
Python Interpreter Performance Deconstructed

Gergö Barany
Institute of Computer Languages
Vienna University of Technology

gergo@complang.tuwien.ac.at

ABSTRACT
The Python programming language is known for performing
poorly on many tasks. While to some extent this is to be
expected from a dynamic language, it is not clear how much
each dynamic feature contributes to the costs of interpreting
Python. In this study we attempt to quantify the costs of
language features such as dynamic typing, reference count-
ing for memory management, boxing of numbers, and late
binding of function calls.

We use an experimental compilation framework for Python
that can make use of type annotations provided by the user
to specialize the program as well as elide unnecessary refer-
ence counting operations and function lookups. The com-
piled programs run within the Python interpreter and use
its internal API to implement language semantics. By sepa-
rately enabling and disabling compiler optimizations, we can
thus measure how much each language feature contributes
to total execution time in the interpreter.

We find that a boxed representation of numbers as heap
objects is the single most costly language feature on numeric
codes, accounting for up to 43 % of total execution time
in our benchmark set. On symbolic object-oriented code,
late binding of function and method calls costs up to 30 %.
Redundant reference counting, dynamic type checks, and
Python’s elaborate function calling convention have com-
paratively smaller costs.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—Interpreters

Keywords
interpreters, dynamic programming languages, unboxing, ref-
erence counting, Python

1. MOTIVATION
Python is a popular programming language, but it has a

reputation of being slow. Projects such as the PyPy just-in-
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time compiler [BCFR09] show that it is possible to execute
some Python programs up to 50 times faster while remaining
faithful to its semantics.

Why, then, is the standard Python interpreter (often called
CPython) so slow? Is it due to interpretation overhead? Due
to dynamic typing and late binding of operations? Due to
the boxing of numbers, or due to the overhead of automatic
memory management by reference counting?

We attempt to answer some of these questions by mea-
suring the execution times of Python programs with and
without enabling the corresponding language features. Sim-
ply turning off language features is obviously infeasible in
the standard interpreter, but we sidestep this problem in a
novel way by using a compiler to specialize programs while
still running them inside the interpreter. Type annotations
from the user and simple program analysis allow us to turn
off language features where it is safe to do so, but to still
adhere to Python’s dynamic semantics otherwise.

This kind of analysis has several advantages over imple-
menting dynamic optimizations in the interpreter and mea-
suring their impact. First, relying on annotations is simpler
than performing static or dynamic type checking; second, we
obtain results that quantify only the overheads of the lan-
guage features of interest, without incurring unknown costs
of the guards needed when performing dynamic program
specialization; third, we do not suffer from the perturbations
and some other complications we would have to expect if we
tried to measure the costs of dynamic language features by
instrumenting the Python interpreter with timing code.

Our results show that dynamic typing and especially box-
ing of arithmetic operands and containers can easily ac-
count for more than half of the total execution time of pro-
grams that perform a large number of numeric computa-
tions. For programs written in an object-oriented style, with
large numbers of method calls, late binding of such calls can
take up 20 % and more of total time. Näıve reference count-
ing, a feature for which Python is often criticised, shows a
uniform but small impact of up to 7 % of execution time.

Besides the concrete data we obtained, the main contri-
bution of this paper is a general technique for quantifying
the costs of language features in dynamic programming lan-
guages. While our implementation and the findings are spe-
cific to Python, the general approach is applicable to any
interpreted dynamic programming language that is capable
of calling arbitrary foreign code.

The rest of the paper is structured as follows. Section 2
explains our approach to simulating the Python interpreter’s
behavior using compilation. Section 3 describes our experi-
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Figure 1: Evaluation of the Python expression i-j on integers.

mental evaluation and the results we obtained on the cost of
dynamic language features in Python. Section 4 discusses re-
lated work, Section 5 mentions possibilities for future work,
and Section 6 concludes.

2. COMPILED INTERPRETER SIMULATION
Our method for evaluating different aspects of an inter-

preter’s performance is based on generating compiled pro-
gram parts that simulate the internal API calls executed by
the interpreter. The following sections describe how Python
uses function calls to implement much of the language se-
mantics, and how we can simulate the same or different se-
quences of function calls with the same externally observable
behavior.

2.1 Dynamic overheads in Python: example
CPython is a stack-based bytecode interpreter written in

C using dispatch based on token threaded code. All program
data, including numbers, is manipulated through pointers to
heap structures that share the common PyObject interface.
There is no additional static type information. All opera-
tions, including basic arithmetic, are dispatched dynamically
based on operand types. Automatic memory management
is based primarily on reference counting, with a mark and
sweep garbage collector as a backup to collect cyclic objects.

This simple architecture is reflected in the internal API
used by the interpreter: The implementations of most byte-
codes are simple sequences of reference count increment and
decrement operations for operands and a single call to an
API function. Figure 1 shows an example bytecode snippet
for computing the expression i-j in Figure 1(a) and the cor-
responding sequence of API calls executed by the interpreter
in Figure 1(b). (The Py_INCREF and Py_DECREF operations
are actually macros that expand to inline code, not func-
tion calls.) For this example, i and j are assumed to be
local variables of Python’s arbitrary-precision integer type,
which is called int at the language level but, for histori-
cal reasons, long within the interpreter. Accordingly, the
generic PyNumber_Subtract function internally dispatches
to the long_sub function that performs the actual opera-
tion. In the fastest case, this operation amounts to a single
CPU sub instruction. We write %i and %j for the CPU reg-
isters that hold the numeric values of the objects i and j,
respectively.

The interpreter executes each bytecode instruction in iso-
lation. However, interesting optimization opportunities ap-
pear by viewing just a few bytecodes as a group. In the
example, the reference counting operations on the subtrac-

tion’s operands are obviously redundant: Since i and j are
local variables, they have non-zero reference counts when en-
tering this piece of code. The subtraction operation does not
consume reference counts. Thus even if the reference count
increment/decrement pairs are removed as in Figure 1(c),
neither operand will be inadvertently deallocated.

Alternatively, a typing oracle might inform us that the
subtraction’s operands will always be integers when this
snippet is executed. In that case it is not necessary to go
through the generic subtraction instruction, and a direct call
to long_sub can be used to implement the subtraction. This
transformation is shown in Figure 1(d). The latter two op-
timizations can be combined to avoid both reference count-
ing and dynamic dispatch (not shown here). Finally, if the
oracle guarantees that the two integers will always fit into
machine registers, the operation can be completely unboxed
and executed as a single CPU instruction as in Figure 1(e).

2.2 Other dynamic overheads
Besides boxed arithmetic and reference counting, other

overheads of interest to us that appear as sequences of API
calls in the Python interpreter include the boxing of con-
tainers, the dynamic allocation of call stack frames on the
heap, and the late binding of function calls from the global
scope or from object attributes (i. e., method calls).

By boxing of containers we mean primarily accesses to
Python lists and arrays. Python’s lists are indexable con-
secutive heterogeneous sequences (vectors) of boxed objects.
Arrays are homogeneous vectors of unboxed numbers. When
accessing a list or array by numeric index, the index must be
unboxed to perform the address computation to access the
underlying memory; for arrays, additionally, numbers must
be type checked and unboxed on stores, and boxed on loads.
Both list and array accesses also perform bounds checks on
the index.

For handling coroutines (‘generators’), for certain intro-
spective programming techniques, and for easier stack un-
winding on exceptions, the Python interpreter manages a
dynamically allocated call stack on the heap. Each call from
a Python function to another causes a frame to be allocated
dynamically, and positional arguments are passed by copy-
ing them into the frame’s variable slots. These frames are
destroyed on function return. If instead of returning, the
function executes a yield statement, its execution is sus-
pended and can be resumed later. In this case, its execution
state is encapsulated in its stack frame, which can not be
deleted yet. For this reason, stack frames must be allocated
dynamically. The cost to support coroutines, which are rare,



must thus be paid in full for every function call, which are
frequent.

Python’s highly dynamic nature also extends to function
calls, which typically use late binding. Python uses dynamic
scoping, so every use of a global object incurs the overhead
of a lookup in the global hash table for the current context
(plus another lookup in the builtins table if the global lookup
misses). Further, method calls are always virtual and are
passed on the stack in a boxed representation as a pair of a
function and a self pointer. Boxing/unboxing of methods
alone can account for about 10 % of highly object-oriented
programs’ execution time [Bar13].

2.3 Compiling Python functions with pylibjit

To evaluate the costs of dynamic language features, we
need to be able to execute Python programs with certain
features turned on and off; further, since we want to quan-
tify the costs of features as implemented by CPython, our
programs must be executed within (or at least linked to)
the CPython runtime. Finally, modifying the interpreter di-
rectly to turn features on and off would be both difficult and
possibly plagued by second-order effects due to orthogonal
issues such as the ordering of bytecode implementations in
the interpreter [MG11].

For all these reasons, we decided to use pylibjit, a frame-
work for compiling Python program fragments to run on top
of the Python interpreter [Bar14]. pylibjit uses function
annotations (‘decorators’) to mark functions to be compiled
to machine code and to provide type annotations for argu-
ments, the return value, and variables occurring in the func-
tion. For example, the näıve Fibonacci function in Python
can be compiled to machine code using unboxed arithmetic
by simply decorating it with appropriate annotations:

@pyjit.compile(return_type=jit.Type.int,

argument_types=[jit.Type.int])

def fib_int(n):

if n < 2:

return n

else:

return fib(n-1) + fib(n-2)

Due to unboxing, this compiled version runs about 50
times as fast as the interpreted version. Note that the
Python source code was not changed and is still parsed
by the Python interpreter; the annotation can be removed
at any point to switch back to purely interpreted execu-
tion. Type annotations can name unboxed machine types,
Python’s boxed number types float and int, list or array
types, or any Python class name. Using these annotations,
the compiler is able to specialize the code’s behavior as de-
scribed below.

In any case except for unboxed operations, the compiled
code implements Python semantics by calling the same API
functions that the interpreter also uses.

2.4 pylibjit Optimizations
The optimizations performed by pylibjit on request aim

directly at eliminating the sources of overheads discussed
above.

Reference counting optimization removes unnecessary
reference count increment/decrement operations. Pairs
of such operations on the same object within a basic

block, without intervening operations that might re-
duce the reference count, are redundant; they can be
identified and eliminated at compile time. Reference
counting operations that are not removed are gener-
ated as inlined code, as in CPython (which uses C
macros for inlining).

Static dispatch of arithmetic operations relies on user-
provided type annotations to identify arithmetic on
boxed int or float objects and generate calls directly
to the type-specific functions rather than the generic
PyNumber functions that perform dynamic dispatch at
run time.

Unboxing of numbers uses type annotations to directly
use machine operations on integers and floating-point
numbers that fit into machine registers. This avoids
storing every number in a heap object and managing
that memory.

As a special case, this also turns loops of the very com-
mon form for i in range(n), which would normally
use an iterator to enumerate boxed numbers from 0
to n, into unboxed counting loops if i is an unboxed
machine integer.

Unboxing of containers, also driven by type annotations,
specializes read and write accesses to list and array

objects and elides bounds checks if the index is an un-
boxed machine integer. (pylibjit does not currently
have a switch to separate unboxing of containers from
bounds checking.) Boxing/unboxing operations on ar-
ray accesses are also eliminated if the operand is oth-
erwise used unboxed.

Call stack frame removal executes calls between any two
compiled functions directly and uses the machine’s call-
ing convention rather than dynamically allocated stack
frames. This means that we cannot compile coroutines
or catch exceptions, but these cases do not occur in
our benchmarks, so handling the frames is unneces-
sary overhead.

Early binding of function calls resolves the addresses of
compiled or built-in functions or methods at compile
time (guided by type annotations for methods’ receiver
objects) and generates direct CPU call instructions.

Most of these optimizations are orthogonal in that they
can be enabled and disabled independently of each other.
This allows us to isolate and study language features such
as the tightly interwoven but separable issues of dynamic
typing and boxing of numbers.

However, there are relevant interactions between optimiza-
tions that influence their respective behavior. For exam-
ple, optimization of reference counting operations applies in
fewer cases if entire boxed objects are optimized away by
unboxing. As another example, unboxing of containers is
almost useless if numbers are not unboxed because direct
memory accesses are only generated if the index is an un-
boxed number. In this case, only accesses with constant
indices would be unboxed.

3. EXPERIMENTS
Building on the infrastructure described above, we evalu-

ated the dynamic overheads of the Python language features
discussed in Sections 2.1 and 2.2.



Table 1: Benchmark characteristics

Benchmark Types of computations
crypto_pyaes small int arithmetic, array operations,

method calls
fannkuch list manipulations, method calls
float float arithmetic, attribute accesses,

method calls
go list accesses, method calls
hexiom2 list accesses, method calls
meteor-contest list manipulations, function calls
nbody-modified float arithmetic, list accesses
pidigits arbitrary-precision int arithmetic
richards attribute accesses, method calls
scimark_fft float arithmetic, array accesses
scimark_lu float arithmetic, array accesses,

method calls
spectral_norm small int/float arithmetic, function

calls

3.1 Experimental setup
The basis of the evaluation was Python 3.2.3 on an Intel

Atom N270 CPU running Linux 3.2.0. We used a number of
benchmarks from the PyPy benchmark suite1, which unfor-
tunately contains mainly programs in the Python 2 dialect.
Many, but not all, could be translated to Python 3 using
the standard 2to3 tool or simple manual transformations.
A few benchmarks had to be excluded because the man-
ual annotation overhead to obtain meaningful optimizations
with pylibjit was too large, or because they used gener-
ators (coroutines) or try-catch-finally constructs which
the compiler cannot handle so far. A single benchmark
(raytrace-simple) had to be excluded due to an as yet
unresolved bug in pylibjit.

The remaining benchmarks are listed in Table 1 along with
brief descriptions of the types of computations they perform.

We obtained costs for each of the language features under
consideration by measuring execution time with and with-
out the feature enabled (wall clock time, as reported by the
timing infrastructure used by the benchmark suite). Each
configuration was run 10 times on an otherwise idle machine
and the minimum taken as the representative time. In our
experience, the minimum is very close to the time taken by
most runs; any outliers are particularly slow runs, there are
no fast outliers.

To measure some of the language features’ impacts, we
had to implement corresponding ‘pessimizations’. For ex-
ample, to measure the impact of static (boxed) typing of
arithmetic, we needed a ‘fully dynamic typing’ switch which
ignores all of the user’s number type annotations by rewrit-
ing them to refer to the universal type object. The compiler
is then forced to emit generic PyNumber calls to implement
any arithmetic operation. As another example, we measure
the impact of late binding on function calls by calling the
appropriate lookup functions of the API.

As mentioned above, some optimizations interact with
each other. In the experiments described below, such in-
teractions were resolved in the way that reflects each lan-
guage feature’s costs most faithfully. In particular, the cost
of unnecessary reference counting was evaluated with fully

1https://bitbucket.org/pypy/benchmarks/

dynamic typing and no unboxing; the cost of container box-
ing was evaluated with unboxed numbers.

3.2 Results
Table 2 summarizes our results. The cost of each language

feature is given as the percentage (rounded to whole num-
bers) of the interpreter’s total execution time on the program
without any compilation whatsoever. The absolute cost of a
language feature f is obtained by benchmarking two copies
of the program, one with f enabled and one with it disabled.
For example, to measure the costs of the boxing of numbers,
we first measure execution times with boxed numbers (but
also with static type checking and reference counting elision
enabled), then measure the same programs with numbers
unboxed as much as possible. The difference between execu-
tion times is just the cost of boxed arithmetic, not including
the cost of other related features such as automatic memory
management or dynamic type checks.

If executing a program in the interpreter takes time ti,
compiling it with some costly dynamic feature f enabled
takes time tf and compiling it without f takes t f , then the
fraction given in the table is

tf � t f

ti
.

The numerator gives the total time spent in implementing
dynamic feature f , and the denominator normalizes that to
total interpreter execution time. While the numerator is a
time difference between compiled programs, the extra time
is spent in Python interpreter API calls. It is therefore a
useful proxy for determining the time the interpreter would
spend executing those same operations.

3.3 Discussion
Unsurprisingly, different language features have different

effects on the benchmarks. There is, however, some strong
clustering depending on benchmark type, especially on the
results of number boxing for the very ‘numeric’ benchmarks
spectral_norm, crypto_pyaes, and scimark_fft. The lat-
ter two are also heavily based on arrays and incur corre-
spondingly high costs from boxing and bounds checking on
containers. nbody-modified similarly spends much of its
time in list accesses to get at arithmetic operands.

Besides boxing operations, late binding has the largest
effects. This is to be expected for object-oriented bench-
marks such as go, hexiom2 (both of which play games),
and richards (a scheduling simulation). The arithmetic-
heavy float benchmark performs a very large number of
method calls and thus also incurs large overheads due to
late binding. The ‘numeric’ scimark_lu uses a Python class
to implement matrices and therefore also has to perform
many late-bound method calls to access matrix elements.

The third group of benchmarks shows less dynamic lan-
guage feature overhead in the table. This is because these
programs spend much of their time in compiled code within
the Python standard library, not in the interpreter. fannkuch
and meteor-contest compute on large numbers of list slices
and other built-in data structures. pidigits spends almost
all of its time on arbitrary-precision integer arithmetic that
cannot be unboxed. Reference counting has a small impact
here, but no other dynamic language feature is relevant be-
cause this benchmark exercises only Python’s big integer
library.



Table 2: Cost of various Python language features and implementation choices as fraction of interpreter
execution time.

Benchmark Ref. counting Dynamic typing Number boxing Container boxing Call stack Late binding
crypto_pyaes 7 % 5 % 34 % 24 % 1 % 3 %
fannkuch 5 % 3 % 1 % 5 % 0 % 0 %
float 0 % 1 % 32 % 0 % 2 % 30 %
go 6 % 2 % 2 % 0 % 10 % 16 %
hexiom2 3 % 0 % 2 % 3 % 8 % 18 %
meteor-contest 5 % 0 % 1 % 0 % 2 % 4 %
nbody-modified 2 % 15 % 19 % 12 % 0 % 5 %
pidigits 1 % 0 % 0 % 0 % 0 % 0 %
richards 7 % 0 % 0 % 0 % 10 % 23 %
scimark_fft 7 % 9 % 38 % 24 % 0 % 0 %
scimark_lu 2 % 1 % 6 % 6 % 0 % 16 %
spectral_norm 5 % 15 % 43 % 0 % 6 % 3 %

From the point of view of individual language features, un-
necessary reference counting has the least variation in cost
of 0–7 % of total execution time. Interpreter optimizations
that remove the low-hanging fruit of unnecessary reference
counting operations could hope for small but uniform per-
formance improvements. Somewhat less uniform but much
larger gains could be expected from optimizing method calls,
possibly due to more aggressive caching of dynamic method
lookup results. Optimizing the dynamic call stack would im-
prove a few benchmarks but not make a difference on most
of them.

4. RELATED WORK
There is a large body of work on optimizing various as-

pects of the Python interpreter, such as type speculation and
unboxing of numbers [Bru10a, Bru10b, Bru13], optimization
of method calls [Bar13, MKC�10], or more general inter-
preter optimizations [HH09, PR13]. These papers optimize
one or more dynamic language features, typically insert-
ing guards along the way to catch cases of mis-speculation.
However, these papers, with the recent exception of Brun-
thaler [Bru13], do not attempt to quantify the potential im-
pact of their optimizations: How fast could their programs
become with perfect speculation, i. e., without any guards?
In this sense the present paper differs from all of the above
by trying to quantify the costs of dynamic language features
rather than the benefits of concrete optimizations.

Similarly, this paper does not quite fit into the litera-
ture on Python compilers. Some, like PyPy [BCFR09] or
Cython [Sel09], reimplement Python to compile to stand-
alone executables. This is very useful to maximize perfor-
mance and highlight that it is possible to execute Python
code very quickly, but it does not shed light on where in the
interpreter how much of that performance is lost. Others,
like numba [num], are more similar to the pylibjit compiler
we use [Bar14] in that they also run compiled code inside
the interpreter, but again with a focus on performance, not
on faithful modeling of Python language semantics.

5. FUTURE WORK
The results presented above suggest two primary avenues

of research on optimizing Python, namely a focus on num-
ber unboxing and on method lookups, respectively. Both

can be addressed fully dynamically to some extent: Brun-
thaler [Bru13] describes a Python interpreter that uses dy-
namic type information to generate type-specialized, un-
boxed code at run time and achieves speedups of up to 4�.
Barany [Bar13] addresses a sub-problem of method lookups,
namely the fact that due to Python’s calling convention,
method objects must be passed around in a boxed represen-
tation. This boxing can often be eliminated, giving speedups
of up to about 10 %.

Both of these optimizations work with completely unmod-
ified Python code. However it appears that both of these
optimizations, as well as the actual process of dynamically
looking up methods, would profit from more type informa-
tion. Python’s flexible syntax allows such information to
be expressed as decorators or as annotations in a function’s
head, which makes it an interesting target for gradual typ-
ing, i. e., the mixing of static and dynamic types within a sin-
gle program [VSB]. Gradual typing information can be used
to perform unboxing and early binding without the guards
needed if only dynamic type information is available.

Finally, our measurements of the costs of language fea-
tures can be refined further to gain even more insight into
optimization potentials. In particular, the costs of ‘late
binding’ should be separated into the late binding of global
identifiers vs. object attributes, and in the case of method
lookups, the cost of method boxing should be determined in
more detail.

6. CONCLUSIONS
We have presented the first limit study that tries to quan-

tify the costs of various dynamic language features in Python.
The results show that for arithmetic-heavy programs, box-
ing of operands and containers is the largest performance
bottleneck; dynamic type checks themselves (separate from
boxing) have a comparatively smaller impact.

For programs heavy on method calls, lookup and boxing
of methods are the most costly language feature, but the
calling convention involving dynamic allocation of call stack
frames is also sometimes relevant.

The basic technique of simulating interpreters by compila-
tion is applicable to interpreters for any dynamic program-
ming language and should enable their developers to gain
similar insights.
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