
Static and Dynamic Method Unboxing for Python

Gergö Barany∗

Vienna University of Technology
gergo@complang.tuwien.ac.at

Abstract: The Python programming language supports object-oriented programming
using a simple and elegant model that treats member variables, methods, and various
metadata as instances of a single kind of ‘attribute’. While this allows a simple imple-
mentation of an interpreter that supports advanced metaprogramming features, it can
inhibit the performance of certain very common special cases. This paper deals with
the optimization of code that loads and then calls object methods.

We modify Python’s compiler to emit special bytecode sequences for load/call
pairs on object attributes to avoid unnecessary allocation of method objects. This can
result in considerable speedups, but may cause slowdowns at call sites that refer to
builtin functions or other special attributes rather than methods. We therefore extend
this static compile-time approach by a dynamic runtime quickening scheme that falls
back to the generic load/call sequence at such call sites.

The experimental evaluation of dynamic unboxing shows speedups of up to 8 %
and rare slowdowns caused by as yet unresolved excessive instruction cache misses. A
comparison with a common manual optimization of method calls in Python programs
shows that our automatic method is not as powerful but more widely applicable.

1 Introduction

Dynamically typed interpreted programming languages like Python1 are increasingly pop-
ular due to their ease of use and their flexibility that allows their application to a large range
of problems. Such languages enable rapid prototyping and high programmer productiv-
ity because even large changes to a codebase are often local and do not involve changing
many static type declarations.

Such flexibility comes at a price in program performance. A completely dynamic language
cannot predict at compile time all the information necessary to specialize operations to cer-
tain data types. This dynamic behavior makes implementations using simple interpreters
very attractive; just-in-time (JIT) compilation is also possible, but doing it right even given
an existing JIT compiler for a different virtual instruction set involves considerably more
effort than interpretation [CEI+12].

The main Python implementation is therefore an interpreter written in C and often re-
ferred to as CPython. It interprets a custom bytecode instruction set that is tightly coupled

∗This work was supported by the Austrian Science Fund (FWF) under contract no. P23303, Spyculative.
1http://www.python.org/

to Python’s language semantics and uses an evaluation stack to pass data from one instruc-
tion to the next. In Python, everything is an object that can be assigned, inspected, and
modified. This enables great expressiveness but can lead to inefficient behavior in com-
mon cases. In particular, methods are first-class objects as well, and method calls involve
both a lookup in a dynamic data structure and the allocation of a method object on the
heap which is then consumed and deallocated by the call.

Method calls are known to be slow in Python for these reasons. Previous work has pro-
posed removing some of the complexity of the lookup by caching call targets [MKC+10]
or call types [Bru10b]. We propose an orthogonal optimization: We do not modify lookup
at all, but try to avoid the subsequent boxing step that allocates a method object on the
heap.

The rest of this paper is organized as follows. In Section 2 we describe how Python
looks up, boxes, and calls methods and similar objects and where inefficiencies lie. In
Section 3 we propose a static compile-time solution to the problem of repeated boxing
and unboxing of method objects and observe that it performs much worse than it should;
Section 4 shows a solution to this problem by using quickening at runtime. Section 5 looks
at two micro-benchmarks for an estimation of the best speedups possible using our method
under maximally friendly and maximally adverse conditions. Section 6 discusses related
work, and Section 7 concludes.

2 Method Calls in Python

As a prerequisite and motivation for our program transformation, we must first discuss
which kinds of callable objects are available in Python, and how calls are implemented
in the interpreters’s bytecode. There are three major types of callable objects: Functions,
methods, and ‘builtin’ operations. Functions behave as expected and are called with ex-
plicitly provided arguments. Methods are functions defined within class definitions and
have a special first function argument self that refers to the call’s receiver. Methods are
called as expressions of the form o.f(a, b) where the self argument is bound to the
value of o and the other arguments are passed as usual. A builtin is a piece of code imple-
mented in C that may or may not have a self pointer and may or may not be called using
the o.f attribute access syntax.

Given a variable (or more complex expression) o, a name f, and expressions a and b, the
Python expression o.f(a, b) may mean one of several things:

• A call to a method named f associated with o or with o’s class or one of its super-
classes, with the three arguments o, a, b, binding the value of o to the method’s
special self parameter.

• A call to a function implemented in Python and stored in o’s f field that is not a
method, i. e., does not have a self pointer, and is called with only two arguments a
and b.

〈code to evaluate o〉
· · · o

LOAD_ATTR f −→ method m
· · · m

〈code to evaluate a〉
· · · m a

〈code to evaluate b〉
· · · m a b

CALL_FUNCTION 2 −→ result x
· · · x

Figure 1: Abstract bytecode sequence and stack states for method call o.f(a,b).

• A call to a ‘builtin’ function or method implemented in C and associated with o’s f
field that may or may not have a self pointer and is called with two or three
arguments, depending on its internal flags.

• A call to some other callable object (very rare).

Due to Python’s dynamic nature which allows adding, deleting and modifying attributes
of classes and any object instances at runtime, it is impossible to distinguish between these
cases statically. The bytecode compiler therefore emits the same code sequence for each of
these cases, and the interpreter must decide dynamically (i. e., at run time) how to execute
each call based on the actual type of callable object encountered.

The bytecode sequence for this expression is illustrated in Figure 1. Code snippets are
interleaved with an illustration of the state of the evaluation stack, which grows to the
right. The basic call mechanism in Python is to push the function or method to call onto
the stack, then push its arguments above it, and then to execute a call instruction to pop off
all of these values and push the function’s return value. The call instruction has a constant
argument telling it how many arguments are on the stack above the function or method to
call.

In the concrete case of method calls via an expression o.f, first the value of o is computed
and placed on the stack, then a LOAD_ATTR instruction is executed to replace it with the
value of its attribute f. Assume that f is defined as a method in the class of object o
or some superclass of it. Method definitions in Python are simply function definitions
located within class definitions and taking a special ‘self’ pointer as their first argument.
When a method is looked up, the lookup actually finds this function first and consults a
‘descriptor’ associated with it. This descriptor may be modified, but it will typically cause
allocation of an actual method object containing both the function f and the receiver o.
We call this operation boxing of the function, and refer to functions with a descriptor like
this as boxable functions. Once the method object containing the function is allocated, it
replaces the original object o on the stack.

Besides boxable functions, callable object attributes may also refer to plain Python func-
tions that are returned by the lookup without boxing, or builtins, which are contained in a

· · · m a b
CALL_FUNCTION 2
−→ unpack method m = 〈func, obj〉

replace m by obj on stack:
· · · obj a b

execute three-argument call func(obj, a, b)
· · · x

Figure 2: Unpacking a method object m to recover its self pointer.

different type of object. Each of these also replace o on the stack.

Therefore, whatever the type of o.f, at this point o itself is no longer directly reachable
from the stack. If the loaded value of o.f is a function without a self pointer, it will
only be called with the two arguments a and b that are on the stack, so o is not necessary.
However, if it is a method, the value of o must be recovered in order to pass it as the first
of three arguments to the function call.

Figure 2 illustrates the Python interpreter’s solution to this problem: When the object to be
called is a method, its receiver is reachable from a pointer within it. The CALL_FUNCTION n
instruction checks the type of the callable object below the arguments, at index −n − 1
from the stack top, and if it is a method, unboxes it. The receiver object replaces the
method on the stack, and the function is executed with n + 1 arguments.

In summary, in the very common case of method calls of the form o.f, the Python
interpreter performs a lookup for the code of f and boxes it up into a heap-allocated
reference-counted method object 〈o, f〉 which is then almost immediately taken apart and
deallocated by the corresponding call instruction. The method object cannot escape this
bytecode sequence, its lifetime extends only from the attribute load to the function call.
Thus, although the allocations are almost always served very quickly from a free list, all of
these operations aren’t really necessary, and we propose to replace them with an unboxing
scheme.

3 Unboxed Method Calls

We propose to unbox method calls based on the observations that method calls are fre-
quent in object-oriented Python programs (but not in numeric and some library-intensive
benchmarks; we discuss this issue later), that boxing and unboxing is slow and redundant,
and on the fact that a fast alternative exists: Once the method is unpacked and the self
pointer is on the stack, the interpreter treats an n-argument method call identically to
an n + 1-argument call of a ‘plain’ Python function. Such calls are simple, so if we can
set up the stack in the desired format right away, we can immediately execute the simple
fast function call path.

· · · o
LOAD_FUNC_AND_SELF f
−→ attribute is boxable func f
· · · f o

〈evaluate arguments〉
· · · f o a b
CALL_UNBOXED_METHOD 3
−→ execute equivalent of

CALL_FUNCTION 3
· · · x

(a) Attribute is a boxable function

· · · o
LOAD_FUNC_AND_SELF f
−→ non-unboxable attribute m
· · · m

〈evaluate arguments〉
· · · m a b
CALL_UNBOXED_METHOD 3
−→ execute equivalent of

CALL_FUNCTION 2, pop empty slot
· · · x

(b) Attribute is not a boxable function

Figure 3: Unboxed attribute calls of the form o.f(a,b).

3.1 Compile-Time Unboxing

The optimization is based on introducing two new bytecode instructions that specialize
a LOAD_ATTR/CALL_FUNCTION n pair to unboxed method calls. During compilation
from the program’s abstract syntax tree (AST) to bytecode, we detect all cases where a
call’s target is an attribute access like o.f. In these cases, the modified compiler generates
our new LOAD_FUNC_AND_SELF bytecode instead of LOAD_ATTR, and the new byte-
code CALL_UNBOXED n+1 instead of CALL_FUNCTION n. The semantics of these
bytecodes is illustrated in Figure 3.

The LOAD_FUNC_AND_SELF bytecode is like LOAD_ATTR in that it performs a lookup
of an attribute in the base object on the top of the stack. However, this bytecode is only used
with CALL_UNBOXED, and its result takes up two stack slots. In the common case illus-
trated in Figure 3(a), the attribute lookup yields a function that LOAD_ATTRwould box up
with the receiver into a method object. We simply omit this boxing and place both the func-
tion and the receiver on the stack, with the function below the receiver. Function arguments
are evaluated and pushed as usual, and when the corresponding CALL_UNBOXED n+1
instruction is reached, the order of the function and its arguments on the stack is exactly
as is needed for a plain function call, without any unboxing or on-stack replacement oper-
ations.

There is also the possibility, shown in Figure 3(b), that the attribute found by the lookup
performed by LOAD_FUNC_AND_SELF is not a function that would be boxed up as a
method. These are typically ‘builtin’ functions with an external implementation in C, or
sometimes ‘plain’ Python functions that do not take a self argument. (These can be
put into any slot of any object by simple assignment.) In these cases we do not need
to put a receiver object onto the stack, but the following CALL_UNBOXED n+1 needs
to be able to distinguish between the unboxed method case and this non-method case.
LOAD_FUNC_AND_SELF therefore leaves a stack slot empty (that is, we push a NULL
pointer or other special sentinel value) and places the attribute it found above it. The
corresponding call always checks this slot. If it is not empty, it must be a function, and

execution proceeds with a fast function call as in Figure 3(a); otherwise, a more elaborate
call sequence based on the exact dynamic type of the looked-up attribute is initiated. After
the call completes, the empty slot is removed from the stack before the call’s result is
pushed.

3.2 Experimental Evaluation

We implemented this method unboxing scheme in the Python 3.3.0 interpreter and evalu-
ated it on a system with an Intel Xeon 3 GHz processor running Linux 2.6.30. Python was
compiled with GCC 4.3.2 using the default settings, resulting in aggressive optimization
with the -O3 flag.

Despite the fact that Python 3 has existed for several years, its adoption by the com-
munity has been slow, which means that many popular benchmarks, such as the widely
used Django web application framework, are only available in incompatible Python 2
versions. This restricts our choice of useful benchmark programs, but there is still a
collection of useful though mostly quite small Python 3 compatible benchmarks avail-
able from http://hg.python.org/benchmarks/. We used these programs but
excluded all those that took less than 0.1 seconds to execute a benchmark iteration be-
cause we found that these result in very inaccurate timings. We also excluded the micro-
benchmarks that only test the speed of method calls (we look at these separately in Sec-
tion 5) as well as the 2to3 benchmark that failed in some configurations even when using
an unmodified Python interpreter.

In all of the experiments we used the fastest of five runs as the representative execution
time of a benchmark.

Figure 4 shows the speedups we obtained by using static method unboxing versus the base-
line, unmodified Python interpreter. We expected to observe speedups on object-oriented
programs and unchanged performance on those benchmarks that do not use a large num-
ber of method calls. Instead, we were surprised to find that our proposed optimization
tended to result in slowdowns on most programs. In a number of cases this is easy to
explain as mis-speculation by the compiler that assumes that all attribute calls will go
to unboxable methods implemented in Python. However, at least in the fastpickle,
fastunpickle, json_dump_v2, and json_load benchmarks, this is simply not
true: These benchmarks test the speed of libraries that are implemented as Python classes
but with important operations implemented as callable attributes that are not Python meth-
ods but ‘builtins’ implemented in C. As we described above, we treat such calls by leaving
the result of the lookup boxed, placing an empty slot on the stack below it, and checking
that slot to decide how to perform the call. This overhead is not great, but it can result in a
measurable slowdown if this slow path is hit in a benchmark that performs many of these
calls. The following section proposes a solution for such cases of static mis-speculation.

Other slowdowns are more baffling: nbody, for instance, is a numeric benchmark that
is aimed squarely at mathematical computation and contains no calls via attributes at all.
No matter how we treat method calls, that treatment should not make an observable differ-

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
ch

ao
s

fa
nn

ku
ch

fa
st

pi
ck

le

fa
st

un
pi

ck
le

flo
at

fo
rm

at
te

d_
lo

gg
in

g go

he
xi

om
2

ite
ra

tiv
e_

co
un

t

js
on

_d
um

p_
v2

js
on

_l
oa

d

m
ak

o_
v2

m
et

eo
r_

co
nt

es
t

nb
od

y

nq
ue

en
s

pa
th

lib

pi
di

gi
ts

ra
yt

ra
ce

re
ge

x_
co

m
pi

le

ric
ha

rd
s

si
m

pl
e_

lo
gg

in
g

sp
ec

tr
al

_n
or

m

th
re

ad
ed

_c
ou

nt

%
 s

pe
ed

up

Static unboxing: speedup versus baseline Python interpreter

Figure 4: Performance impact of static method call unboxing at compile-time.

ence on such programs. We used the PAPI library2 to collect information from hardware
performance counters to better understand the behavior of the interpreter on such bench-
marks. PAPI indeed verifies that the number of instructions executed on nbody for the
baseline and our modified interpreter is essentially identical. However, the number of L1
instruction cache misses increases by a factor of 6–7. Our changes to the interpreter are
small, but it appears that inserting the code for handling our two new bytecode instructions
caused the compiler to make changes to the code layout that led to this very detrimental
effect.

Overall, we observe that the benchmark suite contains quite few programs written in an
object-oriented style and is thus inherently biased against optimizations aimed at Python
method calls. Instruction cache misses may be difficult to fix because they depend on the
code layout generated by the underlying compiler, but at least we must make an effort
to correct the static mis-speculation at call sites that typically call builtins, not Python
methods.

2http://icl.cs.utk.edu/papi/

4 Quickening to the Rescue!

The program transformation described in the previous section is completely static; the call
sites where method unboxing is applied are determined by the bytecode compiler based
only on the shape of the AST. However, we do not know at compile time which of these
sites will actually call Python methods and which will call builtins, and as the experimental
evaluation shows, this speculation on ‘methods always’ can fail and lead to diminished
performance.

Since purely static speculation does not seem like a good approach, we therefore move on
to a more dynamic approach using quickening. Quickening [LY96, Bru10a] is an operation
that modifies code at runtime, typically after some sort of initialization has taken place or
where data collected during previous execution of an instruction suggests that another
variant of the instruction may execute more efficiently. Quickening can be applied to
specialize code to particular data types; this often pays off because even in highly dynamic
languages like Python, many pieces of code are ‘dynamically static’ in their usage of types.
That is, even if operand types for given instructions cannot be predicted beforehand, they
often tend to remain relatively constant over single program runs [DS84].

4.1 Quickening of Non-Unboxed Calls

In our dynamic method unboxing implementation, we specialize every call site separately
depending on the type of the attribute loaded to serve as a call target. If a lookup/call pair
referred to an unboxable method in the past, we expect it to also do so in the future; if,
however, the attribute was a builtin or other non-method function, we assume that that call
site will tend to call such non-methods in the future.

We therefore modified our implementation of the LOAD_FUNC_AND_SELF bytecode to
use quickening in cases where the attribute it finds is not a boxable function. In such cases,
we immediately fall back to the behavior of the baseline interpreter. Instead of using the
path shown in Figure 3(b) with an empty stack slot, in this case LOAD_FUNC_AND_SELF
simply pushes the attribute to the stack and immediately quickens itself to (i. e., replaces
itself by) LOAD_ATTR. As the call target is now boxed, the following call can no longer
be CALL_UNBOXED, so we immediately quicken it to CALL_FUNCTION. That is, at this
call site this and all future calls will be treated exactly as in the regular Python interpreter.

To quicken the call corresponding to a given attribute lookup, we need to locate that call;
this is implemented simply as a scan forward in the instruction stream over the argument
evaluation code to the call. Computation of the arguments may also involve lookup/call
pairs, but these are always strictly nested, so there is no ambiguity as to which lookup
belongs to which call. A linear scan over the instructions may seem expensive, but the call
is typically very close to the lookup (never more than 200 bytes later in our benchmarks,
and typically much closer), and quickening is rare, so the total overhead is acceptable.

An alternative implementation without a forward sweep over the code would be to place
a special marker on the stack as a signal to the call instruction to quicken itself. This

does not work in practice, however: Exceptions may (and do!) occur during argument
evaluation, so the call instruction may not be reached. The next time the lookup/call pair
would be executed, the lookup would already be quickened, but the call would not. As
they have different expectations about the organization of the stack, this would lead to
program failures. We must therefore quicken both the lookup and the call at the same
time. A possibly slightly more efficient variant would be to associate an offset with the
lookup that specifies exactly the distance to the corresponding call. For simplicity, we
have not implemented this more complex variant yet.

If the attribute found by LOAD_FUNC_AND_SELF is a boxable method, we perform an
unboxed method call as before, and no quickening is needed.

Figure 5 shows a graph of all the states that an attribute call site can be in, and the tran-
sitions between the states. In the quickening variant we introduced yet another pair of
lookup/call instructions, called LOAD_CALLABLE_ATTR and PSEUDO_CALL_ATTR,
respectively. The idea is to generate only these instructions in the compiler. The first
time an occurrence of LOAD_CALLABLE_ATTR is executed, it quickens itself to ei-
ther LOAD_FUNC_AND_SELF or to LOAD_ATTR, depending on whether the attribute
it found is a method or not. If it is a method, it is unboxed on the fly, and the instruction is
quickened to LOAD_FUNC_AND_SELF.

PSEUDO_CALL_ATTR is never executed and does not even have an implementation. As
it is always preceded by LOAD_CALLABLE_ATTR, it will always be quickened to ei-
ther CALL_UNBOXED or CALL_FUNCTION before it is reached.

Note the direction of transitions in the graph: Once a call site is quickened to the baseline
case of LOAD_ATTR/ CALL_FUNCTION, it can never move back to unboxing, even if
many of the future calls might profit from it. During testing, we found that such cases
appear to be very rare or nonexistent in real Python programs, although it is easy to write
simple counterexamples. In any case, LOAD_ATTR/ CALL_FUNCTION is a good, heavily
optimized baseline implementation to fall back to.

4.2 Experimental Evaluation

Figure 6 shows the result of evaluating unboxing with quickening on the same bench-
mark set and same experimental setup as in Figure 4; the scales are identical to enable a
quick visual comparison. We note the general trend that most results are much better with
quickening than with the purely static compile-time method. In particular, the number
of benchmarks exhibiting slowdowns has been reduced, and where slowdowns remain,
they are less pronounced than before. Several object oriented benchmarks that showed
speedups before are now even faster. The most impressive case is richards, where
even more attribute calls are now handled as efficiently as possible.

We again investigated the case of the large 3 % slowdown on regex_compile in some
detail. Using PAPI, we found that while the number of instructions executed was reduced
by about 0.5 % due to unboxed method calls, we still incur about 20 % more instruction
cache misses than the baseline. Again, we believe that this is due to the larger and more

compiler

LOAD_CALLABLE_ATTR
PSEUDO_CALL_ATTR

 generates

LOAD_FUNC_AND_SELF
CALL_UNBOXED

first call is
to method,

quicken

LOAD_ATTR
CALL_FUNCTION

 first call is to
 non-method

later call to
non-method,

fall back

Figure 5: Possible states of bytecode pairs at each attribute call site.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

ch
ao

s

fa
nn

ku
ch

fa
st

pi
ck

le

fa
st

un
pi

ck
le

flo
at

fo
rm

at
te

d_
lo

gg
in

g go

he
xi

om
2

ite
ra

tiv
e_

co
un

t

js
on

_d
um

p_
v2

js
on

_l
oa

d

m
ak

o_
v2

m
et

eo
r_

co
nt

es
t

nb
od

y

nq
ue

en
s

pa
th

lib

pi
di

gi
ts

ra
yt

ra
ce

re
ge

x_
co

m
pi

le

ric
ha

rd
s

si
m

pl
e_

lo
gg

in
g

sp
ec

tr
al

_n
or

m

th
re

ad
ed

_c
ou

nt

%
 s

pe
ed

up

Dynamic unboxing: speedup versus baseline Python interpreter

Figure 6: Performance impact of dynamic method call unboxing by quickening.

complex code in the interpreter loop due to our bytecode instruction set extensions. In fact,
we also abserve this slowdown and the cache misses if we leave our bytecodes in place
but use an unmodified compiler that never generates these instructions. That is, adding
these instructions incurs a cost even if they are never executed, simply due to code size
and layout.

During initial testing of the quickening implementation, we also observed unexpectedly
bad results for a number of benchmarks that should be able to take good advantage of
unboxing. In particular, the hexiom2 program showed a 2 % slowdown, which is strange
given that the non-quickened version performs well. We suspected that this might be
due to type checks in our implementation of CALL_FUNC_AND_SELF, which must al-
ways check whether the attribute to return is a boxable function. In the hope of optimiz-
ing code layout, we tried using GCC’s __builtin_expect mechanism to annotate
two if statements with the information that we typically expected their conditions to suc-
ceed. These annotations were indeed what was needed to turn a 2 % slowdown into a 2 %
speedup.

These observations suggest that the control flow of a typical bytecode interpreter—a loop
containing a large switch statement containing computed gotos to other cases—may be
confusing enough to compilers to make such manual annotations worthwhile. It might also
be useful to try to minimize code size within the interpreter loop as much as possible. In
particular, researchers modifying such bytecode interpreters should be aware that adding
new bytecode instructions can come with an intrinsic cost even if the modified instruction
set helps perform ‘less work’ in terms of the number of executed instructions.

Implementation size. Overall, our changes to the Python interpreter to accommodate
both static and dynamic method unboxing comprise adding 569 lines of code including
extensive comments and commented-out debug code. The implementations are cleanly
separated by preprocessor directives that must be specified at compile time. This way, we
can build the baseline, static, and dynamic unboxing versions of the interpreter from the
same codebase, and the purely static implementation does not have the code size overhead
(and resulting possible additional instruction cache misses) of the dynamic version.

5 Method Unboxing vs. Method Caching

We excluded call-oriented micro-benchmarks from the experimental evaluation in the pre-
vious sections because the speedups we achieve here do not translate to speedups in real
applications, which perform other work besides simple function or method calls. How-
ever, we perform two experiments here to obtain a rough comparison with optimizations
based on caching of method call targets.

The call_method benchmark performs a large number of method calls via method
attributes; Figure 7(a) shows an illustrative code snippet from the benchmark. All the call
sites in this program are monomorphic, so aggressive optimizations are possible in theory:
All calls could be resolved before runtime, or at least cached at each call site. We do not

class Foo(object):
def foo(self, a, b, c, d):

20 calls
self.bar(a, b, c)
self.bar(a, b, c)
...

def test_calls(n):
f = Foo()

for _ in xrange(n):
20 calls
f.foo(1, 2, 3, 4)
f.foo(1, 2, 3, 4)
...

(a) Original benchmark

class Foo(object):
def foo(self, a, b, c, d):
self_bar = self.bar
20 calls
self_bar(a, b, c)
self_bar(a, b, c)
...

def test_calls(n):
f = Foo()
f_foo = f.foo
for _ in xrange(n):
20 calls
f_foo(1, 2, 3, 4)
f_foo(1, 2, 3, 4)
...

(b) Manual caching of methods

Figure 7: The call_method micro-benchmark and a common manual optimization, caching
methods in local variables.

perform any caching but are able to unbox all call sites, saving the method allocation and
deallocation overhead associated with every call. On this micro-benchmark we achieve a
speedup of 13 %, which we therefore assume is the best speedup that can ever be achieved
using our method unboxing scheme (until we manage to fix instruction cache issues).

To put this into perspective, we compared our result to an optimization that is folklore in
the Python community and applied widely in the Python library sources and other projects:
Repeated calls (such as in a loop) of the same method on the same receiver object can be
optimized by assigning the method object to a local variable and performing the calls
through that variable. Figure 7(b) illustrates this transformation. The optimization effect
here is due to avoiding repeated lookups of the same value and allocating/deallocating a
method object at each call site. At the place of the call, the method object need only be
fetched from the local variable, which is fast, and unboxed for the call, which is also fast
since the object need not be garbage collected because a reference to it remains in the local
variable. This manually optimized program achieves a speedup of 39 % over the original;
as this is is considerably larger than our unboxing speedup, we conclude that there is still
some room for better caching of method calls in Python.

As a second micro-benchmark, we consider call_method_unknown, which involves
four classes containing identically-named methods that call each other. However, this
benchmark is designed to foil any attempt at caching of receivers or their types, as its
documentation explains: “To make the type of the invocant unpredictable, the arguments
are rotated for each method call. On the first run of a method, all the call sites will use
one type, and on the next, they will all be different.”3 Since the types will be different at

3The code is too convoluted to be excerpted here; see http://hg.python.org/benchmarks/file/
43f8a0f5edd3/performance/bm_call_method_unknown.py

different times, a code transformation as in Figure 7 is not applicable, and any automatic
caching would presumably incur many cache misses. Our unboxing approach, however,
achieves a speedup of 12 % on this micro-benchmark. This is similar to the speedup on
the simple method call benchmark and is to be expected, since in our scheme lookups
are always performed as usual, so changing targets should not impact the interpreter’s
performance at all.

6 Related Work

An optimization that is very similar to our static approach was discussed in the Python
community in 20034. This change was never accepted into the Python distribution, appar-
ently due to slowdowns that were similar to the ones we observe due to instruction cache
misses.

Other than this, the most directly relevant work by Mostafa et al. [MKC+10] investigates
various optimizations for the Python interpreter, including caching of attribute loads and
loads from global variables. Using different variants of a caching scheme for LOAD_ATTR
they achieved speedups of about 3–4 % on average, more if caching of global lookups
was also enabled. Note that we do not report an average speedup for our transformations
because our benchmark suite is biased against optimizations targeted at method calls, while
the benchmarks used by Mostafa et al. appear to be mostly object-oriented, and optimized
attribute lookups benefit most of their programs.

It is not clear how these speedups relate to ours because they used Python 2.6 and do not
specify the minor version number; at some point during the 2.6 series, the official Python
interpreter got some caching of attribute lookups built in, and we cannot tell whether their
caching implementation came before or after this change. In any case, our results in com-
parison to Python 3.3 which definitely uses caching show that unboxing (which Mostafa
et al. do not perform) is orthogonal to caching and can be combined with it profitably.

We use the term quickening adapted from Brunthaler [Bru10b, Bru10a] to refer to the op-
eration of replacing an instruction with a different version, although the operation itself ap-
pears to be folklore. ‘Quick’ instructions appeared at the latest in early Java VMs [LY96].
A similar optimization is inline caching, which replaces not opcodes but instruction argu-
ments in the instruction stream [DS84]. A similar optimization is also possible in inter-
preters that work not on bytecode but directly on abstract syntax trees [WWS+12].

The performance impact of code layout in the interpreter loop was recently investigated
by Brunthaler [Bru11] and McCandless and Gregg [MG11], who report speedups of up
to 14 % and 40 %, respectively.

4http://mail.python.org/pipermail/python-dev/2003-February/033410.html,
http://bugs.python.org/issue709744

7 Conclusions and Future Work

We presented a simple compile-time approach to improve the performance of Python
method calls by unboxing the method object consisting of a receiver and a function pointer.
This approach works but is limited by Python’s dynamic nature and the fact that things that
appear syntactically as method calls might be calls to other kinds of objects with different
calling conventions. We therefore introduce a dynamic improvement that rewrites the code
at execution time depending on the actually observed kind of call.

This paper is the first step in a project aimed at a detailed understanding of Python and
other high-level language interpreters. Instrumenting the interpreter to collect statistics
about the frequency and execution time of bytecode instructions, we noticed a correlation
between occurrences of LOAD_ATTR and CALL_FUNCTION, which are both frequent
and expensive, and designed an optimization to remove some of their shared overhead.

The next step is a larger-scale study of Python 3 programs and their behavior during in-
terpretation. We intend to generalize the results of previous investigations that focused
on studies of reflective and other dynamic behavior in Python programs [HH09] and on
optimizing certain classes of instructions based on such quantitative data [MKC+10].

Acknowledgements

The author would like to thank Stefan Brunthaler and the anonymous reviewers for sug-
gestions that helped to improve the paper.

References

[Bru10a] Stefan Brunthaler. Efficient interpretation using quickening. In Proceedings of the 6th
symposium on Dynamic languages, DLS ’10, pages 1–14, New York, NY, USA, 2010.
ACM.

[Bru10b] Stefan Brunthaler. Inline caching meets quickening. In Proceedings of the 24th
European conference on Object-oriented programming, ECOOP’10, pages 429–451,
Berlin, Heidelberg, 2010. Springer-Verlag.

[Bru11] Stefan Brunthaler. Interpreter instruction scheduling. In Proceedings of the 20th inter-
national conference on Compiler construction: part of the joint European conferences
on theory and practice of software, CC’11/ETAPS’11, pages 164–178, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[CEI+12] Jose Castanos, David Edelsohn, Kazuaki Ishizaki, Priya Nagpurkar, Toshio Nakatani,
Takeshi Ogasawara, and Peng Wu. On the benefits and pitfalls of extending a statically
typed language JIT compiler for dynamic scripting languages. In Proceedings of the
ACM international conference on Object oriented programming systems languages and
applications, OOPSLA ’12, pages 195–212, New York, NY, USA, 2012. ACM.

[DS84] L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-
80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, POPL ’84, pages 297–302, New York, NY, USA,
1984. ACM.

[HH09] Alex Holkner and James Harland. Evaluating the dynamic behaviour of Python appli-
cations. In Bernard Mans, editor, ACSC, volume 91 of CRPIT, pages 17–25. Australian
Computer Society, 2009.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Java Series.
Addison-Wesley Longman, 1st edition, 1996.

[MG11] Jason McCandless and David Gregg. Optimizing interpreters by tuning opcode order-
ings on virtual machines for modern architectures: or: how I learned to stop worrying
and love hill climbing. In Proceedings of the 9th International Conference on Princi-
ples and Practice of Programming in Java, PPPJ ’11, pages 161–170, New York, NY,
USA, 2011. ACM.

[MKC+10] Nagy Mostafa, Chandra Krintz, Calin Cascaval, David Edelsohn, Priya Nagpurkar, and
Peng Wu. Understanding the Potential of Interpreter-based Optimizations for Python.
Technical Report 2010-14, UCSB, 2010.

[WWS+12] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and
Christian Wimmer. Self-optimizing AST interpreters. In Proceedings of the 8th sym-
posium on Dynamic languages, DLS ’12, pages 73–82, New York, NY, USA, 2012.
ACM.

