
A JIT for PySQLite

Carl Friedrich Bolz

Software Development Team

King's College London

April 24, 2015

While DataBase Management Systems (DBMSs) are highly optimised, the
communications between a user program and a DBMS are often costly: tradi-
tional DBMSs require inter-process calls; embedded DBMSs normally prevent
Just-In-Time (JIT) compilation across the boundary between user program and
database.

As an exploratory case study, we took SQLite, an embedded DBMS, and re-
placed part of the C code in its core interpreter loop with RPython code, leaving
the rest of the database implementation intact. Together with the RPython JIT,
this makes it possible to generate machine code for the execution of SQL queries
in SQLite on the �y.

This has two e�ects: on the one hand, SQL query execution is speed up,
on average by about 10% on the TPC-H benchmark set. On the other hand,
this makes it possible to drastically speed up the integration with PyPy, the
Python interpreter written in RPython. When using this jitted SQLite, the JIT
will dynamically inline SQL query execution into the surrounding Python code,
optimizing the data passing between Python and the database. Equivalently,
SQL functions and aggregates that are written in Python can be inlined into
SQL code. In this way, our SQLite implementation has a more dramatic e�ect
on queries from Python to SQPyte, which are speed up by a factor of 2.9 on
average.

These results suggest that applying JIT technology to database, particularly
in their interaction with other languages, holds a lot of performance potential.
In addition, the results show the bene�ts of using high-level frameworks for
JIT construction: the SQLite JIT, together with the integration into PyPy was
realized in just a few person-months, and is only about 5000 LOC large.

1


