Source-Level Support for Timing Analysis !

Gergd Barany and Adrian Prantl 2

Institute of Computer Languages
Vienna University of Technology
email: {gergo, adrian}@complang.tuwien.ac.at

Abstract Timing analysis is an important prerequisite for the design of
embedded real-time systems. In order to get tight and safe bounds for the
timing of a program, precise information about its control flow and data
flow is needed. While actual timings can only be derived from the machine
code, many of the supporting analyses (deriving timing-relevant data such
as points-to and loop bound information) operate much more effectively
on the source code level. At this level, they can use high-level information
that would otherwise be lost during the compilation to machine code.

During the optimization stage, compilers often apply transformations,
such as loop unrolling, that modify the program’s control flow. Such
transformations can invalidate information derived from the source code.
In our approach, we therefore apply such optimizations already at the
source-code level and transform the analyzed information accordingly.
This way, we can marry the goals of precise timing analysis and optimizing
compilation.

In this article we present our implementation of this concept within the
SATIrE source-to-source analysis and transformation framework. SATIrE
forms the basis for the TuBound timing analyzer. In the ALL-TIMES EU
FP7 project we extended SATIrE to exchange timing-relevant analysis
data with other European timing analysis tools. In this context, we
explain how timing-relevant information from the source code level can
be communicated to a wide variety of tools that apply various forms of
static and dynamic analysis on different levels.

! This work was supported by the Austrian Science Fund (Fonds zur Férder-
ung der wissenschaftlichen Forschung) under contracts P18925-N13, Compiler
Support for Timing Analysis (CoSTA), http://costa.tuwien.ac.at/ and P21842,
Optimal Code Generation for Explicitly Parallel Processors, http://www.comp
lang.tuwien.ac.at/epicopt/, and the Commission of the European Union within the
7th EU R&D Framework Programme under contract 215068, Integrating European
Timing Analysis Technology (ALL-TIMES), http://www.mrtc.mdh.se/projects/all-
times/.

2 The author is now at Lawrence Livermore National Laboratory, P. O. Box 808, 94551
Livermore, CA.

1 Introduction

Many aspects of our lives are controlled by embedded computer systems with
real-time constraints. Embedded real-time systems used in aerospace and auto-
motive applications are especially delicate: Since errors in such computer systems
may endanger lives, these systems are deemed safety-critical. Adherence to the
specification, both functionally and in non-functional aspects such as timing, is
therefore of the utmost importance. Timing analysis aims to predict worst-case
timing behavior in order to give feedback to developers and provide information
to validation processes.

There are many forms of timing analysis, each having a number of specific
advantages and disadvantages. Static analysis predicts timing behavior based on
the program’s code. This form of analysis is able to cover all possible eventualities;
however, static analyses must typically make some simplifying assumptions that
coarsen the analysis information, suggesting possible program behaviors that
cannot be realized in actual executions. This may lead to overestimations of the
worst-case execution time (WCET). Various kinds of static analysis techniques
can reduce overestimations, but often at considerable costs in analysis time and
memory consumption and, thus, scalability. Wilhelm et al. [WEET08, pp. 39-41]
summarize studies which found that practical static analysis methods overestimate
cache miss penalties by 15-30 %, and up to 50 % on more modern and complex
architectures.

In contrast to static approaches, dynamic analysis observes actual executions
of the program and examines dynamically collected information. Such information
can include things such as traces of paths taken through the program, relationships
between program paths (such as mutual exclusion), numbers of iterations of
loops in the program, and execution times of basic blocks or larger pieces of
code. These data points describe actual executions and are therefore very precise.
However, the major difficulty of dynamic analysis is that one must ensure that
measured data are also safe: The application must be run under conditions and
with input data that are capable of eliciting worst-case behavior. Finding such
input data can be a very difficult task.

In practice, several forms and levels of analysis can be combined: For example,
static analysis may be used in the search for worst-case inputs for subsequent
dynamic analysis. Dynamically measured (safe) timings of parts of a program
may be combined with statically derived information on worst-case execution
frequencies.

This paper provides a high-level overview of past work at Vienna University
of Technology’s Compilers and Languages group. We focus on the combination
of analysis levels: The derivation of symbolic auxiliary information at the source-
code level and its relevance to timing analysis (Section 3); and communication of
the results to tools that perform lower-level timing analysis, usually involving the
application binary (Section 4). As far as information about the program’s control
flow is concerned, source-level information may be invalidated by optimizing
compilers during translation. For this reason, we also discuss how to perform

some optimizations at the source-code level and update the flow information
accordingly (Section 5).

2 Static Timing Analysis Techniques

The standard approach to static timing analysis consists of three conceptual
stages (that need not be implemented separately in actual tools): high-level
analysis, low-level analysis, and calculation.

High-level analysis derives information about the control- and data flow of
the program. In particular, this involves finding static bounds on the number
of iterations of each loop in the program; if it is not known after how many
iterations some loop terminates, the WCET must be conservatively estimated to
be infinite. Other kinds of flow information may include conflicting paths: For
instance, whenever some path 7 is taken at some branch, it may be impossible
to take another path my at a subsequent branch.

Low-level analysis is concerned with finding actual timing information for
parts of the program, typically basic blocks. As a very rough approximation,
this may consist simply of adding up individual worst-case instruction timings.
However, this approach gives much too high numbers on modern processor
architectures that feature pipelines and caching mechanisms. Sophisticated low-
level analyzers therefore track models of the pipeline and cache states, which
allows them to compute a safe approximation of the performance gain due to
overlapped execution of instructions as well as cache hits.

Finally, the calculation phase integrates flow information with low-level tim-
ings. The common approach is the implicit path enumeration technique (IPET):
The entire timing analysis problem is formulated as an integer linear program.
Each basic block’s execution frequency is represented by a variable in the ILP
formulation; flow constraints such as loop bounds and mutual exclusions are
expressed as linear inequalities. Basic block timings are encoded in the problem’s
objective function, which is then maximized using an off-the-shelf ILP solver.
The maximal solution gives the worst-case execution time, and the values of the
ILP variables give some information about the worst-case path.

Both high-level and low-level analysis may profit from various kinds of auxiliary
information: For instance, precise information about pointer targets may both
eliminate false paths due to indirect function calls (high-level) and improve the
prediction of cache effects (low-level). In the following section, we describe our
source-level analyses supporting timing analysis.

3 Source-Level Analyses for Timing Analysis

We use the SATI'E (Static Analysis Tool Integration Engine)® framework to
perform high-level parts of timing analysis. SATIrE is a source-level analysis and
transformation framework that has been under development at Vienna University
of Technology since 2004.

! http://www.complang.tuwien.ac.at /satire/

3.1 The SATIrE Framework

SATIYE allows users to build tools that analyze or transform C (and, to some
extent, C++) programs. Its internal program representation is based on the
object-oriented abstract syntax tree (AST) provided by the ROSE? source-to-
source transformation system. The AST may carry arbitrary annotations as
extracted from annotations in the program or computed by program analyzers.
The AST is either built by ROSE, which is based on the C and C++ frontend
by Edison Design Group?, or by a modified version of the Clang frontend?.

Given the AST, there are several ways of analyzing and manipulating the
program it represents. ROSE includes a number of analyses and transformations,
including a loop optimizer that can perform common operations such as loop
unrolling. SATIrE includes a component that builds an interprocedural control
flow graph (ICFG) suitable for data-flow analysis. Bindings to the Program
Analyzer Generator (PAG)® allow the generation of such data-flow analyzers from
simple functional specifications. Another component® can export and import
ASTs represented as Prolog terms. Prolog’s symbolic processing capabilities
provide excellent tools for the manipulation of tree-shaped data, which makes it
a good match for our purposes.

ASTs that have been transformed or annotated with analysis results (in the
form of comments or #pragma statements) can be unparsed to C source code.
This code can then be passed to any other source-based tool or regular C compiler
for further processing.

3.2 High-Level Analyses Supporting Timing Analysis

SATIrE allows us to implement a number of program analyses supporting the
high-level component of timing analysis. On the source-code level, we can derive
information regarding pointer relationships, including function pointer targets;
information about the possible ranges of the values of integer variables; and,
based on these, tight bounds for the number of iterations of many loops and loop
nests. This section describes our implementations of these analyses.

Points-To Analysis. SATIrE includes a flow-insensitive unification-based anal-
ysis based on Steensgaard’s well-known analysis [Ste96]. The basic analysis
performs a single pass over the program, assigning an ‘abstract memory location’
to each program variable, function, or dynamic memory allocation site. Locations
representing structures have special edges to their members’ locations. All ele-
ments of an array are collapsed into a single summary location. Several distinct
objects may be assigned the same location, as described below.

2 http://www.rosecompiler.org

3 http://www.edg.com

4 http://clang llvm.org

® http://www.absint.de/pag/

5 http://www.complang.tuwien.ac.at/adrian/termite,/

The effects of pointer assignments are modeled using points-to edges between
locations: There is a points-to edge from location ¢; to location ¢ if at some
point during some execution of the program, one of the objects represented by ¢;
may hold a pointer value that points to one of the objects represented by /5.

Each location is constrained to have at most one outgoing points-to edge; if
some location might point to two or more different locations, those locations are
merged into a new combined location. If merged locations pointed to different
locations before, those target locations must also be merged recursively. This
merging ensures that the analysis can be implemented in almost-linear time
using a fast Union/Find data structure [Tar75]; however, it is also a source
of imprecision as it may introduce spurious points-to relations that cannot be
realized in any actual run of the program.

In its basic form, the algorithm suffers from imprecision because it is context-
insensitive: If a function that receives a pointer argument is called at several
different sites, the analysis will merge all the objects that may be pointed to at
any call site. We made the analysis context-sensitive by analyzing each function
several times (once for each context), and linking the analysis data according
to the calling structure between contexts. This approach of cloning contexts is
similar to Lattner et al’s context-sensitive points-to analysis [LLAO7].

The points-to analysis supports other source-level analyses in SATIrE. How-
ever, it is also directly relevant to timing: Precise points-to information can help
other tools reduce the number of candidates at indirect call sites; allow better
value analysis by reducing the number of candidates for indirect data accesses;
and allow better modeling of cache effects.

Value Interval Analysis. SATI'E uses a flow-sensitive interval analysis (or
‘value range analysis’) to associate each integer variable with a value interval
for each location in its scope. If at some point a variable is associated with an
interval [a,b], this means that at that point, the variable’s value is definitely
somewhere between a and b. The interval analysis is implemented as an abstract
interpretation [CC77]. The declarative analysis specification is translated to an
executable program by PAG.

In certain cases, the analysis can make use of assert statements in the pro-
gram that were inserted by programmers with domain knowledge, or by some
other program analysis/transformation. The information in a statement like
assert(x >= 0 && x <= 10); can be used by the interval analysis to infer that
at the program point following that statement, the value of variable x must
be in the range [0, 10], regardless of what was known about its value before.
SATIrE includes a component that annotates a program with such assertions
capturing the results of interval analysis; thus, such assertions are well suited
for storing analysis information for later use without full-scale recomputation.
These assertions are also useful in testing the analysis itself, and in verifying
annotations provided by users or by other tools [PKK™09].

The analysis is integrated with SATIrE’s points-to analysis. Integer assign-
ments or reads through pointer expressions can therefore be resolved to sets

of possibly referenced variables. This allows us to avoid some conservative as-
sumptions that would be necessary without points-to information: Indirect reads
yield the union of all involved variables’ intervals, indirect writes only affect the
analysis data associated with the possible pointer targets. Similarly, arrays are
modeled as sets of aliased variables.

The interval analysis is inter-procedural, i. e., intervals associated with argu-
ment expressions of function calls are propagated into the corresponding functions.
For programs that use indirect calls through function pointers, the points-to
analysis is consulted to propagate information to and from all possible targets
of the given call. Using facilities provided by PAG, the interval analysis can be
used in a context-sensitive way with arbitrarily long call strings.

In the context of timing analysis, interval analysis is mostly of interest for
the computation of loop bounds (see below). It some cases, it can also identify
infeasible paths: Branches on the values of function parameters may be resolved
statically (in context-sensitive ways) if the analysis can identify the value ranges
of actual arguments.

Loop Bounds Analysis. To implement the TuBound timing analysis tool,
SATIrE was extended with a component which computes bounds for loops based
on iteration variables [PKSTO08]. It uses results of the interval analysis and
structural information about the program to build equations or set of inequalities,
which are solved to yield bounds on the number of loop iterations.

The loop analyzer looks for loops preceded by the initialization of an iteration
variable, a loop condition consisting of an inequality involving the variable (or
a set of such inequalities connected by ‘logical or’ operations), and exactly one
increment or decrement of the variable inside the loop with a bounded (but not
necessarily constant) step size. Assuming the loop variable is 4, the initialization
expression is Init, the test expression is i < Maz, and the minimum step size Step
is known to be positive, we can set up an equation like n = (Max — Init)/Step
to describe the number of loop iterations.

This expression can be evaluated using interval arithmetic to provide an
upper bound. Before numeric evaluation, we also perform a symbolic simplifi-
cation step that attempts to eliminate common subexpressions between Max
and Inst. This allows us to handle some loops that involve unknown quan-
tities, such as the common idiom of iterating over an array using a pointer:
for (p = a; p < a + 10; p++). Here, our interval analysis cannot determine
an interval for a; however, none is needed because after simplification, no occur-
rences of a are left in the loop bound expression.

The above analysis works well for single loops, but it can overestimate nested
loops with a triangular or irregular iteration space. We analyze nested loops using
more general flow constraints. This analysis works for counting loops as described
above, but now we require a constant step size. For each (upwards-counting) loop,
we set up a system of inequalities {i > Init,i < Maz, (i — Init) mod Step = 0}.

This translation can be performed recursively for nested loops. The set of
distinct integral solutions to the resulting system of inequalities describes the

entire iteration space, i. e., the set of all tuples of values that the iteration variables
of the loops can take. The size of this set gives the number of iterations of the
innermost loop in the nest. The clpfd solver distributed with SWI-Prolog” allows
efficient computation of the number of solutions without producing them.

Precise data on loop bounds is directly relevant to timing analysis as programs
typically spend most of their time in loops, and an overestimation of loop trip
counts directly translates into an overestimation of the WCET. Automatic
analysis, especially of complex irregular loop nests, is both less time-consuming
and less error-prone than manual annotation.

4 Integration of Timing Analysis Tools

This section explains how we integrate the high-level analyses described in the
previous section with other timing analysis tools. Such integration is needed
because actual timing information cannot be derived at the source code level: An
intervening compiler is needed to produce actual machine code. (Compilation to
an abstract machine may suffice if a precise timing model of the abstract machine
on a given physical machine is available [HBH07].) Such compilers may be, but
need not be, aware of the real-time nature of the software they are compiling.

Here we describe SATIrE’s integration with four other tools with different
approaches to the WCET analysis problem: Compiler integration; dynamic
analysis; static analysis on the binary; flow analysis on a lower-level representation.
All of these connections make heavy use of annotation capabilities provided by
the respective tools.

The integration with CalcWCET o167 was implemented as part of the Austrian
CoSTA project, while the other three integrations were part of the ALL-TIMES
EU FP7 project. We have working research prototypes for each tool integration.

4.1 Integrated Compilation and WCET Calculation

One compiler designed for integrated compilation and WCET calculation is
CalceWCET¢167 [Kir01] targeting Infineon’s C167 family of microcontrollers.
This is a modified version of GCC which understands wcetC, an extension of C
that provides a custom syntax to specify flow constraints and loop bounds in
addition to the input program. During code generation, it computes execution
times for each basic block it generates; the flow information and basic block
timings are used to set up an IPET problem, which is solved using standard
techniques. One drawback of this approach is that the compiler is prohibited from
performing optimizations that alter the control flow of the program. Section 5
discusses how we can sidestep this problem by performing optimizations on the
source-code level.

CalcWCET ¢167’s approach to timing analysis relies on good source-level
flow annotations. Without tool support, such annotations must be placed in

" http:/ /www.swi-prolog.org

the program by the programmer, which is a tedious and error-prone task. The
TuBound tool implemented using SATIrE is able to leverage its loop bounds
analysis to compute the necessary information for many loops. Its program
transformation capabilities can then be used to insert the annotations in the
source code.

4.2 Annotations for Measurement-Based Analysis

RapiTime by Rapita Systems Ltd® is a dynamic analysis toolkit. It instruments
target applications with measurement code and uses the measurement data to
profile performance, provide code coverage information, and perform WCET
analysis. As RapiTime uses dynamic analysis to gather information at run-time,
one cannot always be sure that all possible executions of certain parts of the code
have been covered by its analysis. RapiTime therefore provides the possibility
for users to annotate the program’s source code with high-level knowledge about
issues such as points-to relations or flow constraints. SATIrE can compute some
of the relevant information, as detailed below.

In order to compute a worst-case timing for a function call, RapiTime must
know all the possible functions that may be called at that site (in a certain
context). Since embedded system programs often contain indirect calls through
function pointers, this information is typically not immediately available. During
the execution of the system, the code instrumented by RapiTime can record
all observed functions called from a certain site, but as noted above, it may
not always be sure that these were all the possible call targets for that call site.
Without this information, it must make a conservative approximation or reject
the program.

SATIrE’s points-to analysis statically computes conservative approximations
of the sets of targets of each indirect function call. This automatic analysis is
much faster and more reliable than manual annotations; this is particularly true
for context-sensitive annotations. Thus SATIrE’s information can tell RapiTime
whether it has observed all possible call targets during its tests, or which other
possible targets it must take into account. Similarly, RapiTime may observe
certain numbers of iterations for loops in the application. SATIrE’s static analysis
of loop bounds may confirm that the observed iterations are indeed the worst
case, or provide information for appropriate computation of a guaranteed time
bound.

Our source-level static analysis thus helps in ensuring the safety of the dynamic
analysis, or in proving that a given dynamic analysis result is indeed safe.

4.3 Annotations for Binary-Level Static Analysis

The aiT family of WCET analysis tools from AbsInt Angewandte Informatik
GmbH? performs static analysis directly on the application binary. Using abstract

8 http://www.rapitasystems.com
9 http://www.absint.com

interpretation, aiT derives possible value ranges of registers and memory locations;
it also computes upper bounds on the WCET of basic blocks, taking cache and
pipelining effects into account. The overall WCET is computed using the IPET
approach.

While the analyses of aiT and SATIrE compute some similar information, they
have different ways of computing that information. aiT’s value analysis subsumes
its pointer analysis, treating pointer values simply as integers. A value interval
determined for a pointer thus implicitly denotes the set of all objects that could
be addressed by that pointer. In contrast, SATIrE’s points-to analysis is symbolic,
identifying objects by abstract symbols, not by memory addresses. Where a
pointer points to non-adjacent functions or global symbols in the program, aiT’s
analysis will determine that it may also point to any intervening function or
object. In such cases, SATIrE’s symbolic analysis can derive the possibly much
more precise result that the pointer may only reference one of a discrete set of
functions or objects, but not any arbitrary memory address in between. This
more precise pointer analysis may also add precision to SATIrE’s interval analysis
in some cases. We express results using aiT’s existing annotation mechanism.

aiT’s annotation mechanism includes a notion of ‘user-defined registers’, which
are virtual machine registers whose values can be read or written by annotations.
In particular, annotations can be made conditional on a user-defined register’s
value. This allows us to formulate context-sensitive annotations by encoding call
string information in virtual registers. Such annotations may, in turn, tighten
aiT’s timing results computed for certain contexts.

4.4 Integration with Other High-Level Tools

SWEET is a research tool from Milardalen University’s WCET group'®. Its flow
analysis is based on abstract execution [GESL06] and can derive complex flow
constraints relating execution frequencies for different points in the program. The
integration of SWEET and SATIrE involves various issues. First, as SWEET
works on programs represented in the ALF format [GELT09], it needs translators
to ALF in order to analyze source code. The connection between SATIrE and
SWEET in the ALL-TIMES project therefore included a C-to-ALF compiler.!!
One advantage of having control over this translator is that it can output useful
meta-information besides the ALF code.

The translator therefore outputs information mapping ALF code positions
(identified by jump labels) to SATIrE’s internal position identifiers as well as
to source code locations. It also exports information on the call strings used
by SATIrE. Using this information, SATIrE’s context-sensitive analysis results
regarding points-to information and value intervals can also be communicated
to SWEET. In contrast to the other connections described above, SWEET and
SATIrE have similar notions of program objects (ALF allows named, scoped
variables like C does). Thus SATIrE’s analysis information referring to program

10 http://www.mrtc.mdh.se/projects/wcet/
" http://www.complang.tuwien.ac.at /gergo/melmac/

variables and pointer relations is directly useful to SWEET. The tight correspon-
dences between program positions as well as variables allow SATIrE to exchange
even flow-sensitive information with SWEET, which is not the case for the
other connections. This tight integration can ease the implementation burden on
SWEET’s developers, who at the time of writing do not have a context-sensitive
points-to analysis.

5 Source-Level Optimization and Timing Analysis

As mentioned in Section 4.1, some types of compiler optimizations alter the
program’s control flow and invalidate flow information annotated at the source-
code level. One prominent example for this is loop unrolling: An unrolled loop will
perform fewer iterations than expected from the source code, but will accordingly
do more work in each iteration. For a loop unrolled by a factor of k, preserving
the original annotation will result in an overestimation of the WCET by a similar
factor of about k. For this reason, such optimizations must be disabled in the
back-end compiler if source-level annotations are to be used. The CalceWCET 167
compiler disables all loop optimizations that change the control flow.

However, such optimizations are desired because they can often result in
considerable speedups. We have therefore combined source-level optimization with
corresponding transformation of source-code annotations. This way, programs can
take advantage of loop optimizations at the source level, while such optimizations
are still disabled in the back-end. At the same time, annotations remain correct
and tight. The result is usually a reduction in the calculated WCET.

5.1 Transformation of Flow Information

We consider flow information represented by a variable f. for each edge e in the
program’s control-flow graph. Flow constraints are given as inequalities of linear
expressions involving possibly scaled flow variables, which we write as (n - f.).
We transform constraints by replacing expressions referring to transformed edges
with other expressions [KPP10]. In general, there are two cases to consider:

— The flow f, at edge e is split into multiple edges e;. We replace the corre-
sponding scaled flow variable by appropriately scaled variables for the new
edges:

(n-fe) — (nu-fer) + (n2-fey) +--

— The flow of several edges e; is merged into one edge ¢’. For each e;, we
perform the following transformations for < or < constraints:

(nins - fer) on the left-hand-side of the constraint
(nins + fer) on the right-hand-side of the constraint

1) —{

and vice versa for > or > constraints.

In either case, the values of the newly introduced scalar factors depend on the
details of the program transformation.

Transformation of flow annotations is guided by an optimization trace. The
trace, a log of each modification of the control flow, is produced by the loop
optimizer. We use it to access data about the original and transformed loops as
well as the flow variables involved. Our implementation of optimization traces and
the transformation rules can handle the correct transformation of annotations
for loop unrolling, loop blocking, loop fusion, and loop interchange.

Original program Loop-interchanged program’
for (i = 0; i < 8; ++i) { for (j = 0; j < mn; ++j) {
// //
for (j = 0; j < mn; ++j) { for (i = 0; i < 8; ++i) {
/7 12 // 12
if (even(i)) if (even(i))
// then // then
el's‘e' . else ...
Loop bounds Loop bounds’
(11,8...8) (l,1...4)
(I2,1...4) (12,8...8)
Constraints Constraints’
fiu <8 fi/4 <8
fthen Sfl1’2 fthen Sflg/l'z
fll Sfthcn'Q f12/4§fthen‘2

Figure 1. Example: Transformation of annotations after loop interchange [Pral0]

Example. Figure 1 illustrates the transformation of flow constraints for inter-
changed loops. Note that each occurrence of f;, is replaced by the flow variable fi,,
scaled appropriately according to the analyzed lower or upper bounds of iterations
of the new outer loop.

5.2 Experimental Evaluation

We evaluated the impact of source-level loop optimization and annotation trans-
formation on the analyzed WCETSs of the programs from the WCET benchmark
suite from Mélardalen University and the DSPstone benchmark suite. On aver-
age, our source-based optimizations succeed in reducing the analyzed WCET by
about 13% on the Malardalen benchmarks and by about 21 % on DSPstone.

Figure 2 shows results for the standard WCET analysis benchmarks collected
by Mélardalen University'2. In Figure 3 results for the fixed-point version of the
DSPstone benchmarks [ZVSM94] are shown: Using the benchmarks that could
be fully analyzed (and automatically annotated at the source code level) by an
unassisted TuBound, the diagrams show how the WCET bound is affected by the
source-level loop optimizations. Each value is normalized by the WCET bound of
the program with just the low-level optimizations applied, marked as the ‘original’
analyzed WCET in the graphs. The WCET bound calculation was done using
the CalcWCET ¢147 back end of TuBound. The source-level loop optimizations
use the upper and lower loop bound information found by TuBound. All low-level
optimizations performed by the target compiler do not alter the control flow any
more. The rightmost bar represents the geometric mean of the scaled execution
speed of each of the benchmarks.

120% 1

original
80%

60%
40%

20%

0%

6 6 OOI OI,C?'O 6’% Q» '?60 QQ % Q’O’Q 2, OQ, s O&, QQQ‘GO o 9(2("I»,se {9@0
10 KA e /?; b U, S “ s, ‘
Z / S % % 2,
A)/ &/
S

Figure 2. Tighter analyzed WCETs due to high-level loop optimizations: Mélardalen
benchmarks

The benchmarks show that the potential for optimizations is significant. Un-
surprisingly, the implemented optimizations (loop unrolling, fusion, interchange,
splitting), perform well on DSP kernels (e.g., matrix2) and show little to no
impact on branch-intensive code (e.g., nsichneu) that lacks tight loops with a
high trip-count.

Outliers like crc show that careful selection of the different optimization phases
is very important. This process, however, can be supported by an automatic
WCET analysis, which can be used to guide the optimizer by judging the
improvement of a program transformation [LMO09].

12 http://www.mrtc.mdh.se/projects/wcet /benchmarks.html

120% - |
original
80% ||
60%
40%
20%
0%
by g o O U B B b K ‘% @
U, 0y %, Oy, 2 g, s Q]QJJ%QQ “ Uy o, N, Y 7,
S Wy Ry Py %, N, %, o e, Yy % Sy N,
S No, X, X, %, % oy Ny, % %,
. % QJ(, 4 % %z‘ 0, % 2
sy e, %, g,
2 4. C Q‘(@&

Figure 3. Tighter analyzed WCETs due to high-level loop optimizations: DSPstone
benchmarks

6 Related Work

Wilhelm et al. [WEE™T08] present a thorough discussion of the worst-case execu-
tion time problem and various tools and methods to approach it. Gustafsson et
al. [GLST08] give a more detailed overview of the ALL-TIMES project and the
tools involved. Schordan [Sch08] presents the SATIrE system in more detail and
considers some challenges of annotating source code with analysis information.

There does not appear to be much previous work that deals specifically
with integration of source code analysis and WCET calculation. This paper
summarizes and unifies several threads of work in this area performed at Vienna
University of Technology in between 2006 and 2010 within the ALL-TIMES
and CoSTA projects. Prantl et al. discuss the TuBound tool in much more
detail [PSK08,Pral0], while Barany [Bar09] gives more details on the integration
of SATIrE in the ALL-TIMES project.

Schulte [Sch07] as well as Engblom et al. [EEA98] discuss the transformation
of flow annotations along with control-flow altering program optimizations.

Herrmann et al. [HBHT07] use a (conceptual) virtual machine as an interme-
diate step for combining high-level and low-level analysis of programs written
in the functional language Hume: For each target machine, timings of abstract
machine instructions are derived using aiT. Source-level analysis and knowledge
of compiler internals allows their framework to determine the set of abstract
machine instructions that would be generated for each input program. Straightfor-
ward composition of this information with the low-level timings yields a WCET
bound.

7 Conclusions

We have presented our approach to supporting timing analysis on the source code
level using the SATIrE analysis framework. Using this framework, we built the
TuBound tool for WCET analysis, combining source-level analysis, source-level
optimization, and a back-end compiler performing WCET analysis. We have also
implemented connections to several other timing analysis tools of various kinds,
demonstrating that source-level analysis information can be useful for a wide
range of timing-related analyzers that cover different analysis approaches.

Acknowledgements. The authors would like to thank Viktor Pavlu and Alexander
Jordan for many helpful comments on earlier versions of this article. We are
grateful to the anonymous reviewers for their comments that helped us improve
the paper’s focus and presentation.

References

[Bar09] Gerg6 Barany. SATI'E within ALL-TIMES: Improving timing technology
with source code analysis. In 15. Kolloquium Programmiersprachen und
Grundlagen der Programmierung (KPS ’09), page 230, Maria Taferl, Austria,
Oct. 2009.

[CCTT] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In POPL *77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238—252, New
York, NY, USA, 1977. ACM.

[EEA98] Jakob Engblom, Andreas Ermedahl, and Peter Altenbernd. Facilitating
worst-case execution time analysis for optimized code. In Proc. 10th Eu-
romicro Real-Time Workshop, Berlin, Germany, June 1998.

[GEL*09] Jan Gustafsson, Andreas Ermedahl, Bjérn Lisper, Christer Sandberg, and
Linus Kéllberg. ALF — a language for WCET flow analysis. In Proceedings
of the 9th International Workshop on Worst-Case Execution Time Analysis
(WCET’09), June 2009.

[GESL06] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper.
Automatic derivation of loop bounds and infeasible paths for wcet analysis
using abstract execution. In The 27th IEEE Real-Time Systems Symposium
(RTSS 2006), December 2006.

[GLS™08] Jan Gustafsson, Bjérn Lisper, Markus Schordan, Christian Ferdinand, Marek
Jersak, and Guillem Bernat. ALL-TIMES - a European project on inte-
grating timing technology. In Proc. Third International Symposium on
Leveraging Applications of Formal Methods (ISOLA’08), pages 445-459.
Springer, October 2008.

[HBH'07] Christoph A. Herrmann, Armelle Bonenfant, Kevin Hammond, Steffen Jost,
Hans-Wolfgang Loidl, and Robert Pointon. Automatic amortised worst-case
execution time analysis. In Proceedings of the 7th International Workshop
on Worst-Case Ezecution Time (WCET) Analysis, 2007.

[Kir01] Raimund Kirner. User’s Manual — WCET-Analysis Framework based on
WCETC. Vienna University of Technology, Vienna, Austria, 0.0.3 edition, July
2001. available at http://www.vmars.tuwien.ac.at/ raimund/calc_ wcet/.

[KPP10]

[LLAO7]

[LMO09]

[PKK*09]

[PKSTOS]

[Pral0]

[PSKOS]

[Sch07]

[Scho8g]

[Ste96]

[Tar75]

Raimund Kirner, Peter Puschner, and Adrian Prantl. Transforming flow
information during code optimization for timing analysis. Real-Time Systems,
45(1-2):72-105, June 2010.

Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-
sensitive points-to analysis with heap cloning practical for the real world.
In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 278-289, New York,
NY, USA, 2007. ACM.

Paul Lokuciejewski and Peter Marwedel. Combining Worst-Case Timing
Models, Loop Unrolling, and Static Loop Analysis for WCET Minimization.
In The 21st Euromicro Conference on Real-Time Systems (ECRTS), pages
35-44, Dublin / Ireland, July 2009. IEEE Computer Society.

Adrian Prantl, Jens Knoop, Raimund Kirner, Albrecht Kadlec, and Markus
Schordan. From trusted annotations to verified knowledge. In Proceedings
of the 9th International Workshop on Worst-Case Execution Time Analysis
(WCET 2009), pages 39-49, Dublin, Ireland, June 2009. Osterreichische
Computer Gesellschaft. ISBN: 978-3-85403-252-6.

Adrian Prantl, Jens Knoop, Markus Schordan, and Markus Triska. Con-
straint solving for high-level WCET analysis. In The 18th Workshop on
Logic-based methods in Programming Environments (WLPE 2008), pages
77-89, Udine, Italy, December 2008.

Adrian Prantl. High-level compiler support for timing analysis. PhD thesis,
Vienna University of Technology, 2010.

Adrian Prantl, Markus Schordan, and Jens Knoop. TuBound — A Conceptu-
ally New Tool for Worst-Case Execution Time Analysis. In 8th International
Workshop on Worst-Case Ezecution Time Analysis (WCET 2008), pages 141—
148, Prague, Czech Republic, 2008. Osterreichische Computer Gesellschaft.
ISBN: 978-3-85403-237-3.

Daniel Schulte. Modellierung und Transformation von Flow Facts in einem
WCET-optimierenden Compiler. Master’s thesis, Universitdt Dortmund,
2007.

Markus Schordan. Source-to-source analysis with SATIrE - an example
revisited. In Scalable Program Analysis, number 08161 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL ’96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 32-41, New York, NY, USA, 1996. ACM.
Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215-225, 1975.

[WEE'08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

[ZVSM94]

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenstrém. The worst-case execution-time
problem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3):1-53, 2008.

Vojin Zivojnovi¢, Juan Martinez Velarde, Christian Schlidger, and Heinrich
Meyr. DSPstone: A DSP-Oriented Benchmarking Methodology. In Proceed-
ings of the International Conference on Signal Processing and Technology
(ICSPAT), Dallas, October 1994.

