
Optimal and Heuristic Global Code Motion

for Minimal Spilling

Gergö Barany
gergo@complang.tuwien.ac.at

Institute of Computer Languages
Vienna University of Technology uages

comp
lang

uter

POPL 2013 Student Session
January 23, 2013

(paper at CC 2013, Rome, March 2013)

1/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



What?

Solve global code motion and register allocation as an integrated

problem.

2/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Global code motion

live range of b

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1 loop invariant

i2 := i1 + b

c := f(a)

compare i2 < c

d := i2 × 2

d := i2 × 2 partially dead

blt loop

end:

return d

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1b := a + 1

i2 := i1 + b

c := f(a)

d := i2 × 2d := i2 × 2

compare i2 < c

blt loop

end:

return d

start

loop

end

3/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Global code motion

live range of b

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1 loop invariant
i2 := i1 + b

c := f(a)

compare i2 < c

d := i2 × 2

d := i2 × 2 partially dead

blt loop

end:

return d

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1b := a + 1

i2 := i1 + b

c := f(a)

d := i2 × 2d := i2 × 2

compare i2 < c

blt loop

end:

return d

start

loop

end

3/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Global code motion

live range of b

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1 loop invariant
i2 := i1 + b

c := f(a)

compare i2 < c

d := i2 × 2

d := i2 × 2 partially dead
blt loop

end:

return d

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1b := a + 1

i2 := i1 + b

c := f(a)

d := i2 × 2d := i2 × 2

compare i2 < c

blt loop

end:

return d

start

loop

end

3/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Global code motion

live range of b

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1

loop invariant

i2 := i1 + b

c := f(a)

compare i2 < c

d := i2 × 2

d := i2 × 2

partially dead

blt loop

end:

return d

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1

i2 := i1 + b

c := f(a)

d := i2 × 2

d := i2 × 2

compare i2 < c

blt loop

end:

return d

start

loop

end

3/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Global code motion

live range of b

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1 loop invariant

i2 := i1 + b

c := f(a)

compare i2 < c

d := i2 × 2

d := i2 × 2 partially dead

blt loop

end:

return d

start:

i0 := 0

a := read()

loop:

i1 := φ(i0, i2)

b := a + 1

b := a + 1

i2 := i1 + b

c := f(a)

d := i2 × 2

d := i2 × 2

compare i2 < c

blt loop

end:

return d

start

loop

end

3/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Register allocation: con�ict graphs

original program

a b

c

d

i

a b

c

d

i

allocation to 3 registers possible

after global code motion

a b

c

d

i

not 3-colorable!

4/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Register allocation: con�ict graphs

original program

a b

c

d

i

a b

c

d

i

allocation to 3 registers possible

after global code motion

a b

c

d

i

not 3-colorable!

4/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Register allocation: con�ict graphs

original program

a b

c

d

i

a b

c

d

i

allocation to 3 registers possible

after global code motion

a b

c

d

i

not 3-colorable!

4/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Compute code motions and overlaps

start:

0: i0 := 0

1: a := read()

loop:

loop:

2: i1 := φ(i0, i2)

2: i1 := φ(i0, i2)

3: b := a + 1

3: b := a + 1

4: i2 := i1 + b

5: c := f(a)

6: compare i2 < c

7: d := i2 × 2

7: d := i2 × 2

8: blt loop

8: blt loop

end:

end:

9: return d

Avoidable overlaps

Pair Overlapping placement

a, d 7 in loop

b, c 3 in start

b, d 3 in start, 7 in loop

b, i0 3 in start

b, i2 3 in start

c, d 7 in loop, 7 before 6

d, i2 7 in loop

5/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Compute code motions and overlaps

start:

0: i0 := 0

1: a := read()

loop:

loop:

2: i1 := φ(i0, i2)

2: i1 := φ(i0, i2)

3: b := a + 1

3: b := a + 1

4: i2 := i1 + b

5: c := f(a)

6: compare i2 < c

7: d := i2 × 2

7: d := i2 × 2

8: blt loop

8: blt loop

end:

end:

9: return d

Avoidable overlaps

Pair Overlapping placement

a, d 7 in loop

b, c 3 in start

b, d 3 in start, 7 in loop

b, i0 3 in start

b, i2 3 in start

c, d 7 in loop, 7 before 6

d, i2 7 in loop

7 in loop: overlap!

5/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Compute code motions and overlaps

start:

0: i0 := 0

1: a := read()

loop:

loop:

2: i1 := φ(i0, i2)

2: i1 := φ(i0, i2)

3: b := a + 1

3: b := a + 1

4: i2 := i1 + b

5: c := f(a)

6: compare i2 < c

7: d := i2 × 2

7: d := i2 × 2

8: blt loop

8: blt loop

end:

end:

9: return d

Avoidable overlaps

Pair Overlapping placement

a, d 7 in loop

b, c 3 in start

b, d 3 in start, 7 in loop

b, i0 3 in start

b, i2 3 in start

c, d 7 in loop, 7 before 6

d, i2 7 in loop

7 not in loop: no overlap

5/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Compute code motions and overlaps

start:

0: i0 := 0

1: a := read()

loop:

loop:

2: i1 := φ(i0, i2)

2: i1 := φ(i0, i2)

3: b := a + 1

3: b := a + 1

4: i2 := i1 + b

5: c := f(a)

6: compare i2 < c

7: d := i2 × 2

7: d := i2 × 2

8: blt loop

8: blt loop

end:

end:

9: return d

Avoidable overlaps

Pair Overlapping placement

a, d 7 in loop

b, c 3 in start

b, d 3 in start, 7 in loop

b, i0 3 in start

b, i2 3 in start

c, d 7 in loop, 7 before 6

d, i2 7 in loop

3 in start, 7 in loop: overlap!

5/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Compute code motions and overlaps

start:

0: i0 := 0

1: a := read()

loop:

loop:

2: i1 := φ(i0, i2)

2: i1 := φ(i0, i2)

3: b := a + 1

3: b := a + 1

4: i2 := i1 + b

5: c := f(a)

6: compare i2 < c

7: d := i2 × 2

7: d := i2 × 2

8: blt loop

8: blt loop

end:

end:

9: return d

Avoidable overlaps

Pair Overlapping placement

a, d 7 in loop

b, c 3 in start

b, d 3 in start, 7 in loop

b, i0 3 in start

b, i2 3 in start

c, d 7 in loop, 7 before 6

d, i2 7 in loop

3 not in start: no overlap

5/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Compute code motions and overlaps

start:

0: i0 := 0

1: a := read()

loop:

loop:

2: i1 := φ(i0, i2)

2: i1 := φ(i0, i2)

3: b := a + 1

3: b := a + 1

4: i2 := i1 + b

5: c := f(a)

6: compare i2 < c

7: d := i2 × 2

7: d := i2 × 2

8: blt loop

8: blt loop

end:

end:

9: return d

Avoidable overlaps

Pair Overlapping placement

a, d 7 in loop

b, c 3 in start

b, d 3 in start, 7 in loop

b, i0 3 in start

b, i2 3 in start

c, d 7 in loop, 7 before 6

d, i2 7 in loop

7 not in loop: no overlap

5/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

i

=⇒

a b

c

d

i

a b

c

d

i

a b

c

d

i

6 registers

6/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

i =⇒

a b

c

d

i

a b

c

d

i

a b

c

d

i

5 registers: easy allocation

6/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

i =⇒

a b

c

d

i

a b

c

d

i

a b

c

d

i

4 registers: place instruction 7 in block end to avoid overlaps

6/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Register allocation

Con�ict graph with special edges for avoidable overlaps. Allocate to

di�erent registers if possible.

a b

c

d

i =⇒

a b

c

d

i

a b

c

d

i

a b

c

d

i

3 registers: place 3 in loop and 7 in end

6/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Results

Integrate code motion and register allocation by letting the

allocator choose necessary code motions.

Execution time improved by up to 4% ,
. . . but no improvement on average /

Conclusion: Code motion is important, but simple heuristics su�ce

in practice.

Thank you!

This work was supported by the Austrian Science Fund (Fonds zur Förderung der

wissenschaftlichen Forschung) under contract P21842, Optimal Code Generation for

Explicitly Parallel Processors.

7/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling



Results

Integrate code motion and register allocation by letting the

allocator choose necessary code motions.

Execution time improved by up to 4% ,
. . . but no improvement on average /

Conclusion: Code motion is important, but simple heuristics su�ce

in practice.

Thank you!

This work was supported by the Austrian Science Fund (Fonds zur Förderung der

wissenschaftlichen Forschung) under contract P21842, Optimal Code Generation for

Explicitly Parallel Processors.

7/7 Gergö Barany (TU Vienna) Global Code Motion for Minimal Spilling


