
Functional Array Programming for Cluster Architectures

Clemens Grelck
University of Amsterdam

C.Grelck@uva.nl

Thomas Macht
VU University Amsterdam
T.Macht@student.vu.nl

1. Introduction
Single Assignment C [5] is a functional data parallel language spe-
cialising in array programming. SAC combines high productivity
programming with efficient parallel execution. Data parallelism in
SAC is based on array comprehensions in the form of with-loops
that are used to create immutable, truly multi-dimensional array
values or to perform reduction operations.

The SAC compiler goes to great lengths combining and optimis-
ing with-loop-based intermediate code [4]. In doing so SAC com-
piler systematically transforms programs from a human-friendly
representation to one that is amenable to efficient machine exe-
cution. Eventually the SAC compiler emits platform-specific ISO
C compliant code. Currently, the compiler includes backends for
symmetric multi-core multi-processor systems with shared address
space architectures [2], GPUs (based on CUDA) [6], the Micro-
Grid many-core architecture [3] as well as heterogeneous systems
of multi-core general-purpose processors and GPUs [1].

A clear gap in the SAC compiler’s portfolio of target platforms
are cluster-like architectures with distributed address spaces. The
goal of our current work is to close this gap and add efficient cluster
support to SAC compiler and runtime system.

2. Approach
Adhering to the design and philosophy of SAC we aim for a com-
pletely automatic solution that maps entirely system-agnostic pro-
grams to cluster architectures and, nonetheless, achieves competi-
tive performance for the compute-intensive applications that SAC
targets. Since the programming language SAC supports arbitrary
index functions on arrays, we cannot expect to be able to fully
analyse array access patterns, at least not in the general case. There-
fore, we follow a distributed shared memory (DSM) strategy. While
DSMs historically have a reputation for poor performance, it is now
time to re-think this approach as technology has thoroughly shifted
the relation between network and memory speed. Correspondingly,
interest in Software DSMs is again on the rise [8].

3. Why a Software DSM solution?
Distributed shared memory provides a shared memory abstraction
on top of a physically distributed memory. An overview of issues
of DSM systems can be found in [7]. These early DSM systems
have not been adopted on a large scale due to shortcomings in per-
formance. Explicit message passing, and in particular MPI, remain
the predominant programming model for clusters.

However, Ramesh et al. suggest that it is time to revisit DSM
systems [8]. They argue that early DSM systems were not success-
ful because of slow network connections at the time. Today, net-
work bandwidth is comparable to main memory bandwidth, and
network latency is only one order of magnitude worse than main
memory latency. These developments pretty much reduce Software
DSMs to a cache management problem.

4. Why a custom DSM system?
In order to support distributed memory systems, we could run a
SAC program on top of an existing Software DSM system. Instead,
we decided to integrate a custom DSM system into the SAC com-
piler and runtime system. This allows us to exploit SAC’s func-
tional semantics and the very controlled parallel execution model of
with-loops. Since variables in sac have write-once/read-only se-
mantics, we do not have to take into account that they could change
their value. Furthermore, parallelism only occurs in with-loops and
while arbitrary variables can be read in the body with-loop, only a
single variable is written to.

5. Implementation and evaluation
During the presentation we outline the major design choices made
in our implementation of a custom Software DSM for functional
array processing as part of the SAC runtime system as well as
the major extensions of the SAC compiler to make use of it. We
further report on our experimental findings involving a variety of
benchmarks and draw conclusions regarding the overall approach.

References
[1] M. Diogo and C. Grelck. Towards heterogeneous computing without

heterogeneous programming. In Trends in Functional Programming,
13th Symposium, TFP 2012, St.Andrews, UK, LNCS 7829, pages
279–294. Springer, 2013.

[2] Clemens Grelck. Shared memory multiprocessor support for functional
array processing in SAC. Journal of Functional Programming,
15(3):353–401, 2005.

[3] Clemens Grelck, Stephan Herhut, Chris Jesshope, Carl Joslin, Mike
Lankamp, Sven-Bodo Scholz, and Alex Shafarenko. Compiling
the Functional Data-Parallel Language SAC for Microgrids of Self-
Adaptive Virtual Processors. In 14th Workshop on Compilers
for Parallel Computing (CPC’09), IBM Research Center, Zürich,
Switzerland, 2009.

[4] Clemens Grelck and Sven-Bodo Scholz. Merging compositions of
array skeletons in SAC. Journal of Parallel Computing, 32(7+8):507–
522, 2006.

[5] Clemens Grelck and Sven-Bodo Scholz. SAC: A functional array
language for efficient multithreaded execution. International Journal
of Parallel Programming, 34(4):383–427, 2006.

[6] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. Breaking
the GPU programming barrier with the auto-parallelising SAC com-
piler. In Declarative Aspects of Multicore Programming (DAMP’11),
pages 15–24. ACM, 2011.

[7] Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey
of issues and algorithms. Distributed Shared Memory-Concepts and
Systems, pages 42–50, 1991.

[8] B. Ramesh, C. J. Ribbens, and S. Varadarajan. Is it time to rethink
distributed shared memory systems? In Parallel and Distributed
Systems (ICPADS’11) pages 212–219, 2011. ID: 1.


