
Transactional Memory with Finalizers

Michael Schröder

Vienna University of Technology

Abstract

Software Transactional Memory (STM) immensely simplifies con-
current programming by allowing memory operations to be grouped
together into atomic blocks. Like database transactions, STM trans-
actions provide atomicity, consistency and isolation. Unlike databases,
they do not provide durability.

As part of my master’s thesis, I have extended the STM imple-
mentation of Haskell with a mechanism to add finalizers to atomic
blocks. The new operation atomicallyWithIO allows the program-
mer to safely execute arbitrary I/O during the commit-phase of a
transaction. This can be used to make STM durable, but it turns out
to have even more applications. For example, a finalizer could ask
the user to approve pending results, enabling interactive transactions.
A finalizer could also communicate with remote actors, providing the
foundation for a distributed STM system.

In this talk I will give a brief overview of STM in Haskell, moti-
vate the need for finalizers, provide examples of their use, and discuss
design decisions and potential shortcomings.


