Optimistic Integrated Instruction Scheduling and
Register Allocation

Gergo Barany and Andreas Krall

Institute of Computer Languages, Vienna University of Technology
{gergo,andi}@complang.tuwien.ac.at

Abstract. Instruction scheduling and register allocation are two fun-
damental operations in an optimizing compiler’s back-end. Scheduling
is especially important in order to exploit parallel functional units in
modern superscalar or VLIW architectures. There is a well-known phase
ordering problem between these two stages: Performing either stage first
can force the other stage to make suboptimal decisions.

We propose an optimistic integrated approach in which scheduling is per-
formed before register allocation, but where not all scheduling decisions
are final; rather, the register allocator may rearrange the order of cer-
tain instructions to find a good match of register usage to the actually
available registers.

The rescheduling register allocator is based on a linear-scan allocator.
The allocator passes over the program and assigns registers to live ranges.
When at some point there are more live values than available machine
registers, standard allocators make a decision to spill some value to mem-
ory or to split a live range. With our scheme, there is an additional
possibility: Instructions may be rearranged so that some live ranges end
earlier, freeing registers for other values. Such code motion may lead to
longer schedules because more unfilled delay slots may be exposed. In
many cases, we expect this to be preferable to more expensive spilling.
We evaluate a prototype implementation of our approach and find that
it succeeds in eliminating some spills, but (as expected) not as many as
a scheduler aimed at minimizing register use. To expose greater oppor-
tunities for aggressive optimizations, we will investigate our integrated
approach in the setting of superblock scheduling for instruction-level par-
allel processor architectures.

1 Introduction

Among the passes in an optimizing compiler’s back-end, instruction scheduling
and register allocation are especially important ones. The goal of instruction
scheduling is to find an ordering of machine instructions that minimizes execution
time; register allocation is responsible for mapping program values to machine
registers to minimize memory traffic.

The instruction scheduling phase is presented with a set of machine instruc-
tions from the instruction selection phase. The instructions may use virtual reg-
isters or physical registers as operands, depending on whether scheduling is per-
formed before or after register allocation (prepass/postpass scheduling). There

are dependences between some instructions: An instruction that produces a value
must be scheduled before any instruction using that value (data dependence);
all uses of a value must be scheduled before any instruction that overwrites the
value (anti-dependence) [AKO1].

These dependences typically do not induce a total ordering of the machine
instructions. The instruction scheduler must choose from among the many valid
schedules one that minimizes schedule length by the best possible utilization of
processors’ multiple functional units and pipelines. In particular, memory loads
and other instructions that take many cycles to evaluate can be overlapped with
independent instructions to fill their delay cycles.

Register allocation aims to allocate the most frequently used program values
from virtual registers to machine registers and to minimize memory traffic by
minimizing the number of stores (spills) and expensive reloads of values executed
by the program. An important notion in register allocation is that of the live
range: A value is live from its point of definition until its last use. Overlapping
live ranges of different values cannot be allocated to the same physical register
since the later definition would overwrite the earlier one and cause the wrong
value to reach some of the uses. Conversely, non-overlapping live ranges may
safely be allocated to the same physical register as there is no possibility of
interference.

There is a well-known phase ordering problem between instruction scheduling
and register allocation: Prepass scheduling that maximizes pipeline utilization
may place many instructions between a virtual register’s definition and its uses.
This tends to lengthen live ranges and to increase the number of overlaps, often
causing more spills. On the other hand, in postpass scheduling, allocation of
different values to the same physical register can introduce false dependences that
constrain the scheduler’s choices. Thus, neither ordering of decoupled instruction
scheduling and register allocation passes might result in an optimal program.
Many cooperative or integrated approaches for solving the combined problem
have therefore been proposed. This paper introduces a new technique based
on rescheduling during register allocation, modifying the output of the prepass
scheduler where necessary to avoid spilling.

The structure of the remainder of this work is as follows: The next section
surveys related work in the field of combining scheduling and register allocation.
Section 3 presents our approach of rescheduling register allocation and discusses
various heuristics. Section 4 describes our implementation of a rescheduling reg-
ister allocator and presents early experimental results. Section 5 discusses future
work, and Section 6 concludes.

2 Related Work

Combined approaches to instruction scheduling and register allocation are a
classic topic in compiler research. Most of them are cooperative, i.e., one of the
phases attempts to take the needs of the following phase into consideration.

An early important contribution was integrated prepass scheduling (IPS) by
Goodman and Hsu [GHS88|. In IPS, a prepass scheduler is combined with a live-
ness analysis to estimate register pressure at the beginning of each basic block
in the program. The register pressure model is adjusted during scheduling: In-
structions that define a register increase register pressure, while the last use of a
value frees the corresponding register. By default, the scheduler orders instruc-
tions to minimize exposed latencies. However, if register pressure rises above a
predefined threshold, IPS switches to a mode that prefers to shorten live ranges.
This approaches strikes a good balance between pipeline utilization and spill
code reduction.

A more complex method called RASE [BEH91] relies on multiple schedul-
ing passes: Each block is first tentatively scheduled twice, under the respective
assumptions that register pressure is very high and very low. The tentative sched-
ule lengths can be interpolated using a hyperbolic function to approximate the
expected schedule length for any number of available registers. Using this infor-
mation, a global analysis and register allocator can assign each block a ‘register
budget’ so as to minimize the expected overall number of executed instructions.
In the last pass, each block is assigned a final schedule and local register allo-
cation that does not exceed the assigned register budget (introducing spill code
if necessary). The authors found that the results produced by RASE were quite
similar to IPS and did not warrant the increased complexity.

The URSA method of Berson et al. [BGS99] is based on register reuse DAGs
which are used to identify groups of instructions that would use too many reg-
isters if scheduled in parallel. Edges in a register reuse DAG connect two in-
structions if the target instruction can reuse a register freed by the source; in-
dependent instructions, i.e., those that do not lie on a common path through
the reuse DAG, cannot share registers and would increase register pressure if
scheduled simultaneously. URSA uses live range splitting to reduce the number
of interfering live ranges.

Touati’s work on register saturation [TouO1] improves the heuristics used
by URSA for determining the maximal register need for a DAG. Touati intro-
duced an optimal integer linear programming formulation as well as near-optimal
heuristics for computing and reducing this limit.

DAG-driven register allocation, introduced by Goodman and Hsu in the same
paper as IPS [GH88]|, uses the data dependence graph for register allocation
before a postpass scheduler. This approach exploits dependences already present
in the graph: Where there is already a (possibly transitive) dependence from the
end of one live range to the start of another, both can be allocated the same
register without introducing false dependences.

Pinter [Pin93] extended the graph coloring approach commonly used for reg-
ister allocation to include scheduling information. This approach is based on
the complement of the graph representing (transitive) scheduling dependences.
In this complement graph, an edge connects two instructions iff they can be
executed in parallel. These edges are added to the register interference graph.
Coloring the graph with physical registers such that no two adjacent nodes are

assigned the same register will ensure that no false dependences are introduced
between instructions. Norris and Pollock [NP93] presented a similar approach.

Ambrosch et al. [AEBK94] introduced dependence-conscious coloring. In this
approach liveness analysis for register allocation is performed on the depen-
dence graph, not on linear pieces of intermediate code. During register alloca-
tion, anti-dependence edges may be added to the graph due to some register
assignments; registers are selected to minimize the number of non-redundant
anti-dependences. This graph-based approach introduces fewer dependences than
graph coloring register allocation on previously linearized code. This leaves more
freedom to the postpass scheduler.

Various groups implemented code generators integrating optimal instruction
selection, instruction scheduling and register allocation, based on formulations
such as integer linear programming. We cite the work of Eriksson et al. as an
example [ESKO08].

Finally, on modern architectures with out-of-order execution, good pipeline
utilization can be ensured dynamically by the CPU, which makes static schedul-
ing less important. For such architectures, it is more important to avoid spills
whenever possible, so scheduling aimed at minimal register pressure is an appro-
priate choice [VG99].

3 Rescheduling Register Allocation

We present a novel approach to the integration of instruction scheduling and
register allocation. In this approach, the responsibility for balancing the needs of
the two phases lies entirely with the register allocator. The prepass scheduler can
be an aggressive off-the-shelf scheduler that aims only at reducing the schedule
length without regard for register pressure. The register allocator may change
the schedule during allocation according to its needs to avoid expensive spills.
We expect this approach to be able to eliminate most of the scheduling decisions
that turn out to hinder register allocation; it is this aspect of the framework
that we refer to as optimistic scheduling, avoiding conservative register pressure
estimates during scheduling.

3.1 Rescheduling During Linear Scan Register Allocation

Our rescheduling register allocator formulation extends linear scan register allo-
cation [PS99]. Linear scan is a simple technique based on a serialization of the
program’s basic blocks, where a value’s live range is approximated by a single
interval of program positions that includes all uses and definitions of the value.
(This simple approximation may include program points where the value is not
even live.) The register allocator performs a single sweep over the program, allo-
cating registers to each interval it reaches. The original linear scan approach was
aimed at just-in-time compilation and traded compilation speed for somewhat
worse code than produced by other allocators. Extended versions include various

improvements and rival the code quality of graph coloring register allocators at
much faster compilation speeds [SBOT7].

At the start of some live interval the linear scan allocator is not always able
to assign a new physical register because all registers are used up. In such cases,
it must usually make a decision to spill one of the overlapping values. It is at this
point that our modified allocator offers another choice: Rather than introducing
expensive spilling, it can attempt to reschedule some instructions to shorten
some of the overlapping live ranges.

Moving a single instruction can shorten live ranges in the following way: The
end of a live range (the last use of the corresponding value) may be hoisted to
the point where the register allocator has run out of registers. The only instruc-
tions that can be hoisted are ones that can legally be scheduled at that point. In
particular, this means that all of their operands must be live; in a linear scan al-
locator that builds upon the static single assignment form (SSA) [CFR'91], this
is the case iff all operands have been assigned to physical registers. Other con-
ditions to ensure include correct ordering of possibly aliasing memory accesses,
and correct handling of implicit condition code registers.

As described above, we only consider those instructions for hoisting that end
live ranges. This means that after hoisting the instruction must still be the last
use of a value; in other words, last uses may not be hoisted past other uses of
the same value. In this case, the hoisted instruction will free the register(s) for
which it is the last use.

The hoisted instruction may free more registers than it defines. This can
be the case for instructions that do not define register values, such as stores
to memory; it may also be the case for binary operations that are last uses of
both of their operands simultaneously. If an instruction like this is hoisted, its
register result (if any) can be allocated to one of the freed registers, and at least
one other register is free for other use. Provided that register types and sizes
match, this will typically allow the register allocator to successfully reconsider
the instruction that blocked it previously. In such cases, a physical register can
be assigned to that instruction’s result, and spilling is avoided.

The more common case is that of a hoisted instruction that frees just as many
registers as it defines, typically one. In this case, the register allocator can reuse
the freed register for the instruction’s result, but does not get any additional
registers to assign to the following instructions. Some progress is still made,
however: One more instruction can be assigned a register, and this rescheduling
operation may enable further code motions that eventually free registers. Such
repeated rescheduling operations can eventually avoid some spills as well, but it
is impossible to tell this without performing lookahead operations.

As explained above, rescheduling may prevent the spilling of values to mem-
ory. This can be a very significant gain as memory accesses can incur long delays.
The cost of rescheduling is a modified schedule in which the uses of certain val-
ues are closer to their definitions. This may cause pipeline delays if a defining
instruction’s latency is no longer fully masked by other intervening instructions.
However, we expect this cost of a few cycles typically to be much less than a spill

would cost. Unfortunately, heuristic rescheduling may shorten some live ranges
at the expense of lengthening others, worsening the results of register allocation
in other parts of the program.

Besides linear scan, a formulation of rescheduling register allocation based on
graph coloring is also possible: Just as with linear scan, a value must be spilled if
too many live ranges interfere at some point. Rescheduling to shorten some live
range(s) removes interferences; this corresponds to cutting interference edges,
which may make the graph easier to color. As with linear scan, this technique
of removing interferences is orthogonal to spilling and may be considered as an
alternative if deemed profitable. We will not follow this thread further and only
consider linear scan register allocation for the rest of this paper.

3.2 Example

We will illustrate our approach using an example adapted from Goodman and
Hsu [GHS88]. Consider the basic block in Figure 1(a), scheduled to mask load
latencies as well as possible. We will illustrate crucial steps in rescheduling linear
scan register allocation on this basic block. The vertical line indicates the current
position of the allocator; we assume that three physical registers are available
for this basic block.

04 1load VR4 < c 04 load Rl < ¢

05 1load VRS <+ d 05 load R2 < d

07 1load VR7 <« e 07 load R3 < e

01 1load VRl « a 01 1load VRL < a

02 1load VR2 < b 02 1load VR2 < b

06 add VR6 < VR4 + VRS 06 add VR6 < R1 + Q]

08 add VR8 <« VR1 + VR7 08 add VR8 < VR1 + R3

03 mul VR3 < VR1 * VR2 03 mul VR3 < VR1 * VR2

09 mul VR9 < VR6 * VR8 09 mul VRO < VR6 * VR8

10 add VR10 < VR3 + VRO 10 add VR10 <« VR3 + VR9

11 store h < VR10 11 store h < VR10
(a) Example basic block at the start of (b) Register allocator blocked after three
register allocation. steps; instruction 06 is available for re-

scheduling.

Fig. 1. Running example: Linear-scan register allocation with rescheduling, assuming
three available physical registers.

The results of the first three instructions can be allocated to the three avail-
able physical registers as shown in Figure 1(b). (Physical registers are underlined
for better visibility.) The register allocator is blocked after processing these three
instructions as there are no more free registers to assign to the result of instruc-
tion 01. In this situation, the usual allocator would have to introduce spill code

to free a register. The rescheduling allocator instead looks ahead to find instruc-
tion 06 ready for rescheduling as indicated in Figure 1(b). This instruction is
available because all of its operands have already been assigned physical reg-
isters; in an allocator based on SSA form, this means that these registers will
not be modified by intervening instructions, so their uses can be scheduled right
away.

After hoisting instruction 06 before instruction 01, register allocation can
continue because 06 is the last use of two registers; one of them is reused for
the instruction’s result, the other is free. Instruction 01 will now be considered
again and can successfully be assigned the free register.

04 1load Rl < c 04 load Rl < ¢

05 load R2 <+ d 05 load R2 <+ d

07 1load R3 <+ e 07 load R3 < e

06 add R1 < R1 + R2 06 add R1 < R1 + R2
01 load R2 < a 01 load R2 < a

02 1load VR2 < b 08 add R3 < R2 + R3
08 add VRS < R2 + @] 02 load VR2 < b

03 mul VR3 < R2 * VR2 03 mul VR3 < R2 * VR2
09 mul VR9 < R1 * VR8 09 mul VR9 < R1 * R3
10 add VR10 < VR3 + VR9 10 add VR10 < VR3 + VR9
11 store h < VR10 11 store h < VRI10

(a) Rescheduling freed registers for in- (b) Instruction 02 is still blocked after
structions 06 and 01 (blocked previously). rescheduling, but progress has been made.
Further rescheduling is needed because Rescheduling instruction 09 will resolve all
instruction 02 is blocked. register conflicts.

Fig. 2. The example continued: After rescheduling, the register allocator is blocked
again. Further rescheduling will finally allow successful allocation to three physical
registers without spilling.

The example is continued in Figure 2. In Figure 2(a), the register allocator
is now blocked at instruction 02, which is the last load operation. It must be
delayed until a register can be freed. In Figure 2(a), instruction 08 can be hoisted,
and a physical register reused for its result. This does not free a register for the
previously blocked instruction yet. However, instruction 09 becomes available
as indicated in Figure 2(b) because its second operand has now been bound to
a physical register. After the last rescheduling operation, there are enough free
registers to finally assign a register to instruction 02 and the rest of the basic
block. The final result of rescheduling register allocation is shown in Figure 3.

The final basic block is scheduled such that its register need does not ex-
ceed the number of available registers. At the same time, some of the assumed
load latencies are still masked by the schedule. An implementation if IPS could
produce the same result in this example as the rescheduling allocator. Any final

04 1load Rl + c
05 1load R2 < d
07 1load R3 < e
06 add R1 < R1 + R2
01 load R2 <+ a
08 add R3 + R2 + R3
09 mul R3 < R1 * R3
02 1load Rl < b
03 mul R1 < R2 * R1
10 add R1 < R1 + R3

11 store h7<— L?

Fig. 3. Final result of rescheduling register allocation applied to the running example.
By rescheduling, the register limit could be met without spilling.

schedule derived by the rescheduling allocator is of course a valid schedule that
could have been derived by a prepass scheduler. The advantage of integration
into the register allocator is that decisions can be made on the basis of the actual
register usage model of the allocator, not of pessimistic estimates beforehand.

3.3 Rescheduling Heuristics

In the description and the example given above, the only kind of code motion
was the hoisting of instructions to earlier points. If such instructions can free or
reuse registers, the previously blocked instruction may eventually be assigned a
register without spilling. Rather than looking for profitable instructions to hoist,
we might try a different approach: The blocked instruction could be delayed as
far as possible, i.e., until just before the first use of its result, or until the end
of the current basic block.

Our approach currently chooses the closest instruction that is legal and prof-
itable to hoist. This is the same instruction that would be the next to be pro-
cessed by the register allocator if one or more instructions had to be delayed.
Thus, the local effect of hoisting and delaying appears to be the same. The dif-
ference is in the position where the previously blocked instruction will end up:
When we use hoisting, it will be delayed as little as possible; sinking it down
to the latest possible position will perturb the schedule more, but it may lower
register pressure over a longer stretch of code.

In the future, we would like to investigate both experimentally and in a
more formal way the possible rescheduling heuristics and their relationship to
established techniques such as IPS.

4 TImplementation and Evaluation

We implemented a prototype of the rescheduling register allocator described
above using the LLVM compiler framework [LA04]. This section describes some

implementation details and gives a detailed experimental evaluation of our pro-
totype.

4.1 Implementation in LLVM

The LLVM compiler framework is a great tool for exploring optimization and
code generation techniques. LLVM comes with back-ends for various architec-
tures and provides a number of target-independent optimizations, instruction se-
lectors, schedulers and register allocators. To validate our concept of rescheduling
during register allocation, we modified LLVM’s default register allocator, which
is based on linear scan. This allocator includes some backtracking to try an im-
proved allocation when it spills a value, so it is not actually ‘linear’ anymore;
this backtracking is orthogonal to our approach and does not require any special
handling.

When the register allocator fails to assign a physical register, it usually in-
vokes code to spill a value instead. At this point, we added a check for reschedu-
lability: We need only examine the list of currently ‘active’ live ranges. (This
list’s length is bounded by the number of physical registers.) We identify those
active live ranges that are of a correct register class, and which end in the basic
block in which the register allocator is currently blocked. Of these candidates,
we prefer the closest instruction that ends a live range (to disturb the schedule
as little as possible) which is legal to reschedule: In a simple linear pass over all
intervening instructions, we check that we will not disturb the relative ordering
of memory writes and reads, that no condition code register values will be clob-
bered by the rescheduling, and that there are no further uses of the live range
we want to end.

After having chosen a legal candidate, it is moved in the list of instructions
in its basic block. A linked list containing liveness information must also be
updated in a simple linear pass to ensure that the analysis information is in sync
with the modified code. All modifications of the program and analysis data are
strictly local. If rescheduling fails due to a lack of legal candidates, we fall back
on LLVM’s regular spilling mechanism.

This approach appears easy to extend to superblock scheduling. For this, we
need only relax the condition that the ends of candidate live ranges be in the
same block as the current position of the register allocator. The legality checks
must make sure to examine the effects of all possibly intervening blocks.

Finally, we implemented not only the hoisting heuristic, but also the sinking
heuristic described in Section 3.3. The results for the two heuristics were virtually
identical; the data given below were collected with the hoisting rescheduler.

4.2 Experimental Evaluation

We used the freely available MiBench! benchmark suite [GRET01] to evaluate
the prototype implementation of our rescheduling register allocator. Out of a

! http://www.eecs.umich.edu/mibench/

total of 24 programs in the suite, we chose the 15 programs that were not mis-
compiled by the development version of LLVM that we used as the basis of our
prototype.

The tests were run on an Intel Xeon CPU running at 3 GHz under Linux.
We do not currently have a production VLIW back-end to test our algorithm’s
effects on explicitly parallel processors.

For our tests, we used LLVM’s latency-oriented top-down list scheduler (TD)
as the baseline, and its bottom-up register pressure reducing scheduler (BURR)
as an estimation of the maximum potential of eliminating spills. The reschedul-
ing allocator builds on TD as its prepass scheduler and modifies its results where
needed. We determined static spill and reload counts as well as counts of dy-
namic memory accesses (total reads and writes; these figures include all memory
accesses, not only spills and reloads).

Table 1. Static results of the experimental evaluation of the rescheduling register allo-
cator (Resched) compared to top-down latency-oriented scheduling (TD) and bottom-
up register pressure reducing scheduling (BURR).

Static spill sites Static reload sites
Benchmark TD Resched BURR TD Resched BURR
security-blowfish 33 18 12 49 34 25
security-rijndael 7 7 7 12 12 12
consumer-lame 600 602 526 802 803 708
consumer-mad 614 597 461 839 833 598
consumer-typeset 730 726 717 2810 2799 2808
consumer-jpeg 190 189 164 254 253 237
telecomm-adpcm 0 0 0 0 0 0
telecomm-fft 19 18 16 31 29 27
telecomm-gsm 14 14 9 28 28 12
automotive-bitcount 6 6 6 3 3 3
automotive-qsort 2 2 2 2 2 2
automotive-susan 709 702 641 950 945 876
network-patricia 1 1 1 1 1 1
network-dijkstra 0 0 0 0 0 0
office-stringsearch 0 0 0 0 0 0
Total 2925 2882 2562 5781 5742 5309
Percentage of TD 98.5% 87.6% 99.3% 91.8%

Table 1 summarizes the static data we obtained. We expected the reschedul-
ing allocator to save some spills (where possible) over the latency-oriented sched-
uler, but to avoid fewer spills than the register pressure oriented scheduler. This
is the case for all of the benchmarks except consumer-lame, where the reschedul-
ing heuristic makes a bad decision that causes a slight increase in the number
of spills. Interestingly, for the consumer-typeset benchmark, rescheduling spills
more values than the register pressure oriented scheduler; however, due to a more
fortunate choice of values to spill, this results in fewer static reload sites.

Table 2. Dynamic results of the experimental evaluation of the rescheduling regis-
ter allocator (Resched) compared to top-down latency-oriented scheduling (TD) and
bottom-up register pressure reducing scheduling (BURR). Figures for each benchmark
are rounded to millions; summary data were computed from the unrounded numbers.

Dynamic stores (mil.) Dynamic loads (mil.)
Benchmark TD Resched BURR TD Resched BURR
security-blowfish 78.8 75.6 75.6 227.6 220.8 220.8
security-rijndael 24.4 24.4 24.4 132.1 132.1 1321
consumer-lame 84.4 84.4 86.3 341.0 341.0 333.1
consumer-mad 45.2 44.8 42.5 132.1 131.5 119.1
consumer-typeset 105.9 105.9 105.9 206.4 206.4 206.4
consumer-jpeg 8.7 8.7 8.8 26.8 26.5 26.7
telecomm-adpcm 6.8 6.8 6.8 40.1 40.1 40.1
telecomm-fft 39.1 39.1 38.8 67.7 67.7 67.4
telecomm-gsm 32.8 32.8 32.5 288.2 288.2 2879
automotive-bitcount 27.0 27.0 27.0 68.7 68.7 68.7
automotive-gsort 40.8 40.8 40.8 73.5 73.5 73.5
automotive-susan 0.3 0.3 0.3 76.1 76.1 76.1
network-patricia 66.2 66.2 66.2 113.1 113.1 113.1
network-dijkstra 12.0 12.0 12.0 109.8 109.8 109.8
office-stringsearch 0.8 0.8 0.8 0.9 0.9 0.9
Totals 573.0 569.3 568.5 1904.0 1896.3 1875.8
Percentage of TD 99.4% 99.2% 99.6 % 98.5%

Table 2 presents the dynamic memory access counts we obtained using the
Cachegrind tool [Net04], part of the Valgrind dynamic analysis framework?. As
expected, some correlation with the static data can be observed: Fewer static
spills and reloads typically result in fewer dynamic spills and reloads as well.
There are some anomalies, in particular with the consumer-jpeg benchmark:
While the register pressure reducing scheduler (BURR) eliminates a larger num-
ber of static spills and reloads, it causes more dynamic loads and stores than
the rescheduling register allocator. Such effects are probably due to unfortunate
heuristic choices. In other cases, such as security-blowfish, some of the removed
spills appear to be executed very infrequently: Although BURR eliminates some-
what more static spills and reloads than the rescheduler, the dynamic results are
essentially identical.

Overall, the experimental data confirm the expected result that rescheduling
during register allocation can succeed in reducing register pressure and thus
eliminate some expensive spills. This approach does not avoid as many spills
as a scheduler aiming for minimal register pressure, but it may be a workable
trade-off between schedule length and register usage.

Figure 4 visualizes how much of the potential to reduce spills and reloads
is realized by our approach. We again use TD as the baseline and use BURR
to approximate the best possible reduction in spills and reloads. In the graph,

? http://valgrind.org

12% 8% 81% 27%
BURR = 100% |-
5% |-
50% |
25% |-
TD — 0% L[]

Sk S O O
. “a, = 2,
%,y/ ‘e, O)’o& .
‘s Q, Vo) j)/ G/O
§ QQ)
‘s

Fig. 4. Graph of the relationship between rescheduling register allocation and BURR.
Each bar represents how much of the reduction potential is realized by our allocator.
Higher bars denote more eliminated spills or reloads.

each bar corresponds to one of the measures in Tables 1 and 2. A value of 0%
corresponds to behavior like TD (no additional loads/stores eliminated), a value
of 100 % would mean full realization of the potential to reduce spill code. The
results show that our allocator’s static effects appear small. However, it manages
to eliminate 81 % of all dynamically executed spills that we may realistically hope
to eliminate. The potential to reduce dynamic reloads is realized to 27 %. We
hope to be able to improve this value by implementing a cost model for choosing
between several candidates for code motion.

We would have liked to compare our integrated approach to established ap-
proaches; unfortunately, our prototype implementation of IPS produces too low
quality code to allow a fair comparison.

5 Future Work

The work reported in this paper is at a somewhat early stage; the results in Sec-
tion 4 are mostly a proof of concept that the general approach of rescheduling
register allocation can make profitable modifications to avoid spilling after an
aggressive prepass scheduler. While this work in progress could not yet be com-
pared to other fast combined heuristic methods, we are encouraged to continue
exploring the design space of rescheduling register allocation. Here, we sketch
three main areas for future work in this field:

First, the rescheduling heuristics we implemented so far only account for a
certain class of code motions; more general transformations, possibly moving
more than one instruction at a time, might find more profitable schedules and
register mappings. A general formulation should also include an estimation of

the costs and advantages of code motions compared to the register allocator’s
model of spill costs.

Second, the scope of rescheduling could be extended from basic blocks to
superblocks: We can move code between sets of basic blocks controlled by the
same set of conditions, for example the block before a branch and after the
corresponding join. Superblock scheduling is especially important to exploit the
resources provided by explicitly parallel architectures such as VLIWs, and while
it is a difficult problem in general, a superblock extension of rescheduling register
allocation might be quite simple and yet profitable.

Finally, we intend to investigate rescheduling extensions of optimal or near-
optimal register allocators based on formulations such as integer linear program-
ming or partitioned Boolean quadratic problems (PBQP). In particular, LLVM’s
near-optimal PBQP register allocator does not include spilling in its formulation;
if it cannot solve a register allocation problem, it requests an external compo-
nent to spill some value before trying again. At this point, we might choose to
reschedule instead of spilling. We would like to do this in a way that preserves
as much of the solver’s state as possible, which could make the restart of the
PBQP register allocation considerably more efficient.

6 Conclusions

We presented an optimistic integrated scheme for instruction scheduling and
register allocation: Unlike many other approaches that attempt to estimate and
control register pressure during prepass scheduling, we use an aggressive stan-
dard scheduler. Register pressure is reduced by rescheduling instructions during
register allocation, when precise data about register pressure and the alloca-
tor’s model of spill costs are available. We believe that this may result in better
balanced trade-offs than methods based on cooperative prepass schedulers.

The experimental results of our prototype implementation using the LLVM
compiler framework encourage us to continue work in this area. We plan to
investigate various rescheduling heuristics, extensions to superblock scheduling,
and integration with optimal or near-optimal register allocators.

Acknowledgements

This work was supported by the Austrian Science Fund (Fonds zur Férderung der
wissenschaftlichen Forschung) under contract P21842, Optimal Code Generation
for Explicitly Parallel Processors, http://www.complang.tuwien.ac.at/epicopt/.

References

[AEBK94] Wolfgang Ambrosch, M. Anton Ertl, Felix Beer, and Andreas Krall.
Dependence-conscious global register allocation. In Proceedings of the Inter-
national Conference on Programming Languages and System Architectures,
number 782 in Lecture Notes in Computer Science, pages 125-136, London,
UK, 1994. Springer-Verlag.

[AKO1]

[BEHO1|

[BGS99|

Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Archi-
tectures. Elsevier, 2001.

David G. Bradlee, Susan J. Eggers, and Robert R. Henry. Integrating reg-
ister allocation and instruction scheduling for RISCs. In ASPLOS-IV: Pro-
ceedings of the fourth international conference on Architectural support for
programming languages and operating systems, pages 122-131, New York,
NY, USA, 1991. ACM.

David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Integrated instruction
scheduling and register allocation techniques. In LCPC ’98: Proceedings of
the 11th International Workshop on Languages and Compilers for Parallel
Computing, pages 247-262, London, UK, 1999. Springer-Verlag.

[CFR"91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

[ESKO08]

[GHSS]

F. Kenneth Zadeck. Efficiently computing static single assignment form and
the control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451—
490, 1991.

Mattias V. Eriksson, Oskar Skoog, and Christoph W. Kessler. Optimal vs.
heuristic integrated code generation for clustered VLIW architectures. In
SCOPES ’08: Proceedings of the 11th international workshop on Software &
compilers for embedded systems, pages 11-20, New York, NY, USA, 2008.
ACM.

J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in
large basic blocks. In ICS ’88: Proceedings of the 2nd international confer-
ence on Supercomputing, pages 442-452, New York, NY, USA, 1988. ACM.

[GRE'01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

[LAO4]

[Net04]

[NP93]

[Pin93]

[PS99]

[SBO7]

[Tou01]

and R. B. Brown. MiBench: A free, commercially representative embed-
ded benchmark suite. In WWC ’01: Proceedings of the Workload Charac-
terization, 2001. WWC-4. 2001 IEEE International Workshop, pages 3—14,
Washington, DC, USA, 2001. IEEE Computer Society.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, University of Cambridge, November 2004.

C. Norris and L. L. Pollock. A scheduler-seunsitive global register allocator.
In Supercomputing ’93: Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pages 804-813, New York, NY, USA, 1993. ACM.
Shlomit S. Pinter. Register allocation with instruction scheduling. In PLDI
’93: Proceedings of the ACM SIGPLAN 1993 conference on Programming
language design and implementation, pages 248257, New York, NY, USA,
1993. ACM.

Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.
ACM Trans. Program. Lang. Syst., 21:895-913, September 1999.

Vivek Sarkar and Rajkishore Barik. Extended linear scan: an alternate
foundation for global register allocation. In CC’07: Proceedings of the 16th
international conference on Compiler construction, pages 141-155, Berlin,
Heidelberg, 2007. Springer-Verlag.

Sid Ahmed Ali Touati. Register saturation in superscalar and VLIW codes.
In CC °01: Proceedings of the 10th International Conference on Compiler
Construction, pages 213-228, London, UK, 2001. Springer-Verlag.

[VG99] Madhavi Gopal Valluri and R. Govindarajan. Evaluating register allocation
and instruction scheduling techniques in out-of-order issue processors. In
PACT ’99: Proceedings of the 1999 International Conference on Parallel
Architectures and Compilation Techniques, page 78, Washington, DC, USA,
1999. IEEE Computer Society.

