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What?

Solve global code motion and register allocation as an integrated

problem.
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Global code motion

live range of b

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1 loop invariant

i2 := i1 + b

c := f(a)

compare i2 < c

d := i2 × 2

d := i2 × 2 partially dead

blt loop

end:

return d

start:

i0 := 0

a := read()
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i1 := φ(i0, i2)

b := a + 1b := a + 1

i2 := i1 + b

c := f(a)

d := i2 × 2d := i2 × 2

compare i2 < c

blt loop

end:

return d

start

loop

end
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Register allocation: con�ict graphs

original program

a b

c

d

i

a b

c

d

i

allocation to 3 registers possible

after global code motion

a b

c

d

i

not 3-colorable!
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Compute code motions and overlaps

start:

0: i0 := 0

1: a := read()

loop:

loop:

2: i1 := φ(i0, i2)

2: i1 := φ(i0, i2)

3: b := a + 1

3: b := a + 1

4: i2 := i1 + b

5: c := f(a)

6: compare i2 < c

7: d := i2 × 2

7: d := i2 × 2

8: blt loop

8: blt loop

end:

end:

9: return d

Avoidable overlaps

Pair Overlapping placement

a, d 7 in loop

b, c 3 in start

b, d 3 in start, 7 in loop

b, i0 3 in start

b, i2 3 in start

c, d 7 in loop, 7 before 6

d, i2 7 in loop
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Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

i

=⇒

a b

c

d

i

a b

c

d

i

a b

c

d

i

6 registers
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Register allocation
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Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.
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3 registers: place 3 in loop and 7 in end
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Results

Integrate code motion and register allocation by letting the

allocator choose necessary code motions.

Execution time improved by up to 4% ,
. . . but no improvement on average /

Conclusion: Code motion is important, but simple heuristics su�ce

in practice.

Thank you!

This work was supported by the Austrian Science Fund (Fonds zur Förderung der

wissenschaftlichen Forschung) under contract P21842, Optimal Code Generation for

Explicitly Parallel Processors.
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