
Interleaving Sessions with Predicates

Peter Thiemann
Albert-Ludwigs-Universität Freiburg

Freiburg, Germany
thiemann@acm.org

ABSTRACT
We propose an extension of binary session types with inter-
leaved sessions that work similar to interrupts. The partic-
ipants in a session register a set of trigger predicates that
are associated with local protocols. When a trigger fires, all
participants switch simultaneously to the interleaved proto-
col and return to the original protocol afterwards. The use
of interleaved sessions enables the elegant specification of
protocols that are otherwise cumbersome to specify.

1. INTRODUCTION
Session types enable fine-grained static control over commu-
nication protocols. They evolved from a structuring device
for two-party communication in π-calculus [Honda, 1993]
(binary session types) over calculi embedded in functional
languages [Gay and Hole, 1999, Vasconcelos et al., 2006] to
a powerful means for describing multi-party orchestration
of communication [Honda et al., 2008]. There are embed-
dings in object-oriented languages [Gay et al., 2010, Dezani-
Ciancaglini et al., 2009]. Their logical foundations have been
investigated with interpretations in intuitionistic and classi-
cal linear logic [Caires and Pfenning, 2010, Wadler, 2012].

However, most uses of session types deal with a single pro-
tocol that does not change while the system is running. One
exception are the systems for session types with exceptions
by Carbone and coworkers [Carbone et al., 2009]. They
propose a system (that we call CHY) where session types
are extended with exceptional session handlers. A globally
visible event causes all participants of a session to switch
protocol to the handler corresponding to the event.

Another system that changes protocols on the go is the
adaptive system for secure information flow by Castellani
and coworkers [Castellani et al., 2016]. In this system, the
communication partners switch protocols in response to an
observed breach of a security property. The switch is an-

Appears in proceedings SAC 2017

ticipated in the type structure with union and intersection
types.

Capecchi and coworkers [Capecchi et al., 2016] propose a
mechanism for multi-party sessions that throws an exception
to a subset of the participants in the session in a limited
scope. Their framework relies on the broadcasting of an
exception message.

Protocol types [Chen et al., 2016] may be viewed as a refine-
ment of Capecchi’s work where exceptions are tied to single
exchanges and further distinguished into different failures
that lead to different handler protocols.

Demangeon and coworkers [Demangeon et al., 2015] con-
sider run-time verification for multi-party session types with
scoped exceptions. They put particular emphasis on asyn-
chrony such that messages in a scope with a thrown excep-
tion are skipped until all participants have become aware of
the exception.

In contrast, we consider statically enforced protocols that
are interleaved just like interrupt handlers are interleaved
with the normal execution of a program: after handling the
interrupt, normal execution is resumed. None of the pre-
viously discussed works allows for resumption. In our ap-
proach, each session (endpoint) is associated with a state
that evolves in a loosely synchronized way. Handlers can be
associated with predicates on the session state. If a predicate
holds on the current session state (following a state update
or a communication), then this fact is observed by all par-
ticipants of the protocol and they switch to the interleaving
protocol to handle the interrupt.

Interleaved sessions return to where they left off in the origi-
nal protocol, while the systems discussed above (e.g., CHY)
discard the rest of the protocol inside the scope of the ex-
ception handler and continue outside after handling the ex-
ception. The next section gives a number of applications for
interleaved sessions.

We define the formal system, give its semantics by em-
bedding it into a variant of Gay and Vasconcelos’ system
of functional session types restricted to first-order sessions
and synchronous communication, and sketch a proof of type
preservation. We believe this framework makes it easy to
discuss realistic examples and it simplifies the metatheory
because the functional part yields a simple way to define
and manipulate session state separate from the communica-
tion operations.



2. REFERENCES
[Caires and Pfenning, 2010] Caires, L. and Pfenning, F.

(2010). Session types as intuitionistic linear propositions.
In CONCUR, volume 6269 of LNCS, pages 222–236,
Paris, France. Springer.

[Capecchi et al., 2016] Capecchi, S., Giachino, E., and
Yoshida, N. (2016). Global escape in multiparty sessions.
Mathematical Structures in Computer Science,
26(2):156–205.

[Carbone et al., 2009] Carbone, M., Yoshida, N., and
Honda, K. (2009). Asynchronous session types:
Exceptions and multiparty interactions. In Bernardo,
M., Padovani, L., and Zavattaro, G., editors, SFM,
volume 5569 of LNCS, pages 187–212. Springer.

[Castellani et al., 2016] Castellani, I., Dezani-Ciancaglini,
M., and Pérez, J. A. (2016). Self-adaptation and secure
information flow in multiparty communications. Formal
Asp. Comput., 28(4):669–696.

[Chen et al., 2016] Chen, T., Viering, M., Bejleri, A.,
Ziarek, L., and Eugster, P. (2016). A type theory for
robust failure handling in distributed systems. In
FORTE, volume 9688 of LNCS, pages 96–113. Springer.

[Demangeon et al., 2015] Demangeon, R., Honda, K., Hu,
R., Neykova, R., and Yoshida, N. (2015). Practical
interruptible conversations: Distributed dynamic
verification with multiparty session types and Python.
Formal Methods in System Design, 46(3):197–225.

[Dezani-Ciancaglini et al., 2009] Dezani-Ciancaglini, M.,

Drossopoulou, S., Mostrous, D., and Yoshida, N. (2009).
Objects and session types. Information and
Computation, 207(5):595–641.

[Gay and Hole, 1999] Gay, S. J. and Hole, M. J. (1999).
Types and subtypes for client-server interactions. In
Proc. 1999 ESOP, volume 1576 of LNCS, pages 74–90,
Amsterdam, The Netherlands. Springer.

[Gay et al., 2010] Gay, S. J., Vasconcelos, V. T., Ravara,
A., Gesbert, N., and Caldeira, A. Z. (2010). Modular
session types for distributed object-oriented
programming. In Proc. 37th ACM Symp. POPL, pages
299–312, Madrid, Spain. ACM Press.

[Honda, 1993] Honda, K. (1993). Types for dyadic
interaction. In Best, E., editor, Proceedings of 4th
International Conference on Concurrency Theory,
number 715 in LNCS, pages 509–523.

[Honda et al., 2008] Honda, K., Yoshida, N., and Carbone,
M. (2008). Multiparty asynchronous session types. In
Wadler, P., editor, Proc. 35th ACM Symp. POPL, pages
273–284, San Francisco, CA, USA. ACM Press.

[Vasconcelos et al., 2006] Vasconcelos, V. T., Ravara, A.,
and Gay, S. J. (2006). Type checking a multithreaded
functional language with session types. Theoretical
Computer Science, 368(1-2):64–87.

[Wadler, 2012] Wadler, P. (2012). Propositions as sessions.
In Findler, R. B., editor, ICFP’12, pages 273–286,

Copenhagen, Denmark. ACM.


