty. 5Some notation:
denotes the redefinition of p at argument § by d. Note that TR _ )
respects types: [P Jg (p) = St for P & L(Z)t. For closed orograms P ' Min = {xem ‘ 24qy eM: y —¢x}
we write L P Jo instead of [P Jo (p). £ is also called a model for -

—— = M —_—

(Z). when talking about a2 fixed model £ we usually drop the subscript pred(x) = {y € l Y X }

& at{[.ﬂg.




Note that pred(x) = p iff x Min. By a grounded chai?taf lezggzn
n > 0 for x we mean & chain X5 —_— . —D X =X wi X .

The level of x is defined by level{(x) = min {n elN, IngDunded chain
of lsngth n for X } .

% .
i A of words or traces cver some
Example 1. Consider the set (s,tfa) .
alphabet (a,b € ) A with *8 denoting the smpty trace., Defire the
relation —D> ¢ 25 ox o as follows:
A

- ___% t iff 3 a € As s+a = t.

* .
Then (A*, ———éﬁ) is an observation space. And s ——% t {reflexive,
transitive closure) holds iff s is a prefix of t (s« t Far‘shcrt).
Note that here every trace s_has exactly one grounded chaln

E — .. —_— Sa
. A LN Ar

Specifications are certain sets of observations which reflect ths
structure ——> on observations according to

i 7 M
bservation space. A subset X &
inition 2. Let (M ,6=—>) be an o ; .
??;2;9;2219 WeTatoe — if ¥x & XN\ Min Fyexty—> x. If
—b 1s empty, every subset X £ M is generable.

We say that an observation x satisfies a specification'S cr S
allows x if x € S. GSpecifications are ordered in a Smyth—like manner
[ Sm 78 ]:

= i 5§ 2 §_ .,
) 51 = 82 iff 12 %2

5, £ S, means that 52 is stronger or more deterministic than 52 resp.
" 2 . . s . .

51 is weaker than 52. M is the weakest specification allowing every

1 .

observation.

Definition 3. A specification space over an o?seruatiun space (M, =)
Ts & subse: N ¢ B (M) of so-called specifications such that

(1) m & M.

(s2) ¢ & M.

(S3) Every S5 € W is generable w.r.t. —> .

(s4) (M, 2 ) is a cpo.

T is czlled a simple specification space if Min is Fin}te and ¥l con-
sists of all non-empty, gengrable subsets of M.

, % .
Example 2. Take (A*, —> ) of Exampls 1. A subset %ﬁ; A is EreilzF
Closed if t € X and s < t always imply s € X. Let S be the se

A wi = . i imple
all prefix—-closed subsets X = A with &£ & X. Then J'A ig a simp

*
specification space over (A , —, Yo

=N

For observation spaces (M, -——ﬂm) ana'(mg_;fg,;)3 .
defined as follows: (xq, y?)'__—%xN (xz, y2) if either x, ~—b. x .=

M=z
andy1 =Y, OF X, = X, and Yy ———m Yoo '

Lefinition 4. For specification spaces %1 over (M, ~*~ﬁﬂ) and ¥l over

(N, ———+N) the product specification space is U x ¥ over (Mx N, __—ﬁxN)°

Due to (52) in Defimition 3 the matural order 2 on WM x Y

coincides with the componentwise orders 2 om 1™ and TL . Thus
(Wlx M, 2 ) is indeed a cpo (cf. Section 2).

4, Speacification-Oriented Semantics

We now bring together the concepts described in the previous two
sections,

Definition 5. A Z -specification algebra & is a special continuous
Z -zlgebra consisting of & family (2>tl t € T) of specification spaces

together with a family ( T f]]g { fe FY of 2 ~continuous operators

on specifications. By a specification-criented semantics of thes
programming language L{X ) we mear a semantics IT«Js of L(ZX) induced
by a specification algebrz % .

Sc a specification-oriented semantics assigns a specification Crpls
as meaning to svery program P & L{(Z ). Correciness of a program P = L(Zf)t
wer.t. & specification S € & _ is expressed by correctness "formulas"

P sat S which are interpreteE as followss

Fe Psats irf [Pl ¢ s.
Informally P sat S holds if every observation we can make abou: P is
allowed by S. In Sections 8-10 we shall see that both safety and livensss

properties of communicating processes can be expressed within this general
framework,

S. Information Systems

A very important property of & specification semantics is that all
opesrators must be continuous., This ensures that recursion works in the
expectecd fashion, and that proofs by simple induction are valid.

To support this task we develop general theorems for constructing
2 =continuous operators C: M ==Y  from one specification space N to
another one 71 . e do so by applying methods of Scott's theory cf
domains as presented in [ Sc 82 ] . Crucial in this theory is the notiocn
of finite element in a domain. Once these have been identified, continucus
operaters can be constructed inm a standard way. To help to identify the




finite elements Scott has set up the concept cf an informstion system.

First we explain how to view every simpls specification space ¥
as an example of an information system F such that the elaments of X,
are just the specifications in 99 . Well almost, because we have to
face the problem that Scott's approach acvtomatically leads to & -
continuity whersas we are interested in 2 ~-continuity according to
the Smythe-like order. But this difficulty is sasy to overcome by
constructing F so that its elements are exactly the complements af
specifications in M. So F is actually dealing with gounter-
observations to specifications.

An information system is a structure 3 = (&, Con, — ) where
is a set of data objects or propositions, Con is a set of finite
subsets of & called consistent sets of data objects, and = is a
binary relation between Con and D called the entailment relation.
According to [Sc 82] the components ®, Con, and  of & have to
satisfy certain simple axioms.

For a given simple specification space m over (M, —> ) we
define 3 = (E)m, Con s }—-m) as follows:

1y o =mnm {counterobservations)
(ii) Con  consists of all fipite subsets X € M such that

not Min ¢ X. (consistent sets of counterobservations)

(iii) The entailment relation F—  is defined recursively (and more
gensrally) as a relation i ¢ B (M x (M)
X = ¥ iff Y yeY: yeXv(yéNina X — pred(y)).
Instead of X f— | y} we write X |— vy.

Informally X (— y means that y can be gxcluded as a possible observation
provided that every member of X has been excluded. This will be so if

y is in X or if all predecessors of y have already been excluded on the
ground of exclusicn of X. Eguivalently one could say that gvery arounded
ghain for y will eventually lead to some counterobservation in X {see
Figure 1).

Figure 1. X vy

X

AR

e

Every information system F determines a set {3 of elements ESc 82] 4
For 31m-tha set <E}m> consists of all proper subsets X i M with

% x € M\Min: pred(x) € X —> x € X,

Note: "proper subsets" is guaranteed by Min being finite (cf. Definition 3}

The set <:}m>’Fin of finite elements of 3:m consists by definition of

all closures X = ixe& M| X M % 1 of finite sets X & Con_ - But

remember that the elements of f}m are sets of counterobservations. To

get the correspending sets of observations we take complements. Indesd
= NXX
m [mx|x &3 >}

holds. Thus E}m exactly getermines the simple specification space 1.

The complements of the finite elements X of :}m we call finitary

- specifications. Let (F,Ce&) ?nfin c I be ihe set of these,

G, Continuous Qperators

Let "\ and % be simple specification spaces over (M, ___DM)
resp. (N, ———#N). We derive now general theorsms for constructing
2 -coniinuous operators cg:znn—ua M working on specifications Dy

starting from certain relations g € M X ¥ which describe the desired
effsct of Cg "oointwise" for single cbservations.

Definition 6. A relation g ¢ M X N is called generable if for every
non—-empty, generable set X £ M also g{X) is nom—empty and generable.

Theorem 1. Let g = M X N be generable and Cg: M —> YL defined by

In

cg(s)=ﬂiae.nfin!5'$em . s scFaglF)cG].
Then Cg is well-defiped, i.e. for svery non-empty, generable S & 1M
the image CQ(S) is a non-empty, gensrable set in ¥ , and Cg is

> =continuous,

Proof. Consider the corresponding informaticon systems

= = ) = & i
F (_,m, Con s F—m) and 3r1"'( & s Con, = n). We define a
relation fg & Conm X Cenn by

X pg Y irf X 29 (Y)
mhere.g,‘f denote the closures of X ,Y  under - Tesp. = .

Since g is generable, fg is an approximable mapping [sc B2]. Hence
the opersator Cfg IR m> -——%*<:g.n> working onr the elements of F

defined by

m




9.

Co(@) = { Yeton | IX& con: XEZ A XroY J

is well=defined and €& -continuous. Taking complements we see that
for Se ¥l

Cg(S) = N \ [:Fg(m N S)
holds which proves the claim about Cg. [

Theorem 1 is a general continuity result, but it is too abstract
for our purposes. UWhen applying the operator Cg to a specification S
we are not interested in how exactly S is approximated by finitary
specifications F and we don't want to follow the tedious construction
of Cg(S) described in Theorem 1. We would rather like to apply the
relation g directly toc 3., In the rest of this section we investigate
this idea and derive explicit representations of Cg{s) in terms of g.
The advantage of Theorem 1 is that it relisves us of the obligation of
proving continuity of these representations directly.

First we compare Cq with the standard operator C?g: m — *(n)
induced by g, namely

C}Q(S) = { ye ] Ixes: xgyl =g(s).
Note: If g is generable then Cfg(S) [= CQ(S) for every S & ¥,

Theorem 2. If g is generable and domain finite, then Cg(S) = Cg(S)
for svery S5 € 3 . . '

If the grounded orders ———%l and ———%] are empty, every

g €M x N is generable. Then Theorem 2 reduces tc the well-knoun fact
that domain finiteness of g implies 2 =continuwity of C?Q as an operator

on arhitrary subsets of M, As we shall see in Sections 8-1C, most
cperators for Communicating Processes are induced by domain finite
relations g. But the crucial hiding-operstor is not.

*
Example 3. Take the simple specification space J”A cver (A , -——4h }

*
of Example 2. For cbservations {(traces) s, t = A we definse
s gt iff s\b =t

where s\b is obtained from s by celeting (or hiding) all occurrences
of b in s. Then g is generable, but not domain finite. And

#

Z 1 jh — R{a") is not 2 =-continuous as scon as |A| > 2 holds.
*»

Take Sn'= {bﬂ} - A for n>» 0. Then So 2 4ee 25 2 +4. 1is a

descending chain (hence directed). But

;\ (S'g(sh) = (AN {0} )* + {c) =& ({‘b} Yy = & (f’n\.s ).

oy
we remark that C_(/\S)) = (aNip3 ) .

10.

in the rest of this section we study this prubleﬁ in considerable
generality. Our solution depends critically on the relation —
among observations and the concept of generability. First we introduce

a new operator C"’; : N — PR () by

6; (s) = {y']|3y—=2>y _§><€5= Xgy A y'eg(f"l)}

(==
where =1 means "there exist infinitely many".

Definition 7. A relation g €M X N is called level finite if for every

ye N and 1 & RJO there are only finitely many x € g~ ' (y) with
level {x) = 1.

Definition 8. A relation g€ M x N is called downward consistent if

Lemms 2. Let

whenever

a] holds there exists X g Y
with ° o

* Seme Yo l% l%

X 9 b4 X qQ ¥

g £Mx N be generable, level finite and downward
consistent. Then

cg(8) € Co(8) v E(3) g g (M)

holds for every S5 = %,

Definition 9. A relation g € M x N is called upward consistent if

whenever

X 3 Y, with y = g (M)} holds X, 9 Y
° i then there exists , '
* some x with l* l*
Y ' X Q Y

And g is called consistent if g is both upward and downward consistent.




Lemma 3. Let gc M x N be level finite and upward consistent.

Then

1y

0‘9(5) v 69 (s)

in

C (s
. 1 g )
tolds for every S& WL.

Combining Lemma 2 and 3 yields our main result.

Theorem 3. Let g €M x N be generable, level finite and

consistent. Then

cy(8) = T (8) 0 c*:(s)

holds for every S & WL,

If the grounded ordsrs — are empty, Theorem 3 reduces to
Theorem 2, So far we considered only simple specification spaces.
When dealing with nop—simple ones, Theorsms 1-3 yield of course
> -continuous opsrators C_: %W —> R (N). But it remains to be
shown that indeed C.(5) & & MeN(N) holds for every 5 € WL . An
example of non—simp%e specification spaces will be studied in Section 10.
Dealing with operators C, of several arguments is easy: we just take
the product of the argument specification spaces.

7 Communicating Processes

A process can engage in certain observable communications,
determined by its alphabet. Ue are interested in describing networks
of such processes which work in parallel and communicate with esach other
in 3 synchronised way. Communicating Processes is a language L{Z ) which
deseribes how such networks can be constructed.

formally, we start from a set (a,b = ) Comm of communications.
Usually Comm is structured as Comm = Cha x J¥L where Cha 1s a set of
channel names and M is a set of messages. But for simplicity we shall
not expleit this structure here. By alphabets we mean finite subsets
A,B8 ¢ Comm., The signature Z = (T,v,F) for Communicating Frocesses is
given as follows:

(1) T is the set of alphabets A £ Comm.

(ii) Y is an arbitrary set of variables.

(1iii) stop,, chaos, & F,

— =
a SFh—a provided a € A

sz, O Sfh, a— a0 A

Fa,8 — au 8

i

,/
a
iy

Py — a\{p} proviced b = A

To introduce some notational conventions let us restate L(Z:)A:

Py = §| stopp\ I chansA ! a—)PI

pora | POo|Piia] PNb] Mg.p

Some informal explanation: sto denotes a process which engages in
no communication at ali, It terminpates at the very beginning. chaosA
is wholly arbitrary and can exhibit every possible behaviour (within
the alphabet A), The process a — P first engages in a and then
behavee like P. The imtuition behind the remaining operator symbols
has been mentioned in the introduction.

Besides the "full" langua?e L{(Z )} of Commuricating Processes we
consider two sublanguages L{ZT), L(Z2) of L(Z) with sltez?2cz.,

= (T,U,Fz) is obtained from Z by removing [ from F.

1
Pia
|

= (T,U,Fq) is obtained from 2:2 by imposing stricter alphabet

I
M
|

constraints on |

1

- i <
A,B AU B only if }An BI\ 1

| &F

By vaerying the structure of observations, we will be able to give
different semantics for L(Z 1), L(Z2) or L{(Z); each will be slightly
simpler than its successaor.

8. The Counter Modsl ‘€

We start with the simplest language L(ZE1). We postulate that the
orly thing we can observe about a process P is how many times each .
communication in its alphabet has occurred up to any given moment [HU 821,
Formally, we define for a given alphabet A the sst of A-gbservations by

(he) I

= —
A A 'mdo

i.e. for each communication a& A there is a separate counter, 3

induces an observation space (ZTA, ———éﬁ) with A

h—> h* iff Jaeh: h' = h[n(a) + 1/a].

*
Then h —% ht means h(a) € h'(a) for every achA (h < h' for short).
Let ZERC, denote the constant mapping h with h(a) = 0 for a&Af.

Lgt the set %fA of A-specifications consist of all generable
w.r.t. — subsets § < 3, with ZERDA & S, Then %,’A is a simple
specification space over (SﬁA, ———Z ). Ue can now introduce the Counter

fiodel € as a 2:1“3P80ification algebra consisting of the families
(€, | A alphabet) and ( [ e b fe F1) with [ ] (we drop subscript 7)
as follows: )
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(1) [etop, 1 = {zero,
(ii) J[chaosAj = SfA
(iii) [ a=—>92] = ©g ([P]) where we use the notation of Thecrem 1

(iv)

with g ¢ SCA X Q€A as follows:
hgh' iff h' =Z2ERD, or h' =h[n(a) +1/a].

Since g is generable and domain finite, Theocrem 2 implies’
£g = Do yilelding as explicit definition

[ e—r]={zro,} v {h[n(a) +1/a] ‘ he[el)

wvhich is continuous and well=defined by Theorem 1,

Ltet P and O have alphabets A resp. B with lAfﬁ B[ £ 1,
Frpllall=ca([r],[a]) uhere g relates the product

HA X HB with HAu 5 by

(hys hz) g h iff h=hyu h, and YV aeAn B: h,](a) = hz(a),
This formalises the intuitiom that P and § work indspendently
except for their common communications. Clearly g is domain
finite, but generability depends critically on the alphabet
restriction |AA~ B| £ 1 imposed in 2:?. Again Theorem 2
vields Cg = ¢g. Thus

[elal = {non|nefr] nelal

AV ag A n B hq(a) = hz(a)v .
This is actually the join-operator Epd join E'Q ﬂ known from
relational data bases. The phenomenon that join does not maintain
generability in general is due to the fact that we cannot observe
the relative timing between different commupicaticns in the
Counter Model % ., A similar problem, known as merge anomaly,

can arise in loosely coupled nondeterministic dataflow networks
[aa 81, Br 82].

[Peza] = [r]o [o].

Ip\b] Cg([F’H) where ggZ\EA X%A\{b}

(+) hgh' iff R' =nlA\{b} iff TneNjh =h'o {(a,n); .

is given by

Intuitively, g hides all communications b in h. MNow g is not
domain finite any more, but at least if is level finite. Also

g 1s generable and consistent. Thus Theorem 3 yields Cg = Og v oo
leading to the following explicit definition

" “

(++) Ipxp] = {h I dne ND: ho {{ayn); & (P} ¢
7 ) * r h) T
_ 1ht! dh < h - nEND: h o 1(&“)3 = ip} j_

Here it is an advantage to have Theorem 3 available because it
is not easy to prove continuity of (4++) directly. Moreover,

Sect;on & tells us that {++) is the patural continuous operator
induced by the intuitive hiding relation (+).

The general theory also explains the design decisions taken in the /
Counter Model ¥ = once the underlying concept of observation was
fixed:

- Generability of specifications is needed to ensure continuity
of the hiding operator.

- The restriction IAr\ B] £ 1 imposed on parallel composition
is due to its simple definition as join—operator and the need %fo
nreserve generability. If we picture processes P1[l...llpn

working in parallel as networks with Pq, ey Pn as nodes and

common communications between Pj and Pj as edges, the restriction

means that we can deal only with acyclic or free—like networks
(cf. comment following Corollary 1 in the next section).

- Non-emptiness of specificatiens'helped to deal with operators of
two arguments according to Section 3.

9, The Trace Model

To deal with the language L(E:z), allowing cyclic networks of
processes, we must be able to aobserve more about the behaviour of
processes, The set of A-sbservations is now given by the tracs set

*
(s, t &) A

l.e. we can gdditionally observe the relative order of communications
[Ho 80] . A" induces an observation space (A", —p ) and a simple

- * 1 .
specificgation space ~JA over (A , -——4h ) as defined in Examples 1 and 2.

The Trace Model 7T is the Ziz—specificatiOﬂ algebra consisting
of the families { 3'A[ A alphabet)} and (Hi’]s.[ feF2), We state only

the explicit definitions of { and \b:
Irial {se(AuBﬁls;Ae[pﬂ A st efa] }
BN fe\b | s e[r]]
U {(enb)t | Wnso: st er]ate (anip) )}

n

]

where s | A results from s by removing all communications outside A

and e\b = s[(AN{bY ). As with the Counter Model these explicit
definitions can be derived from approgriate relations g on traces.

Let us now relate the two models 7 and ¥ . For traces s let
e danote the number of occurrences of a in s. Then the relaticn
* p .
AT x JEA with

Rl

sgh iff Yaszh: nh{a) =axFs

_describes the naturazl canversion from traces into counters.. Since g

14,




is generable and domain finite, the operator (?A : 37\-——5 QZA
defined by ‘@A(S) = Gb(S) is well-defined and continuous by Theorems

1 and 2. Since @’ is not injective, we lose information by going
from J to ¢ , but we can state

Proposition 1. The family f@ = (@MA’A alphabet) is a homomorphism
from the reduct 7r21 to € .

Corollary 1. For every closed program P & L(E:)A we have

@A([pjg-)= ﬂ.—p]@ .

If we assume the chapnel structure Comm = Cha x M of communi-
cations, an interesting combipation of the two models € and T is
possible, namely when we postulate that the relative order between
communications can be cbserved if and only if they are sent along ths
same channel. Such a combined model ¥ =7 1is able to describe networks
of prucesses acyclicly connected via channels., Applications of this kind
of netwarks are buffers and protocols [CH 81] .

What is the notion of correctness induced by J (and ¢ )? For a

program P & L(E:Z)A and a specification S e J;

(*) F, Psats iff [r],. ¢ s,

Note that there is a particular program P which satisfiles gvery
specification S e 3;, namely P = StDEA. Such a program is called a

miracle [Ho 821 . The existence of miracles shows that (*) expresses
only safety properties [DL BO] of P in the sense ihat P does nothing
that is forbidden by S {cf. counterobservations in Section 5). The
situation has its analogue in the theory of partisl correctness for
sequential progreme where the diverging program div satisfies every
partial correctness formula {P} div { @Y. In the next section wse
study a refinement aof the Trace Model which can deal also with total
correctness or better liveness properties [OL 807 .

10. The Readiness Model R

wWe consider now the full language L(X ) of Communicating Processes.
We postulate that not only the "past" of a process can be observec via
traces, but also & part of the "future" via so~called ready sets
indicating which communications can happen next [Ho 81, HH 827 . Thus
the set of A-observations is now given by

({s,X),(t,Y) £) BR =0 x F(a).

*
The first component s of an A-observation (s,X) is a trace in A just
as in the Trace Model 7~ , and the second component X is a subset of A,
the ready set of (s,X).: On BA we define a relation -—%h as follows:

(s,X) — (t,Y) iff HazA: s-a=t.

15,

Since A is finite, (BA’ ——4ﬁ) is an observation space where

observations (& 4X) are minimal.

Let the set Rﬂ of A-specifications consist of all mon-~empty subsets AR %

5 ¢ 8, which are generable w.r,t., == and extensible in the following

A A

sense:
(s,X) €S A aeX —> 3JY: (s.a, Y) & S,

Extensibility formalises the inptuition that all communications in a2
ready set X can happen next. .RA is a non-simple specification space

over (BA’ - ) without miracies. The existence of ohservations (s,%)

enables us to specify and prove of particular programs that they will not
occur. This is why the correctness criterion P sat S deals now with both
safety and liveness properties. Ffor example, a specification

s = i(a", {a})’ n>,D}

forces a program P with P sat S to be live and teo "send" an infinite stream
of communications a.

The Readiness Mcdel R is a Z —specification algebra consisting of
the families (RA | A alphabet} and ( [f’jja | £ & F) where we only state

the explicit defipitions of H ’ D and \b:

(i) fria]

L

£ (s, (XnY) v (x\8) o (¥ \ A) | uhere
sc (AuB) a (sPax)e[r]

(sT B,Y) [[G_[—l

{in

{(a,xuv)](E,X)EEP]A(S,Y)é [aJ }
U{(s,x) ’ s £ & A (8,X) e[P_ﬂu (IQ_U }

(i1) rfa]

i(s\b,\()i(s,x)e (Pl A Y=X\yb] 3

{((s\)t,¥) w20 3x: (e-b™x)e [P ] 2

L4

(1i1) {P\b ]

n

o \’ -
A BBy i3 y

Ready sets enables us to model extarnal nopdeterminism: in P O @
the environment can contrsl whether this process behaves like P or
like § by choosing {in the first step only) either a communication
in the ready set X of P or in Y of Q.

Again we use Theorems 1=3 for deriving thess explicit operator
definitions systematically from the corresponding relations on
observations, Additionally, we must prove that each comstruector
preserves the extensibility property of its operands (cf. Section 6).
This little extra work reflects the fact that extensibility has nothing
to do with the concept of continuity.




Finally we relate the models R and J . Note that the projection

relation g & BA x A

(s,X) gt iff s =1 .

is generable and domain finite. Theorems 1 and 2 imply that
¢A= J‘?.A —> T, uith

$p(s) = 0.(s)

is well-defined and continpuous. (e need ncf bother about extensibility
here.) Thus

Proposition 2. The family & = (@A [ A is an alphabst) is a homo-
morphism from the reductﬁrzz te J .

Corollary 2. For every closed program PEL(Z)A we have
@A ([P]ﬁ) = [pﬂy"
Note that for P,Q € L(Z)
B, (IrDaldy) = &, ([rexaly)

holds, %.8. in the Trace Model J external nondeterminism reduces to
internal nondeterminism.

17.

18.

11, £LConclusion ’ i

We are aiming at a classification of ssmantical models for
communicating processes that will enable us to recommend certain
models which are just detailed enough for particular applications.
But before such an-aim can be fully realised, more sophisticated
models of processes should be studied.

fFor example, we have not considered the notion of state so far.
This would allow to add assignment and explicit value passing between
processes, thus combining seguential programs with communicating
processes,

It is also important to ensure that the operators satisfy the
usual algebraic laws, for example parallel composition should be
assoclative. '

The relationship between specification-oriented denctational
semantics used here and the operational semantics used in [Mi 80, )
Mi 82, Pl 82 ]should also be studied. In particular, it is interesting
to investigate how the correctness criterion P sat S can be derived
systematically from the operational semantics. A significant step in

this direction has already been made in [NH B2] .

Finally, an explicit syntax for the specification language and

_proof systems for the relation P sat 5 should be developed. First

proposals for such proof systems can be found in T CH 81, Ho §1] .

Acknowledgement. The first author was supported by the DFG under

grant no. La, 426/3=1, and by the University of Kiel in granting him
lepave of absence.

References

L Ba 80 ] J.W. de Bakker, Mathematical Theory of Program Correctness
(Prentice Hall, London, 1988).

:BZ 82] J.W, de Bakker, J.I. Zucker, Dsnotational semantics of
concurrency, Proc., 14th ACM Symp. on Theory of Computing
(1982) 153-158. )

:BA B?: J.D. Brock, W.B. Ackermann, Scenarios: a model of non-
determinate computations, in: J. DBiaz, I. Ramos, Eds.,
Formalisation of Programming Copcepts, LNCS 107 {Springer,
Berlin~Heidelberg~New York, 1981) 252-267.

:Br 82; M. 8roy, Fixed point thecry for communication and concurrency,

in: D. Bigrner, E£d., Formal Description of Programming
Concepts II, Freliminary Proc, IFIP TC-Z Working Confersnce
{Morth Holland, Amsterdam, 1982) 104-126.




19,

Prof. Dr. Andrze]j Salwicki

LcH 81 Z. Chaochen, C,A.R. Hoare, Partiéi correctness of
communicating processes, in: Proc. 2Znd International - - .
conference on Distributed Computing Systems, Paris (1981). f und Praktische Mathematik

der Christian-Albrechts-Universitdt
2300 Kiel

Institut flir Informatik

TGTww 77]  3.A. Goguen, J.W. Thateher, E£.G. Wagner, J.B. Wright,
Initial algebra semantics and centinuous algebras, J. ACM-24
(1977) 68-95. -

[HH 82] E.C.R. Hehner, C,A.R. Hoare, A more complete model of
communicating processes (to appear in TCS) 1882,

"\
THo 80] C.A.R. Hoare, A model for cemmunicating sequential processes,
in: R.M. McKeag, A.M. McNaghton, Eds., On the Construction
of Programs (Cambridge University Press, 1980) 229243,

[HD 81] C.A.R. Hoare, A caleulus of total correctnsss fer communi-
cating processes, SCP 1 (1981) 49-72. " ON THE CONCATENATION RULE "

EHD 82] C.A.R. Hoare, Specifications, programs and implementations,
Tech. Monograph PRG-29, Oxford Univ., Progr. Research Group,
Oxford 1982,

THBR 81] C.A.R. Hoare, 5.0, Brookes, A.W. Roscoe, A theory of
cummunlcaFlng sequential processes, Tech. Monagraph PRG~16, Abstract

Oxford Univ., Progr., Research Group, Oxford 1981. e

Em; BD} R. Milmer, A calculus of communicating systems, LNCS 92
(Spmu@er,Berlh%ﬁeidehxmg—NmuYDrk,?980). : The concatenation rule of type declarations is a natural exten-

sion of co rule. However he :
[Mi 82] R, Milner, Four combinators for concurrency, in: Proc. Py P ® power and the usefulness ‘of

ACM SIGACT —SIGOPS Symp. on Principles of Distributed : the former go beyond intuitive expectations. We would like to
Computations, Ottawa, 1982, ' mention numerous applications of the rule in : implementation
I H 82] R. de Nicola, M.C.B. Hennessy, Testing eguivalences for ﬁ of data structures, problem oriented languages, operating sys-

processes, Internal Report CSR-123-8Z, yniv, of Edinburgh, f tems etc.

The difficulties of an efficien nd i -
Computer Science Dept., 1982, . corxect Tmpie

mentation of the rule will be discussed. Finally we shall pre-

oL 80] 5. Owicki, L. Lamport, Proving liveness properties of : sent a solution implemented in LOGLAN compiler. The concatena=-
concurrent programs, Tech, Report, Computer Science Lab., : £ 1 N . )
Stanford University, 1980. ion rule should be studied further in order :

, o ' 1 to learn about new applications, 2 to find other vari

Pl 82 ] 6.0. Plotkin, An cperatioral semantics for C3P, in: f . . PP f variants
D. Bjfrner, Sd., Formal Description of Programming Concspts ' which might appear as more attractive.

II, Preliminary Proc. IFIP TC-2 Working Conferznce (Nortn
Holland, Amsterdam, 1982) 185-208.

! S¢c 82] 0.S. Scott, Domains for denotational semantics, inms
M. Nielsen, E.M. Schmidt, Eds., Proc. 9th ICALP, LNCS 140
(springer, Berlin-Heidelberg—New York, 1982) §77-613.

‘5m 78 ¥,B8. Smyth, Power domains, J. CS5 15 (1978) 23-26.




1878 39

40

41
42
43

44

45

46

47

48

49
1979 50

51

52

53
54

55

19

tugo 57

58

59

60

&1

18UT3 JOE 140G ARF U2ANpazoldpavpuelg Uoa Funiatiuswaydmp

satouvpuadap panjeary(n@ Joy sInl uetiejuBmaldwod ays ug

usmAlsAssFunyn1alg pun ~SUOTINOpay 18q dwa|qoadiioy

usyvexdsiaTumeaBori Uoa ¥rjupwag 13p 2uniaysirRWwIOg

saulyoey durany sdef-sug 3O 2aNSed SWIL Yl ue ajoN ¥

J. BISKUP
W. OBERSCHEL?P

H.NEFFKE
W.SCHUMACHER

W. REISIG
W. DAMM
H. KLREREN
E. FEHR
R. MOHRING

R. PARCHMANN

M.M.RICETER
S.KEMMERICH

PLALTMANN

J.Tiuryn
V. PENNER

J. GIESE

M.™.RICHTER

L.RUBAK
J. TIURYN

J. TIURYN

W. REISIG

E. FEHR

H. KLAEREN

W. REISIG

R.E. BURKARD

H. NEFFKE

Informatik II

Mathematische Formulierung eines Lagerhaltungs—
modells mit variablen Inspektionszeitpunkten und
Vergleich dieses Modells mit dem Periodenmodell
mittels Simpulation

On a Class of Co-coperating Sequential Processes
The I0O- and OI-Hierarchies

Datenriume mit algebraischer Struktur

On Typed and Untyped A-Schemes

Vorlesungen Gber Ordnungen und Netzplantheorie

Grammatiken mit Attributschema und zweistufige
Auswertung attributierver Grammatiken

BOOLE' SCHE ALGEBREN

Zu den theoretischen Gruadlagen und der Implementie-
rung eines Scannergenerators
Unigue fixed points vs. least fixed points

Die Eingabesprache LDL fiir ein Compiler-erzeugendes
System vnd ein umfassendes Beispiel

Der Einsatz von assoziativen Speichern in Steuerwerken
zur Uberiappung von Mikrobefehlen

Geometrie und Logik; eine Vorlesung zur Einflhrung in
die Theorie der Topoi

Equational Definability of Iterative Theories
Fixed points in the power set algebra of infinite tress
Logic of Fffective Definitions

Schemes for Nonsequential Precessing Systems

Lambda-Calculus as Control Structures of Programming
Languages

A Simple Class of algorithmic Specifications for
Abstract Software Modules

Deterministic Buffer Synchronization of Sequential
Processes

Lineare Optimierung

a) The Law of the Iterated Logarithm for Renewal Counting

Processes,
b} Das Gesetz des iterierten Logarithmus fir kumilative

Prozesse.

1980 62

63

64

65

66

1981 67

68

69

70

71

74

1982 73
76

77

78

79
80

21

82

E. Burwick

T. Deil
K. Weihrauch

K. Indermark

H. Klaeren
H. Petzsch

H. Klaeren

J. Biskup

H.Klaeren
H.Petzsch

U.Goltz

W. Oberschelp

K. Indermark
H. Klaeren

E. Fehr

M.M. Richter
B. Schlésser
L. Schwarz

M.M. Richter
E. Triesch

H. Klaeren

Ch. Kreitz

W. Damm
B. Josko

H. Kiaeren

K. Indermark

B. Josko

G. Weiss

P. Horster

Anwendungsorientierte Programmiersprachen

Bexechenbarkeit auf CPO-s

On rational definitions in complete algebras
without rank

The development of an interpreter by means
of abstract algebraic software specifications

On parameterized abstract software modules
using inductively specified operations

Uber Datenbankrelationen mit Nullwerten und
Maybe-Tupeln

Algebraic scoftware specification and compiler
generation - A case study

Konzepte der Programmiersprache Ada
Informatik ITI (Datenstrukturen)

Auysarbeitung: Heiner Klocke

Automatentheorie und Formale Sprachen I

The Lambda~Semantics of LISP

Modelltheorie

Universelle Algebra

Einfihrung in die Abstrakte Software-Spezifikatic

Zuldssige CPO's: ein Entwurf fir ein allgemeines
Berechenbarkeitskonzept

A sound and relatively* complete Hoare-logic
for a language with higher type procedures

AR constructive method for abstract algebraic
Software specification.

Reduction semantics for rational schemes

A note on expressivity definitions in Hoare-
logics

Stochastic Bounds on Distributions of Optimal
Value Functions with applicaticons to Pert,
Network Flow and Reliability

Kryptologie

0l Bunupag inz s1q vaddnig aijejieg

k4

uswy3 11081y pPun 31ayiEquaydlag

0yvdl
NNYHLTY

&

8t

SU013}E|21 3seqelep u
d0Asig ‘r e 861

SFAQIANVS 3 of
AAVIEIANT "3 g

NENONd "R pE
uaBunpuasuy pun
YINN3d "4 €€

amista -r  zg {61

I T80T SuSSTIPWSUIRH  WAINOTE "H'H 1€

swalsds oTuyITIo8Te 10y swayqozd UOTSTISE jJo aduaieainbs

avo-Luew 2yl yo Liooyl ayi o1 yoeoidde 12101u23 mau y

Hmmnwﬂw@mwcsnuwmuma: Urta pun sisjrdwery ~ IyRIW
+ T¥Iodyg seuts 2astruwmeafory :, Tyioud ayoeadsiatw
~weidoxgy aap wc:uwwusmsmﬁmEH: B? AN 3yYdTaag mnz Bueyuy

a

P1ic2y3sagITXe1duoy SYosTiewayIeN 2Ip ur Suniynjurg

SWA3SAG-USZIUIY PUER UOTIETNPOmEIRG ‘uoTiniosay

-ImI933q uoa 1pI1x31dmoy 2Ip Injy Bunzipydsqy 21v3un atTy

$3971dwo) ~ IVXIN + ‘IVIONG
seuts Bunisliusweydwy w33punadaq YO81381083 2uts pun
TY10¥8 suveirdsiatumesforg iop gunqraayssag 23 1pugis{Tos

(S, MOTSER JO SURTSUDIXZ 2WOS pue SWH)SAG-USZIUBY

uAsQg

m

ot

dNILs -
gannad
Isaia -
NNYHITY *

"l

(S = =]

6T

dNdLs
UANNEE
AS3ID -
NNVHLTV -

B> D

82

TII ATIewxojuy q8A19 L {Z
dTIHISIIE0 "M
JBWIOU
1 Ariemzozul amisig 'r 9z
I 9
dTIHIS A0 "M 52 961

PoYlsw 3sIaAUT  ONV4AIHIS "2

NILSOC “d 4
YIIHDIY "H'H f£2

ONVJATHIS D

BT103Y3SUOTSINYIY ¥IIASTE WK Z2Z

IIUSUPNIDZ PUN ajURU
SITy "9 Iz

2INQTAIIV I3YDS  HIMNL

Hunpusmia 1sjun surgosewis|feieg I3UT2 INE 2Onapsny

981193 Tae Junuyosiag anz Funzatpon a331ana3salxejudg

NNVRHOVd *H 0T SL61

usatsanNRA~TTaT3Rd UIYDSTME LoTITHIBA UTH

@oTlenteag [3TIwIwd Iof suoTssoxdxy ST3auN3Tay But
—-3uasaxday ssaip Aieury Jo yibysH sy 3O UOTARSTTRWIUTH

OTIAGES "W
NNYWHONYd ~d 538 SLé1

USUOTINULI USUYSTTUYR-JSTT pun

NMNYWILTY ~d el

AFIojeuTquoy 19p T33TdeN aaTuessbsny JTTHISHEEO ‘M 4]

uszojezsdosbuniygzyny pun ushusy sunomr-tq

PUl USIRWONNY IFUCIYDUASE STRUICUIYDIN

d1TI8 "G

USININOAYS SA0IYSTA  JTAHDSHILO *M 21

anAsrg "o St

uD SUNUPIONZSPURYSNE @IYT

asain -p ¥l

usfunuprowrad pun USBUNUPIO IPYOTTPUS USSSETY

—aTydromosI I9p bunuwrisaqiyezIeuTpaed Inz beajteg uta

30734§ "9°H £

UBBUNUPIO I9YSTTPUS uot3tsoducyspuslyay

USTEWTUTE 13p Bunuydsisg s3iarznpay

uRUoTIeTdY pun usydein srpjusmeidwoylsqrag

USUOTIRTIY Uoa BSSeTY ASUTS UT UsPUNUUIISLATYRZUY

ONIHHCW "d [ VLGT

aTII8 “a 11

uILPAITHITH usyaTTpuUd

IBINLY JTW USTTTAURS UBIZIRQIYRZGE UR USUOTINUNITYEmSaY
UBATINBLUT PUN USTESISASURIL Uos UsDUNUOINSISIUNTYRZUY

SNEAITLS X of

usmouijoduany uwoa Sunuysszsg
ANZ TATEYSUCTILTIUBALIITY UTE  JTIHISHIEO ‘M &

(q’'u}d uaiyezsuorstiaed a1p xaqp)

ANHQHE “4d ]

ITIIM “Q L

UBIqoId-ugInL wmz usbunzieyosqy abYUTY WMIHISING ‘0N o

UBUOTINUNT BIRGUIYISIDG-8I0]E-UMOT-USTg

HANNEd "A S

SISqWIU TIORUOALd JO WNS & SB SISGUNU Teinzey

Jo uoTjejuassadex UT SuIsy JO XIquUna TRWTUTW uQ) ¥ZEd "R v
aayaTusbusy AT1IM *a
pun Y1607 aysstiRweyiel ut Sunaypyutd ATHHISHHEG "M € £i6l

JTeyreqaaTadaziy pUn 3 TaXIRPTIYOSIUT

USUOTINUNITUemsny 2aT3y2lur

SHELAALS A z

USUTYDSRH 3I015-UMoG-Ystg yne

YINNAD A I Zi61

USYORY HIMY

‘sewoyy "M ‘IOZUTURS g ‘drayssiagqo-y PZYTMHIBN O Y TEMIBPUT ~ Y s Ipgabsnessy

HILVWIHIVH NILONVMIONY dNO AIIVIRNOANI ¥0% NILALTEHOS




-

e
S
e S
i B
St e
; L Ao R

s
R

AYBURITE UT 78°Z1°9T-"z1°¢1
bumzatmuezbozg I9p atiosyy,, Lunbessitsgay YARUASPUT Y (8 £861

u
FUBWIOI TAUT

UOTAVDTITIBA XSdAS wap ITW SI03LIIUSH-I2UUERDS
SSUTS UOTIRATITIDA pun SunTHoTM3uUY Iauusag "p ag £B61T

10009 2yseadsIsTumesboig

ualdsTjusTrosHunpusmue Xap m:snwmnguwmﬂzumamm HOTmang m 58 £661

899131 aQTuUTIUY Jo L3rTxerduwo) ATRWIBPUT *% by

(IW9) Li/SHA pUn (WHI) SWI suwe3sds xop puryue

Bunie rumre 6o xdyuequageg 8TP uT AuniynguTz ¥omTMIng "H  £8  reel




