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ABSTRACT
The amount of spill code generated by a compiler back-
end has crucial effects on program performance. Instruction
scheduling before register allocation may cause live range
overlaps that lead to suboptimal spill code. Even when a lo-
cal scheduler tries to minimize register usage, its results can
leave room for improvement regarding overall spill costs.

We present Register Reuse Scheduling (RRS), a novel ap-
proach to global register allocation that derives a register as-
signment while minimizing spill code by locally (re-)ordering
independent operations. Using basic block data dependence
graphs (DDGs), we identify possibly interfering live ranges
whose interferences may be avoided by appropriate schedul-
ing of instructions: Sequencing of independent computations
allows the reuse of registers to avoid spilling. Such schedul-
ing decisions may be enforced by adding arcs to the DDG.
We use global spill cost information to identify a set of prof-
itable arcs that enable register reuse. The corresponding
interferences need not be present in the register allocation
problem. A standard near-optimal register allocator com-
putes a register assignment. The register reuses that are
implicit in the assignment allow us to select arcs to add to
the DDG and construct a schedule with minimal spill costs.

We present experimental data that shows that our approach
can significantly decrease the amount of spills as compared
to a local scheduling heuristic aimed at minimizing register
usage. On average, we spill 8.9 % fewer values and reduce
static spill costs by 3.4 %.

1. INTRODUCTION
The phase of register allocation and spilling is one of the
major parts of an optimizing compiler backend. Spilling and
reloading registers incurs considerable costs because reading
a value from memory is orders of magnitude slower than
reading a value from a register.

Especially in the context of embedded systems, other costs

of spilling are relevant as well: Memory accesses cost more
energy than register accesses, shortening the battery life of
mobile devices. More store and load instructions generated
by the compiler also cause an increase in code size, which
may increase the device’s memory cost. A larger code size, in
turn, can also lead to more memory accesses and instruction
cache misses, further lowering the execution speed of the
program and energy economy of the device.

This paper presents a new method aimed at minimizing
spill code by attempting to find an instruction schedule that
allows for the least expensive register allocation. Our ap-
proach is based on a standard global register allocator. The
allocator is applied to a problem that implicitly encodes in-
struction scheduling decisions besides the problems of reg-
ister assignment and spilling. The scheduling options are
computed beforehand; after register allocation, the register
assignments are mapped to a set of scheduling constraints,
and the instructions are arranged accordingly. Using this
scheme, instruction scheduling is guided directly by the reg-
ister allocator’s needs, based on the allocator’s global model
of spill costs.

The rest of this paper is structured as follows. Section 2 dis-
cusses register allocation, instruction scheduling, and their
interactions. Section 3 introduces Register Reuse Scheduling
(RRS), our novel approach for integrating register allocation
with instruction scheduling decisions. Section 4 discusses
our implementation of RRS and gives benchmark results,
Section 5 presents related work, and Section 6 concludes.

2. REGISTER ALLOCATION AND
INSTRUCTION SCHEDULING

Register allocation is the problem of assigning program val-
ues (or virtual registers) to the target architecture’s physical
registers. If all eligible registers are in use, other values must
be spilled : Spilled values are saved to stack slots and must
be reloaded before use. Spilling a value is costly because
reloads are much more expensive than register accesses. De-
cisions of which values to spill use a measure of spill costs,
which are based on the number and expected execution fre-
quencies of necessary reload instructions (and often other
factors as well). The aim of register allocation is to mini-
mize spill costs. As a secondary objective, values connected
by copy instructions may be coalesced, i. e., allocated to the
same register, to eliminate the copies.

Formulations of the register allocation problem are based



on a notion of live ranges of values: A value is live at every
program point between its definition and its last use. Values
that might be eligible for assignment to the same register (or
aliasing registers), but that have overlapping live ranges, are
said to interfere. Interfering values may not be allocated to
aliasing registers. The register allocation problem may be
presented as an undirected interference graph with values
as nodes and edges between interfering values. A register
assignment may then be found by coloring the nodes with
register names such that no two neighboring nodes are as-
signed the same color [Cha82, BCT94]. If the graph is not
found to be colorable, heuristics select values to spill, remove
those from the interference graph, and try another round of
coloring.

For architectures with irregular register files, register allo-
cation based on the partitioned Boolean quadratic problem
(PBQP) has proved useful [SE02, HS06]. For our purposes,
it suffices to view PBQP register allocation as a generaliza-
tion of graph coloring: In PBQP, an edge in the problem
graph does not simply denote an interference, but rather
carries a cost matrix capable of expressing complex rela-
tionships. Infinite costs in the matrix can express constraints
such as interferences between registers and their subregisters
as well as architectural requirements such as register pair-
ing. Negative costs can represent the benefits of coalescing.
Like graph coloring, PBQP is an NP-complete problem, but
efficient near-optimal heuristics are known for both.

Instruction scheduling concerns the arrangement of instruc-
tions within a basic block (a maximal single-entry, single-
exit region of the program) to optimize some notion of pro-
gram performance. Schedulers typically work on a represen-
tation of the block as a data dependence graph (DDG), a
directed acyclic graph of instructions that captures depen-
dences between instructions. Semantically valid schedules
must respect all the dependences in the DDG. Uses of a
(virtual or physical) register depend on the register’s defini-
tion, and further definitions depend on uses of the previous
one. If register allocation is performed before scheduling,
unrelated values may be assigned aliasing registers. In such
cases, additional dependences represented by DDG arcs may
arise and restrict the freedom of the instruction scheduler.

The problem of instruction scheduling rose to prominence
when pipelined processor architectures became widespread.
In order to exploit the instruction-level parallelism provided
by such processors, instructions must be ordered such that
independent computations can proceed in parallel [GM86].
Overlapping independent computations means that unre-
lated instructions are scheduled between a value’s defini-
tion and its uses. This lengthens the live ranges of all the
values involved and increases the number of interferences.
If aggressive scheduling before register allocation (prepass
scheduling) is applied, the allocation problem thus becomes
more difficult, and more spill code is needed.

Integrated approaches, discussed in more detail in Section 5,
were introduced to alleviate the problems caused by the op-
posing goals of register allocation to minimize spills and in-
struction scheduling to maximize parallelism. These meth-
ods typically assume that the cost of a reload is not much
larger than the costs of other relatively expensive instruc-

tions, and that a meaningful trade-off can be found between
an acceptable level of spilling and good pipeline utilization.
Most of these approaches are heuristic in nature and rely on
using incomplete, approximate models of register pressure
during scheduling.

The gap between processor clock speeds and memory speeds
has widened considerably over the past decades. We be-
lieve that nowadays avoiding memory accesses due to spills
is much more important than avoiding pipeline stalls of
a few cycles. Especially for modern out-of-order proces-
sors, reduction of spills is more important than exposing
instruction-level parallelism [VG99]. Our approach for inte-
grated scheduling and register allocation, presented in the
following section, is therefore aimed primarily at aggressive
scheduling to minimize global spill costs; the fact that this
reduces scheduling freedom is of less concern.

3. REGISTER REUSE SCHEDULING
In this section, we present Register Reuse Scheduling (RRS),
an extension to register allocation that may also make in-
struction scheduling decisions if those can help avoid spills.
Spills may be avoided by finding a physical register that the
value may be allocated to. Registers may be reused between
values whose live ranges do not overlap. The general idea be-
hind RRS is therefore to make scheduling decisions that op-
timize register reuse, guided by the register allocator’s global
model of spill costs. For each pair of values that might be
allocated to aliasing registers, we determine the DDG arcs
needed to ensure that their live ranges do not overlap. If
the overlap can be avoided in this way, we need not consider
these ranges to interfere in the register allocation problem,
since the values may then be allocated to aliasing physical
registers. After allocation, if the values were indeed assigned
to aliasing registers, we add the corresponding arcs to the
DDG. Finally, we compute a schedule that respects all the
register reuses chosen by the register allocator. An example
demonstrating RRS is given in Section 3.4.

In contrast to many other integrated techniques for schedul-
ing and register allocation (see Section 5 for a survey of re-
lated work), this approach does not attempt to use heuristics
to anticipate the register allocator’s needs during prepass
scheduling; rather, implicit sets of valid schedules are pre-
sented to the allocator, and the allocator chooses those ba-
sic block schedules that help minimize its actual global spill
costs. This results in a higher degree of integration of the two
problems than approaches based on local scheduling heuris-
tics.

3.1 Identification of register reuses
Traditional interference analysis before register allocation is
based on fixed prepass schedules for basic blocks. Testing
for overlap of live ranges is simple and results in one of two
values: an overlap, meaning that the values interfere and
may not be allocated to aliasing physical registers; or no
overlap, meaning no interference.

In RRS, we perform a more involved three-valued analysis
for values eligible for allocation to aliasing physical regis-
ters. In our case, we may find that values definitely overlap,
meaning that they may not be allocated to aliasing registers;
do not overlap, meaning no interference; or may present an



avoidable overlap, one that can be resolved by using an ap-
propriate instruction schedule. We identify the kind of over-
lap by considering all the basic blocks in which both values
are live at some point. If there are no such blocks, there is
no overlap, while any block in which both values are live-in
or live-out causes a definite overlap. Otherwise, within each
of the blocks with possible overlaps, we search for possibili-
ties to make the live ranges non-overlapping by considering
additional DDG arcs: A reuse of aliasing registers for val-
ues vi and vj is possible if all uses of vi can be forced to take
place before all definitions of vj , or vice versa. Such a reuse
can be enforced by adding arcs to the DDG. This is legal
if the dependence arcs from definitions to uses do not make
the DDG cyclic; valid schedules are topological orderings of
the DDG, so cyclic graphs cannot be scheduled.

Our analysis assumes that values may have several defini-
tions, possibly in several basic blocks. (That is, we do not
assume SSA form [CFR+91].) We therefore also accommo-
date for the possibility of DDG arcs, possibly in DDGs for
more than one basic block, that force interleaving rather
than sequencing of two values’ live ranges. Such interleav-
ings must ensure that only one of the values is ever live at
one point.

When the register reuse analysis determines that a live range
overlap between two values is possible but avoidable, it thus
returns one or more sets of DDG arcs for each basic block
in which the values may conflict. When viewed in isolation,
each of these arc sets may be added to the appropriate DDGs
without causing cycles (i. e., there will always be a valid
schedule), and any schedule that respects the new DDGs
will certainly not exhibit an overlap of the live ranges of
the two values. The values may therefore be considered for
allocation to aliasing registers.

3.2 Register allocation with reuse candidates
Based on the observation that spills may be avoided by fa-
cilitating register reuse, we want to maximize the register
allocator’s freedom for reuse. From the results of the reuse
analysis described above, we select a maximally profitable
set of reuse candidates to be presented to the allocator. In
general, we cannot consider all the possible reuses identified
by the analysis because, taken together, they would lead to
cycles in the DDG. We therefore select a set of reuses of
maximum expected profitability that does not cause DDG
cycles (see Section 3.5). We use the values’ spill costs to
estimate expected profit. Values of greater cost would be
more expensive to spill; as we want to minimize total spill
costs, we attempt to facilitate reuse for values of greater spill
cost.

Once a set of reuse candidates is chosen, we must also iden-
tify reuse conflicts. These are pairs of values identified as
exhibiting a potential overlap, but for which no reuse was
picked as a candidate (because it would introduce a cycle
when added to the DDG and the candidate set selected so
far). If the overlap is possible, but we did not select arcs
to avoid it, we must be conservative and assume that the
overlap will be present in the final schedule. In such cases,
we may not allocate these two values to aliasing registers, so
the register allocation problem must contain an interference
for this pair of values.

We observe comparatively large candidate sets and small
conflict sets in practice. This allows us to omit many pos-
sible interferences from the conflict graph. Only pairs of
values that are definitively overlapping, and pairs from the
relatively small conflict set, must be considered to interfere.

The allocation problem constructed using this method can
be solved using an unmodified register allocator; the alloca-
tor need not be aware of the fact that its register assignments
implicitly encode scheduling decisions. The set of reuses ac-
tually chosen by the allocator determines the level to which
instruction schedules must be restricted. We believe that
this approach is superior to register allocation based on any
fixed prepass schedule, no matter how carefully it attempts
to reduce interferences.

3.3 Scheduling
RRS starts with a set of DDGs for a function’s basic blocks,
computes reuse candidate sets, and builds a register allo-
cation problem. The register allocator’s solution encodes
a set of arcs to be added to the DDGs to ensure legality
of the allocation—i. e., adding those arcs ensures that the
live ranges of values allocated to aliasing registers will not
overlap.

For the scheduling step, we therefore consult the register as-
signments and the set of reuse candidates. For any pair of
values that was a reuse candidate and that was indeed allo-
cated to aliasing registers, we enforce legality of the reuse by
adding the corresponding arcs to the DDG. In this manner,
we obtain a restricted DDG that captures all the schedul-
ing decisions implicitly made by the register allocator. Note
again that these decisions are based on a global model of spill
costs; further, as discussed above, two values may interact
in more than one basic block. The global register alloca-
tor makes scheduling decisions that concern all the blocks in
the function simultaneously, in contrast to schedulers that
consider each block in isolation.

By design of RRS, the set of arcs associated with reuse can-
didates never causes DDG cycles, so there is always a legal
schedule for the restricted DDG. We could apply any other
additional arcs from the reuse set without causing an ille-
gal DDG, but we want to restrict scheduling freedom only
as much as is strictly needed to ensure the legality of the
register allocation.

The remaining scheduling freedom in the restricted DDGs
can be exploited by an unmodified aggressive scheduler with-
out further regard for its impact on register allocation.

3.4 Example
We will demonstrate the ideas presented so far using a sam-
ple basic block adapted from Goodman and Hsu [GH88].
Figure 1 shows a basic block in an idealized machine lan-
guage using virtual registers Vi on the left. Its data depen-
dence graph shown in the center. In the DDG, we present
dependence arcs as precedence arcs, i. e., an arc a→ b means
that instruction a must execute before b in any valid sched-
ule. The virtual register interference graph for the given
schedule is shown on the right of the figure. Virtual regis-
ter V10 does not interfere with any of the others because its
live range starts after the end of all other live ranges.



1 load V1 ← a

2 load V2 ← b

3 mul V3 ← V1 * V2

4 load V4 ← c

5 load V5 ← d

6 add V6 ← V4 + V5

7 load V7 ← e

8 add V8 ← V1 + V7

9 mul V9 ← V6 * V8

10 add V10 ← V3 + V9

11 store h ← V10
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Figure 1: Example basic block, its data dependence graph (center) and the interference graph (right).

Table 1: Reuse candidates and conflict set.
Candidate DDG arcs
V1→ V3 8→ 3

V4→ V1 6→ 1

V4→ V2 6→ 2

V4→ V3 6→ 3

V4→ V7 6→ 7

V4→ V8 6→ 8

V5→ V1 6→ 1

V5→ V2 6→ 2

V5→ V3 6→ 3

V5→ V7 6→ 7

V5→ V8 6→ 8

V6→ V2 9→ 2

Candidate DDG arcs
V6→ V3 9→ 3

V7→ V2 8→ 2

V7→ V3 8→ 3

V8→ V2 9→ 2

V8→ V3 9→ 3

Conflict DDG arcs
V1→ V8 3→ 8

V1→ V9 3→ 9

V2→ V9 3→ 9

Given the prepass schedule in Figure 1, spill-free register al-
location requires at least four disjoint physical registers; the
interference graph is 4-colorable but not 3-colorable. As-
sume that our target machine has only three registers avail-
able for allocation. We will show how RRS can compute a
different schedule that minimizes spill costs (in this case, by
avoiding all spills). This example, like our current imple-
mentation of RRS, presents it as an approach to reschedul-
ing : changing a given schedule and register allocation prob-
lem according to the allocator’s needs. However, a direct
formulation of RRS on the DDG is possible, as described in
the previous sections.

First, RRS identifies a set of register reuses and the sets of
DDG arcs needed to guarantee the validity of each reuse by
enforcing a relative ordering of instructions. As described
above, the analysis determines one of three values for each
pair of reuses: Definite overlap, definitely no overlap, or
possible (avoidable) overlap. For instance, the live ranges
for V1 and V2 definitely overlap since these values are both
used by instruction 3. In contrast, live ranges for V4 and V9

cannot overlap: Existing DDG arcs already ensure that all
uses of V4 (instruction 6) must be scheduled before all defini-
tions of V9 (instruction 9). There are two (conflicting) ways
to avoid the potential overlap between V5 and V7: Either
instruction 8 must be forced to precede instruction 5, or 6

must precede 7.

V1

V2 V3

V4

V5

V6

V7V8

V9

V10

Figure 2: RRS interference graph for example block,
with a valid 3-coloring.

Table 1 shows the results of reuse analysis partitioned into a
large set of reuse candidates (left, continued top right) and
other possible reuses that would conflict with the candidates
by introducing cycles into the DDG (bottom right). A reuse
denoted Vi → Vj means a reuse made possible by ensuring
that the live range of Vi ends before the live range of Vj
starts. It is easy to see that any of the arcs listed with the
conflict set would cause a cycle when added to the DDG
enhanced with the candidate arcs.

Once we have selected a set of register reuse candidates, we
can relax the register allocation problem by removing any
corresponding edges from the interference graph. For the ex-
ample program, the candidates in Table 1 allow us to omit
a set of eight edges from the interference graph in Figure 1,
while the conflict set forces us to add the three interferences
between V1 and V8, V1 and V9, and V2 and V9. We have thus
reduced the overall number of interferences from 14 to 9, and
we know that a schedule can be found that respects any valid
register allocation on this relaxed problem. Figure 2 shows
the relaxed interference graph of the example program. Re-
moved reuse edges are omitted, while the new conflict edges
are dashed. Note that the degree (number of neighbors) of
most nodes could be reduced. In contrast to the original
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Figure 3: Example DDG with additional reuse arcs
(dashed) as dictated by the reuse analysis of Table 1
and the register allocation of Figure 2.

graph, this relaxed interference graph does admit a coloring
with only three physical registers. One possible coloring is
indicated in the figure.

Relaxation of the register allocation problem allowed us to
find a register mapping, but RRS must now ensure that
a schedule is found in which live ranges allocated to the
same physical register do not overlap. Using the mapping
returned by the allocator, as shown by the coloring in Fig-
ure 2, we therefore consult Table 1 again and collect all the
DDG arcs we need to ensure valid reuses. We can see that
the following reuses were (implicitly) chosen by the register
allocator: V1→ V3, V4→ V1, V4→ V3, V5→ V2, V6→ V2.
These reuses are associated with the arcs 8→ 3, 6→ 1,
6→ 3, 6→ 2, and 9→ 2, respectively, all of which must
now be added to the DDG. Figure 3 shows the DDG with
these additional arcs in dashed style.

Note that, for example, the use of the same physical register
for V2, V5, and V6 was also legal in the prepass schedule, but
we must now add DDG arcs to ensure that any schedule
for the new DDG will respect the allocation of all of these
values to the same physical register. Figure 4 shows one
possible schedule for the example basic block after register
allocation.

3.5 Dependence cycle elimination
In the discussion so far, we have mostly ignored the problem
of selecting the DDG arcs that the register allocator may
choose from. We must avoid selecting arcs that introduce

4 load R1 ← c

5 load R2 ← d

7 load R3 ← e

6 add R2 ← R1 + R2

1 load R1 ← a

8 add R3 ← R1 + R3

9 mul R3 ← R2 * R3

2 load R2 ← b

3 mul R1 ← R1 * R2

10 add R1 ← R1 + R3

11 store h ← R1

Figure 4: Example basic block after rescheduling ac-
cording to Figure 3 and register allocation according
to Figure 2.

cycles since cyclic DDGs cannot be scheduled. This means
that register allocation may not select reuses which, taken
together, would cause a cycle. We currently achieve this
by partitioning the set of reuses into a candidate set that
does not cause cycles, which we want to maximize, and a
remaining conflict set. When building the register allocation
problem, we avoid adding interferences for pairs of values in
the reuse candidate set, but we must add interferences for
pairs from the conflict set. This way, the register allocation
problem is formulated based on an acyclic arc set, so no valid
allocation can give rise to reuse arcs that cause DDG cycles.

Finding a minimum-cost conflict set is an instance of the
(minimum) feedback arc set problem, which is known to be
NP-complete [GJ79]. Rather than attempting an optimal
solution, we select candidates based on a greedy heuristic:
All potential reuses are sorted by descending total spill cost
of the values involved. Starting with the highest-cost pairs,
we collect an acyclic set of reuse candidates; any reuse that
would cause a cycle is inserted into the conflict set.

Our experiments with selection of candidates based on this
greedy heuristic gave encouraging results (Section 4). Con-
flict sets tend to be small, while candidate sets usually cover
most of the potential reuses identified by the reuse analysis.
In future work, we will evaluate the effects of a more disci-
plined but more expensive approach based on branch-and-
bound. We also intend to research completely integrated for-
mulations of the register allocation problem. These would
deal directly with an input based on a cyclic set of reuse
arcs, but would have to be guaranteed to return an acyclic
result.

4. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We implemented a prototype of Register Reuse Scheduling
within a development version of version 2.9 of the LLVM
compiler framework1, building on its existing PBQP regis-
ter allocator. When constructing the PBQP problem, we
examine each pair of virtual registers for potential register
reuse and record the DDG arcs needed to enforce legality of
the reuse.

Our implementation uses a dual strategy to minimize spill

1http://www.llvm.org



Table 2: Effects of Register Reuse Scheduling on static spill costs on SPEC CPU2000 benchmarks.
PBQP RRS RRS

PBQP

Benchmark Spills Spill Costs Spills Spill Costs Spills Spill Costs
164.gzip 168 3.83e+03 168 3.83e+03 1.000 1.000
175.vpr 1428 1.12e+04 1393 1.14e+04 0.975 0.999
181.mcf 42 3.99e+01 32 3.85e+01 0.762 0.966
186.crafty 2002 3.33e+02 1074 2.91e+02 0.536 0.875
197.parser 441 6.12e+03 437 5.18e+03 0.991 0.846
253.perlbmk 1445 1.23e+04 1539 1.23e+04 1.065 1.002
254.gap 2270 6.10e+03 2263 6.62e+03 0.997 1.086
255.vortex 1908 6.34e+03 1749 6.33e+03 0.917 0.998
256.bzip2 177 2.33e+03 176 2.32e+03 0.994 0.995
177.mesa 8821 1.94e+04 8779 1.91e+04 0.995 0.985
179.art 295 1.44e+04 257 1.23e+04 0.871 0.858
183.equake 1092 6.48e+02 1015 6.45e+03 0.929 0.995
188.ammp 7026 1.06e+04 6777 1.03e+04 0.965 0.979
geometric mean 0.911 0.966

costs: In each round of allocation, we solve both the origi-
nal PBQP problem based on the prepass schedule and the
problem relaxed for rescheduling. If RRS is able to find a so-
lution that avoids spilling (possibly at the cost of reschedul-
ing), that solution is chosen, all the required arcs are added
to the DDGs, and the affected basic blocks are rescheduled.
If RRS is not able to find a spill-free solution, neither will
the original register allocator; however, we use the origi-
nal allocator’s choice of which values to spill. This gives
better results than spilling based on the RRS problem be-
cause the RRS solution is tied to the assumption that certain
reschedulings will be performed. However, we do not per-
form these reschedulings if we did not find a final, spill free
allocation. We are investigating how to avoid this wasteful
doubled effort in each round of allocation while preserving
allocation quality.

Table 2 compares the numbers of values spilled and static
spill costs of all spilled values using PBQP and RRS on a set
of benchmarks from the SPEC2 CPU2000 benchmark suite.
(We used all the C and C++ benchmarks, but various is-
sues with our current prototype prevented us from obtaining
data for the 176.gcc, 252.eon, and 300.twolf benchmarks.)
The numbers given refer to code generated for the ARM
architecture. PBQP register allocation was performed on
a prepass schedule for minimum register pressure. As we
can see, LLVM’s heuristic scheduler for minimum register
pressure leaves room for improvement: On almost all bench-
marks, RRS spills fewer values and incurs lower total spill
costs than PBQP. On average (geometric mean), the num-
ber of spilled values is reduced by 8.9 %, and the static spill
cost is reduced by 3.4 % by using RRS versus PBQP.

On the benchmarks where RRS incurs higher spill costs
(253.perlbmk and 254.gap), the greedy heuristic algorithm
to collect reuse candidates made bad choices. We expect
these values to improve by using more sophisticated algo-
rithms to choose candidates. Note that the reduction in
spilled values does not have a simple correspondence with
the reduction in spill costs: RRS aims at reducing spill costs,
which model the expected number of reload instructions ex-
ecuted by the program. Depending on the program, an over-

2http://www.spec.org/

Table 3: Total compile times and code generation
times on SPEC CPU2000 benchmarks.

Allocator Total time (s) Codegen time (s)
Linear scan 426 166
PBQP 654 395
RRS 2344 2083

all reduction of costs may be achieved by spilling a larger
number of cheaper values, or fewer more expensive values.
RRS may even lead to more spilled values, but still to lower
costs, if those values cause comparatively few reloads.

As discussed in the introduction, we expect a lower number
of reloads to result in an overall speedup. We believe that
this holds for the general-purpose and high-end embedded
processors that we target, while more refined tradeoffs would
be necessary between spilling and scheduling for simpler em-
bedded architectures.

Table 3 compares the compile-time costs of RRS across the
entire benchmark set of Table 2 to two of LLVM’s mature
register allocators: Its implementation of an extended form
of linear scan register allocator [SB07] and PBQP. Times,
rounded to seconds, are shown for total compile time as well
as for code generation only. As can be seen, both PBQP and
RRS dominate code generation time. RRS scales consider-
ably worse than the other allocators and would not be suit-
able for interactive use at the moment. This is due partly to
the dual strategy outlined above that forces our current im-
plementation of RRS to construct and solve about twice as
many PBQP problem instances as the plain PBQP allocator;
further, the live range overlap checks on the DDG needed for
RRS are inherently more expensive than checks for a given
prepass schedule. However, even this unoptimized research
artifact does already scale to real-life programs well enough
to be applicable to highly optimizing builds that are less
time critical.

5. RELATED WORK
A handbook chapter by Govindarajan [Gov08] gives an over-
view of instruction scheduling, with a section on phase or-
dering and integrated approaches to instruction scheduling



and register allocation.

Similarly to RRS, Norris and Pollock [NP93] build the reg-
ister allocation problem based on the DDG and attempt
to eliminate interferences by adding DDG edges. However,
their approach is heuristic and based on estimates to identify
dependences that are expected to restrict the scheduler the
least. Pinter [Pin93] introduced a related approach. Good-
man and Hsu’s DAG-driven register allocator [GH88] also
uses the DDG, attempting to insert arcs that are expected
to lengthen the schedule the least.

Goodman and Hsu’s IPS [GH88] and Bradlee et al.’s more
complex RASE [BEH91] are prepass schedulers that work
with estimates of register pressure and attempt to schedule
in a way that does not exceed a register use threshold.

Work by Berson et al. [BGS99], Touati [Tou01], and Xu
and Tessier [XT07] considers variations of an integrated ap-
proach that builds on register reuse DAGs. These represent
reuses that are valid under all possible schedules. Their
measure-and-reduce approach identifies DAG regions with
excessive register usage (i. e., possibly more simultaneously
live registers than available). Such excessive usages are re-
duced by live range splitting or by inserting reuse arcs into
the DAG and corresponding dependence arcs into the DDG.

Eriksson et al. [ESK08] discuss integrated code generation
that considers instruction selection, instruction scheduling
and register allocation as one problem. They can solve small
problems optimally using integer linear programming; on
larger instances, their genetic algorithm scales better and
gives good results.

Govindarajan et al. [GYA+03] use near-optimal heuristics to
schedule basic blocks for minimum register usage. It is not
clear how their local approach compares to our approach
guided by the global register allocator. We did not have
the resources to implement alternative integrated scheduling
and register allocation algorithms in order to compare them
to RRS.

Ambrosch et al. [AEBK94] perform ‘dependence-conscious’
register allocation by coloring. Like ours, their interference
graph is built based on the DDG. During coloring, the choice
of register to assign to a value is guided by a cost metric.
The metric is based on the scheduling impact of the addi-
tional dependences introduced by assigning certain registers.
DDG and interference edges are added during the coloring
process; this incremental approach avoids introduction of
DDG cycles.

Our RRS algorithm can be contrasted with most of these
works in one or more of the following points: First, our ap-
proach is aimed strictly at minimizing spill cost, not at a
trade-off between spilling and instruction level parallelism.
Second, our approach is global: Scheduling decisions are al-
ways guided by a global model of spill costs, not by consid-
ering basic blocks in isolation. Choosing the same register
for a pair of values may also affect the schedules of several
basic blocks simultaneously. Third, our spill costs are not
estimates computed by the prepass scheduler, but rather the
actual costs used by the register allocator.

Near-optimal instruction selection by Ebner et al. [EBS+08]
is relevant to our work in the sense that they use PBQP
to model a code generation problem and also need to avoid
selection of cycles (cyclic instruction patterns). However,
they can use a simple cycle-breaking scheme by relying on a
topological ordering of patterns according to program order.
This results in suboptimal selections on the local scale of in-
dividual instruction patterns. We cannot make such changes
to a cyclic PBQP solution because they would have global
effects on the register assignment.

6. CONCLUSIONS AND FUTURE WORK
This work introduced Register Reuse Scheduling (RRS), a
new approach to integrated global register allocation and
instruction scheduling. The aim of RRS is to find basic
block schedules that allow maximal reuse of physical regis-
ters for independent values, and thus minimization of spill
costs for the whole function. To this end, RRS allows the
register allocator to make certain scheduling choices. We use
a near-optimal PBQP register allocator with a relaxed prob-
lem based on data dependence graphs (DDGs) that allows
more register reuses than fixed prepass schedules. Admis-
sible reuses are associated with additional DDG arcs; the
register allocator implicitly chooses among these arcs. Only
the arcs needed to ensure the legality of the reuses chosen
by the register allocator are added to the DDGs, which are
finally scheduled using a postpass scheduler. We have shown
that this method can reduce the static costs of the spill code
generated by the PBQP register allocator by 3.4 % and the
number of values spilled by 8.9 % on average on the SPEC
CPU2000 benchmark suite.

In future work, we would like to explore further the potential
of our approach. It appears that better selection of a set of
reuse arcs may improve our results significantly; we intend
to experiment with more powerful heuristics than the greedy
approach taken in this work. We will also research the possi-
bility of a fully integrated model in which the PBQP model
or the solver itself ensures that no cyclic set of reuse arcs
is ever chosen, even if presented with a cyclic set of reuse
candidates as input.
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