
Modelling Haskell Programs
using the Freer Monad

Jan Christiansen

Hochschule Flensburg

Fachbereich 3

jan.christiansen@hs-flensburg.de

Sandra Dylus

CAU Kiel

Institut für Informatik

sad@informatik.uni-kiel.de

When we want to prove statements about a Haskell program in an inter-
active theorem prover like Agda or Coq, we have to transform the Haskell
program into an Agda/Coq program. As Agda/Coq programs have to be to-
tal and Haskell programs are often not, we have to model partiality explicitly
in the target language. A natural way of modeling partiality is the maybe
monad. Instead of using the maybe monad explicitly, it is quite appealing
to use a generic monadic embedding. By instantiating the monadic program
with a concrete monad instance we can choose the model we would like to
prove the statement in. For example, when we use the identity monad, we
are working in a total world while the maybe monad allows us to model
partiality. In preceding work by Abel et al. [2005] this kind of model has
been used to reason about existing Haskell programs in Agda. However, this
approach does not work in Coq as Coq rejects the definitions of monadic
data types that are required. Similarly we cannot use this approach in Agda
these days because Agda has added the same restriction that is enforced by
Coq.

As a solution to this problem we present an approach that is based on the
free monad — more specifically the freer monad. The free monad extracts
the essence of a monad into a data type and allows for specific monadic effects
by parametrising over a type constructor. By using the free monad we get
function and data type definitions that can be used to model both worlds.
While the definition of the free monad is not allowed as well, a derivative, the
freer monad, is accepted by current versions of Agda and Coq. In contrast
to preceding work our model even allows to prove statements that hold for
all monads with a single proof.

References

Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell. Verifying haskell
programs using constructive type theory. In In Haskell’05. ACM Press, 2005.


